JPS63175340A - Manufacture of hydrogen absorption electrode - Google Patents

Manufacture of hydrogen absorption electrode

Info

Publication number
JPS63175340A
JPS63175340A JP62008500A JP850087A JPS63175340A JP S63175340 A JPS63175340 A JP S63175340A JP 62008500 A JP62008500 A JP 62008500A JP 850087 A JP850087 A JP 850087A JP S63175340 A JPS63175340 A JP S63175340A
Authority
JP
Japan
Prior art keywords
electrode
metal layer
alloy
metal
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62008500A
Other languages
Japanese (ja)
Other versions
JPH0690923B2 (en
Inventor
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Isao Matsumoto
功 松本
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62008500A priority Critical patent/JPH0690923B2/en
Publication of JPS63175340A publication Critical patent/JPS63175340A/en
Publication of JPH0690923B2 publication Critical patent/JPH0690923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve an absorptivity of an oxygen gas and make a long time stabilisation by applying an alkali treatment process, formation of a metal layer, and subsequent pressure press process to a hydrogen absorption electrode. CONSTITUTION:An electrode having a hydrogen absorption alloy layer is formed by filling hydrogen absorption alloy powders into a metal porous body, or applying them to both surfaces of the metal body. Next the electrode is submerged into an alkaline water solution, water washed, dried, and subsequently a metal layer is formed on the electrode plate surface. Then the electrode is composed by a pressure pressing. This allows first the alloy powder surface to be oxidized, and a thin oxide membrane formed. This results in a constraint of the oxidation progress to an alloy inside. Then an electronic conductivity can be improved and a gas absorption reaction of oxygen promoted by forming the metal layer on the electrode plate surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解液中で水素を可逆的に吸蔵・放出する水素
吸蔵合金を負極材料とした水素吸蔵電極の製造法に関す
るもので、とくに、酸化ニッケル正極と組み合せて構成
される密閉形ニッケルー水素蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a hydrogen storage electrode using a hydrogen storage alloy that reversibly stores and releases hydrogen in an electrolytic solution as a negative electrode material. This invention relates to a sealed nickel-metal hydride storage battery configured in combination with a positive electrode.

従来の技術 水素吸蔵合金に対する水素の吸蔵・放出を電気化学的に
行なわせることにより、2次電池の負極材料として使用
できる。このうち、常温付近で水素の吸蔵・放出が可能
で、吸蔵量・放出量の多い合金を選択し、負極材料とす
ることにより、放電電気量の多い水素吸蔵電極が可能に
なる。したがって、たとえば酸化ニッケル正極と組みあ
わせることにより、エネルギー密度の大きなアルカリ蓄
電池が期待できる。このような背景から、水素吸蔵電極
を用いる高容量蓄電池が注目を集めている。
BACKGROUND ART Hydrogen storage alloys can be used as negative electrode materials for secondary batteries by electrochemically storing and releasing hydrogen. Among these, by selecting an alloy that is capable of absorbing and desorbing hydrogen at around room temperature and has a large amount of hydrogen storage and release, and using it as the negative electrode material, a hydrogen storage electrode that can discharge a large amount of electricity becomes possible. Therefore, by combining it with a nickel oxide positive electrode, for example, an alkaline storage battery with high energy density can be expected. Against this background, high-capacity storage batteries using hydrogen storage electrodes are attracting attention.

この種の電極においては水素吸蔵合金の耐食性、充放電
による微粒化などによる放電容量の低下、さらに酸化ニ
ッケル正極と組みあわせた密閉電池系においては、過充
電時に正極から発生する酸素の吸収能力が低下し、電池
内圧の上昇を招くなどの問題があり、実用化を阻害して
いた。
In this type of electrode, the corrosion resistance of the hydrogen storage alloy, the reduction in discharge capacity due to atomization during charging and discharging, and furthermore, in a sealed battery system combined with a nickel oxide positive electrode, the ability to absorb oxygen generated from the positive electrode during overcharging increases. There were problems such as a drop in battery pressure and an increase in battery internal pressure, which hindered its practical application.

発明が解決しようとする問題点 このような従来の構成では前述したような課題が残され
ているため、サイクル寿命の低下、密閉電池においては
電解液の漏液という現象が現われた。本発明はこのよう
な問題点を解決するために、合金表面の耐食性を向上さ
せると共に、さらに、耐食性が向上した合金表面に金属
層を形成させることにより、酸素ガス吸収特性を向上さ
せることで、長期間安定な特性を示す電池を提供するこ
とを目的とするものである。
Problems to be Solved by the Invention Since the above-mentioned problems remain in such conventional configurations, phenomena such as a decrease in cycle life and electrolyte leakage in sealed batteries have appeared. In order to solve these problems, the present invention improves the corrosion resistance of the alloy surface and further improves the oxygen gas absorption characteristics by forming a metal layer on the alloy surface with improved corrosion resistance. The purpose of this invention is to provide a battery that exhibits stable characteristics over a long period of time.

問題点を解決するための手段 この問題点を解決するために本発明においては、水素吸
蔵合金粉末を金属多孔体内に充填するか、あるいは金属
多孔体の両面に塗着することにより形成された水素吸蔵
合金層をもつ電極を、アルカリ水溶液中に浸漬し、水洗
、乾燥する工程と、ついで、極板表面に金属層を形成さ
せる工程と、その後加圧プレスする工程とから電極を構
成したものである。
Means for Solving the Problem In order to solve this problem, in the present invention, a hydrogen storage alloy powder formed by filling a porous metal body with a hydrogen storage alloy powder or coating both sides of a porous metal body. The electrode is constructed by immersing the electrode with a storage alloy layer in an alkaline aqueous solution, washing with water, and drying it, then forming a metal layer on the surface of the electrode plate, and then pressurizing it. be.

作  用 この構成によシ、まず合金粉末の表面が酸化され、薄い
酸化膜が形成される。その結果、電極中の合金は充放電
を繰り返し、あるいは過充電時に正極から発生する酸素
による酸化が合金内部まで進行することが抑制される。
Function: With this configuration, the surface of the alloy powder is first oxidized to form a thin oxide film. As a result, the alloy in the electrode is inhibited from being repeatedly charged and discharged, or from progressing into the interior of the alloy due to oxidation caused by oxygen generated from the positive electrode during overcharging.

したがって、放電電圧、放電容量の低下が少なくなる。Therefore, the decrease in discharge voltage and discharge capacity is reduced.

つぎに、極板表面に金属層を形成することによシ、極板
表面の電子伝導性が向上し、酸素のガス吸収反応が保進
されると同時に、合金と酸素の直接接触することが少な
くなシ、合金の酸化が抑制される。さらに、金属層を形
成した後に加圧プレスを行うことで、合金層と金属層と
の結着力を向上させると同時に、各々合金層、金属層の
強度を高めることが可能になる。
Next, by forming a metal layer on the surface of the electrode plate, the electron conductivity of the surface of the electrode plate is improved, the oxygen gas absorption reaction is promoted, and at the same time, direct contact between the alloy and oxygen is prevented. However, oxidation of the alloy is suppressed. Furthermore, by performing pressure pressing after forming the metal layer, it is possible to improve the binding force between the alloy layer and the metal layer, and at the same time, it is possible to increase the strength of the alloy layer and the metal layer, respectively.

以上のような作用により、負極寿命の向上が図れ、電池
での問題点が解決されることで、長寿命の電池を可能に
することとなる。
Due to the above-described effects, the life of the negative electrode can be improved, and problems with the battery can be solved, thereby making it possible to create a battery with a long life.

実施例 純度99.6%以上のランタン(La)、ニッケル(N
i)、コバルト(Co)、マンガン(Mn)、希土類元
素含有量が98.5%以上のミツシュメタル(Mm )
を用いて、合金組成がLa0.3 Mmo、7Ni3.
5 Co1.2 Mn0.3になるように各々の金属を
秤量し、アーク溶解炉を用いて合金を作製した。
Examples Lanthanum (La), nickel (N) with a purity of 99.6% or more
i) Mitsushi metal (Mm) with cobalt (Co), manganese (Mn), and rare earth element content of 98.5% or more
was used, and the alloy composition was La0.3 Mmo, 7Ni3.
Each metal was weighed to give 5 Co1.2 Mn0.3, and an alloy was produced using an arc melting furnace.

この合金を真空熱処理炉によシ温度1o60°C1真空
度10  Torr以下に保持し、6時間熱処理を行っ
た。冷却後、粉砕して、400メツシユ以下の粉末にし
た。
This alloy was heated in a vacuum heat treatment furnace at a temperature of 1 o 60° C. and a vacuum of 10 Torr or less, and heat treated for 6 hours. After cooling, it was ground into a powder of 400 mesh or less.

この粉末1oOgに対して、1.5重量%のポリビニル
アルコールの水溶液を26gの割合で混合して、泥状の
ペーストとした。このペーストを多孔度94〜96%の
発泡状ニッケル多孔体(寸法260X38JIII、厚
さ0,97IB)内へ均一に充填し乾燥した。
26 g of a 1.5% by weight aqueous solution of polyvinyl alcohol was mixed with 100 g of this powder to form a slurry paste. This paste was uniformly filled into a foamed nickel porous body (dimensions: 260 x 38 JIII, thickness: 0.97 IB) with a porosity of 94 to 96% and dried.

その後、これらの極板を60°Cに加温された濃その後
、水洗、乾燥した。以上の構成で極板を作製し、ついで
化学メッキ法、蕪辞メッキ法、あるいは金属粉末とポリ
ビニルアルコールの水溶液で混練したペーストなどを用
いて、極板表面にニッケル、銅、銀の金属層を形成した
。その後、加圧プレスを行ない負極とした。比較のため
に金属層を形成しない負極、加圧プレスを行なった後金
属層を形成した負極、アルカリ処理を行なわずに金属層
を形成し、加圧プレスを行なった負極などa〜kを構成
した。詳細な構成条件を第1表に示す。
Thereafter, these electrode plates were heated to 60°C, washed with water, and dried. An electrode plate is manufactured with the above configuration, and then a metal layer of nickel, copper, and silver is applied to the surface of the electrode plate using a chemical plating method, a plating method, or a paste kneaded with an aqueous solution of metal powder and polyvinyl alcohol. Formed. Thereafter, pressure pressing was performed to obtain a negative electrode. For comparison, negative electrodes with no metal layer formed, negative electrodes with a metal layer formed after pressure pressing, negative electrodes with a metal layer formed without alkali treatment and pressure pressing, etc. were constructed. did. Detailed configuration conditions are shown in Table 1.

第1表 負極の詳細な構成条件 負極 金属層の 金属の 負極構成過程記号 形成法 
 種類 a    −−アルカリ処理→加圧ブレスb  電気メ
ッキ   Ni アルカM里→’M3Uツキー加圧ブレスc      
      Ag d            Cu e          Cu    気メッキ→加圧プ
レスf   イビ≠メッキ   Ni つぎに、酸化ニッケル正極として、公知の方法で得られ
た発泡式ニッケル正極(理論充填電気量2970〜30
8〇−吐)を用い、セパレータにはポリアミド不織布、
電解液に水酸化リチウムを30I/β溶解した30重量
%のか性カリ水溶液を使用し、前記負極a−wkと組み
あわせ、公称容量2.8 Ahの単2サイズ(Cサイズ
)の密閉形ニッケルー水素蓄電池A〜Kを構成した。
Table 1 Detailed configuration conditions of negative electrode Negative electrode Metal layer Metal Negative electrode configuration process Symbol Formation method
Type a -- Alkali treatment → Pressure breath b Electroplating Ni Alka Miri → 'M3U key pressure breath c
Ag d Cu e Cu Air plating → Pressure press f Ibi ≠ plating Ni Next, as a nickel oxide positive electrode, a foamed nickel positive electrode obtained by a known method (theoretical charging electricity amount 2970-30
The separator is made of polyamide non-woven fabric,
A 30% by weight caustic potassium aqueous solution containing 30 I/β of lithium hydroxide dissolved in the electrolyte was used, and in combination with the negative electrode AWK, a sealed nickel-sized AA size (C size) with a nominal capacity of 2.8 Ah was produced. Hydrogen storage batteries A to K were constructed.

これらの電池を20 ’Cの一定温度下”で1サイクル
目の充電を0.1Cで16時間、2サイクル目以降は0
.20で乙5時間の充電条件、放電はすべて0.20の
電流で終止電圧o、sVまで放電を続け、電池のサイク
ル寿命を調べた。また、同時に電池底部に直径1.5鵬
の穴をあけ、圧力センサーを取付けて、電池内の圧力変
化を測定した。その結果を第2表に示す。
These batteries were charged at a constant temperature of 20'C for the first cycle at 0.1C for 16 hours, and from the second cycle onwards
.. The cycle life of the battery was examined under charging conditions of 20 and 5 hours, and discharging was continued at a current of 0.20 until the final voltage o, sV. At the same time, a hole with a diameter of 1.5 mm was made in the bottom of the battery, a pressure sensor was attached, and pressure changes inside the battery were measured. The results are shown in Table 2.

第2表 負極構成条件と電池特性 この結果よシ、まず金属層を形成させなかった負極を用
いたAの電池は、30oサイクル経過時点で電池内圧が
15.7 KP/d iで上昇し、放電容量も低下した
。この試験においては安全弁を作動させない条件で内圧
を測定したが、実際の電池においては、安全性を考慮し
て1ol′lP/d程度で安全弁が作動し、これ以上の
圧力に達した場合はガスを放出させるようになっている
。したがって、実際の電池系においては、さらに容量低
下が大きくなるものと考えられる。これに対して、B、
C。
Table 2 Negative electrode configuration conditions and battery characteristics The results show that in battery A using a negative electrode on which no metal layer was formed, the internal pressure of the battery increased by 15.7 KP/d i after 30 o cycles. Discharge capacity also decreased. In this test, the internal pressure was measured without the safety valve operating, but in an actual battery, the safety valve operates at around 1 ol'lP/d for safety reasons, and if the pressure reaches higher than this, the internal pressure is It is designed to emit. Therefore, in an actual battery system, it is thought that the capacity decrease will be even greater. On the other hand, B,
C.

Dの電池においては、電池内圧の上昇も認められず、容
量の低下もほとんどなかった。また、形成された金属の
種類を変化させた場合においても、大差は認められず、
金属層を形成することは、過充電時に正極から発生する
酸素ガスの吸収と、水素吸蔵合金材料の腐食防止に有効
であると考えられる。
In battery D, no increase in battery internal pressure was observed, and there was almost no decrease in capacity. Also, even when the type of metal formed was changed, there was no significant difference.
Forming a metal layer is considered to be effective in absorbing oxygen gas generated from the positive electrode during overcharging and preventing corrosion of the hydrogen storage alloy material.

一方、アルカリ処理工程を省略した負極を用いたEの電
池は前述したAの電池と同様に電池内圧の上昇、放電容
量の低下が認められ、アルカリ処理工程は本発明におい
て重要な工程であると言える。
On the other hand, in battery E using a negative electrode that omitted the alkali treatment step, an increase in battery internal pressure and a decrease in discharge capacity were observed, similar to the battery A described above, and the alkali treatment step is an important step in the present invention. I can say it.

金属の形成方法、形成させた金属の種類を変化させたF
、G、H,I 、Iの電池においても、良好な充放電特
性を示し、形成方法、金属の種類によってもほとんど差
が認められなかった。
F by changing the metal formation method and the type of metal formed
, G, H, I, and I also exhibited good charge-discharge characteristics, with almost no difference observed depending on the formation method or type of metal.

負極の製造工程を変化させたKの電池の場合は、■の電
池と比較すれば明らかなように、加圧プレス工程後、金
属層を形成した場合には充放電、特性に差が生じた。こ
の原因は合金層と金属層との密着性が悪いことと金属層
が緻密にならないため、電子伝導性の低下と、合金の保
護作用の低下とが起こり、ガス吸収特性の劣化、放電容
量の低下につながったものと考えられる。
In the case of the battery K, in which the manufacturing process for the negative electrode was changed, as is clear from the comparison with the battery ①, there were differences in charging and discharging characteristics when a metal layer was formed after the pressure pressing process. . The reason for this is that the adhesion between the alloy layer and the metal layer is poor and the metal layer is not dense, which leads to a decrease in electronic conductivity and a decrease in the protective effect of the alloy, resulting in deterioration of gas absorption properties and a decrease in discharge capacity. This is thought to have led to the decline.

以上、実施例に示したように本発明は長寿命の水素吸蔵
電極を提供するものである。
As described above in the Examples, the present invention provides a long-life hydrogen storage electrode.

発明の効果 以上のように本発明によれば、水素吸蔵電極をアルカリ
処理工程と金属層の形成、その後の加圧プレス工程を行
なうことにょシ、酸素ガス吸収特性の向上と、長期間安
定に維持することが可能になると同時に、水素吸蔵合金
の酸素による酸化を抑制でき、長寿命の電極の提供が可
能になるという効果が得られる。
Effects of the Invention As described above, according to the present invention, the hydrogen storage electrode is subjected to an alkali treatment process, the formation of a metal layer, and a subsequent pressure pressing process, thereby improving oxygen gas absorption characteristics and making it stable for a long period of time. At the same time, oxidation of the hydrogen storage alloy by oxygen can be suppressed, and an electrode with a long life can be provided.

なお、実施例においては金属多孔体として発泡状二ソケ
ル多孔体を用い、その内部へ水素吸蔵合金粉末を充填し
た電極について示したが、金属多孔体として鉄製のパン
チングメタルニッケルメッキしたものを使用して合金粉
末を主体とするペーストをその両面に塗着して得られた
電極についても同様の効果が得られた。
In addition, in the example, an electrode was shown in which a foamed disokel porous body was used as the metal porous body and the inside thereof was filled with hydrogen-absorbing alloy powder, but an iron punching metal plated with nickel was used as the metal porous body. A similar effect was obtained with an electrode obtained by applying a paste mainly composed of alloy powder to both sides of the electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵・放出する水素吸蔵合金を負
極材料として用いる水素吸蔵電極において、前記合金粉
末を金属多孔体内に充填するかあるいは金属多孔体の両
面に塗着して電極を構成し、ついで、アルカリ水溶液中
に浸漬し、水洗、乾燥する工程と、この電極の表面に金
属層を形成させる工程と、その後に加圧プレスする工程
を有する水素吸蔵電極の製造法。
(1) In a hydrogen storage electrode that uses a hydrogen storage alloy that reversibly stores and releases hydrogen as a negative electrode material, the electrode is constructed by filling the alloy powder into a porous metal body or coating both sides of the porous metal body. A method for producing a hydrogen storage electrode, which includes the steps of: immersing the electrode in an alkaline aqueous solution, washing with water, and drying; forming a metal layer on the surface of the electrode; and then pressing under pressure.
(2)前記金属層がニッケル、銅、銀の群から選ばれた
1種の金属である特許請求の範囲第1項に記載の水素吸
蔵電極の製造法。
(2) The method for manufacturing a hydrogen storage electrode according to claim 1, wherein the metal layer is one metal selected from the group of nickel, copper, and silver.
(3)金属層が化学メッキ、電解メッキ又は金属粉末と
結着剤および溶媒を混練して得られるペーストを塗着す
ることにより形成されたものである特許請求の範囲第1
項に記載の水素吸蔵電極の製造法。
(3) Claim 1 in which the metal layer is formed by chemical plating, electrolytic plating, or by applying a paste obtained by kneading metal powder, a binder, and a solvent.
The method for manufacturing the hydrogen storage electrode described in Section 1.
JP62008500A 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode Expired - Lifetime JPH0690923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62008500A JPH0690923B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62008500A JPH0690923B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPS63175340A true JPS63175340A (en) 1988-07-19
JPH0690923B2 JPH0690923B2 (en) 1994-11-14

Family

ID=11694838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62008500A Expired - Lifetime JPH0690923B2 (en) 1987-01-16 1987-01-16 Manufacturing method of hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0690923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820229B1 (en) 2007-06-18 2008-04-08 삼성전기주식회사 Hydrogen generating apparatus and manufacturing method thereof and fuel cell power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820229B1 (en) 2007-06-18 2008-04-08 삼성전기주식회사 Hydrogen generating apparatus and manufacturing method thereof and fuel cell power generation system

Also Published As

Publication number Publication date
JPH0690923B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JPS63175340A (en) Manufacture of hydrogen absorption electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3639494B2 (en) Nickel-hydrogen storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP3098948B2 (en) Hydrogen storage alloy-containing composition and electrode using the same
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPS62285360A (en) Negative electrode for alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS63175342A (en) Manufacture of hydrogen absorption electrode
JP2003142087A (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JP3370111B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2001035526A (en) Nickel hydrogen storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term