JPS63174270A - Nonaqueous electrolyte cell - Google Patents

Nonaqueous electrolyte cell

Info

Publication number
JPS63174270A
JPS63174270A JP62005241A JP524187A JPS63174270A JP S63174270 A JPS63174270 A JP S63174270A JP 62005241 A JP62005241 A JP 62005241A JP 524187 A JP524187 A JP 524187A JP S63174270 A JPS63174270 A JP S63174270A
Authority
JP
Japan
Prior art keywords
indium
copper
positive electrode
composite sulfide
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62005241A
Other languages
Japanese (ja)
Inventor
Chikanori Ishibashi
石橋 親典
Kazuo Moriwaki
森脇 和郎
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62005241A priority Critical patent/JPS63174270A/en
Publication of JPS63174270A publication Critical patent/JPS63174270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the heavy-duty discharge characteristic and storage characteristic by adding a composite sulfide of copper and indium to a positive electrode using cupric oxide as an active material. CONSTITUTION:A composite sulfide of copper and indium is added to a positive electrode using cupric oxide as an active material. The addition of the composite sulfide of copper and indium is preferably within a range of 5-30 wt.% with respect to the positive electrode. The composite sulfide of copper and indium is indicated as CuxInySz, preferably CuInS2, CuIn2S4, or Cu2InS4 in particular. When cupric oxide and the composite sulfide of copper and indium are concurrently used, a cell having no voltage drop at the start of a discharge and a relatively large discharge capacity can be obtained. Indium is generated by the composite sulfide of copper and indium via the discharge, this indium is reacted with a lithium negative electrode to form an indium or indium-lithium alloy film on the surface of the negative electrode. The generation of a passive state film caused by the reaction between lithium and water is prevented, and an increase of the internal resistance is suppressed.

Description

【発明の詳細な説明】 イ) 産業上の利用分野 本発明は酸化第二銅を正極活物質とする非水電解液電池
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-aqueous electrolyte battery using cupric oxide as a positive electrode active material.

(口i 従来の技術 酸化第二銅を正極活物質とし、リチウム又はリチウム合
金を負極活物質とする非水電解液電池は例えば特公昭5
9−35935号公報で公知であり、その電池電圧は約
1.4v程度であるので電子機器の電源に汎用されてい
るアルカリ乾電池、水銀電池或いは銀電池等と互換使用
しうる利点がある。
(Conventional technology) Non-aqueous electrolyte batteries using cupric oxide as a positive electrode active material and lithium or lithium alloy as a negative electrode active material are, for example,
It is known from Japanese Patent No. 9-35935, and since its battery voltage is about 1.4 V, it has the advantage that it can be used interchangeably with alkaline dry batteries, mercury batteries, silver batteries, etc. that are commonly used as power sources for electronic devices.

ところが、この種電源は高率放電において、初期の電池
電圧が落込む、又保存時において電池内に侵入する水分
によってリチウム負極の表面に不働態膜が生成し、内部
抵抗が増大して電池性能が低下すると云った問題がある
However, in this type of power supply, the initial battery voltage drops during high-rate discharge, and a passive film is formed on the surface of the lithium negative electrode due to moisture entering the battery during storage, increasing internal resistance and impairing battery performance. There is a problem that the amount of energy decreases.

G/M  発明が解決しようとする問題点本発明は酸化
第二銅を正極活物質とし、リチウム又はリチウム合金を
負極活物質とする非水電解液電池の高率放電特性及び保
存特性の改善を計るものである。
G/M Problems to be Solved by the Invention The present invention aims to improve the high rate discharge characteristics and storage characteristics of a non-aqueous electrolyte battery that uses cupric oxide as a positive electrode active material and lithium or a lithium alloy as a negative electrode active material. It is something to measure.

四 問題点を解決するための手段 本発明は酸化第二銅を活物質とする正極に銅とインジウ
ムの複合硫化物を添加したことを要旨とする。
4. Means for Solving the Problems The gist of the present invention is that a composite sulfide of copper and indium is added to a positive electrode using cupric oxide as an active material.

尚、銅とインジウムの複合硫化物の添加量は正極に対し
て5〜30重量%の範囲が好ましい。
The amount of the composite sulfide of copper and indium added is preferably in the range of 5 to 30% by weight based on the positive electrode.

又、銅とインジウムの複合硫化物はCux工nySzで
示されるものであって、特にCu工nSt、CuIn1
S4 或いはCu、工nS4が好ましい。
In addition, composite sulfides of copper and indium are represented by Cux-nySz, especially Cu-nSt, CuIn1
S4 or Cu, nS4 is preferred.

(ホ)作 用 酸化第二銅のみを正極活物質とした場合、高率放電(I
KΩ負荷〕で約1.25Vの作動電圧を示し、且放電初
期に電圧の落込みが認められる。
(e) Effect When only cupric oxide is used as the positive electrode active material, high rate discharge (I
The operating voltage was approximately 1.25 V under a KΩ load, and a drop in voltage was observed at the beginning of discharge.

一方銅とインジウムの複合硫化物のみを正極活物質とし
た場合には高率放電で平担性は悪いものの放電初期に約
1.4vの作動電圧を示し、且放電初期の電圧落込みは
認められない。但し重量当りの理論エネルギーはリチウ
ム負極と組合せた場合、酸化第二銅が570mAh/y
であるのに対し銅とインジウムの複合硫化物は約400
mAh/fであり、放電容量について云えば酸化第二銅
の方が大きい。
On the other hand, when only a composite sulfide of copper and indium was used as the positive electrode active material, although the flatness was poor due to high rate discharge, an operating voltage of about 1.4V was observed at the beginning of discharge, and no voltage drop was observed at the beginning of discharge. I can't. However, the theoretical energy per weight is 570mAh/y for cupric oxide when combined with a lithium negative electrode.
On the other hand, the composite sulfide of copper and indium is about 400
mAh/f, and in terms of discharge capacity, cupric oxide is larger.

依って、酸化第二銅と、銅とインジウムの複合硫化物と
を併用することにより、放電初期の電圧の落込みがなく
、且放電容量も比較的大きい電池を得ることができる。
Therefore, by using cupric oxide and a composite sulfide of copper and indium in combination, it is possible to obtain a battery that does not have a drop in voltage at the initial stage of discharge and has a relatively large discharge capacity.

又、銅とインジウムの複合硫化物の放電にょってインジ
ウムが生成し、このインジウムがリチウム負極と反応し
て負極表面にインジウム或いはインジウム−リチウム合
金の被膜が形成され、リチウムと水との反応による不働
態膜の生成を阻止し内部抵抗の増大が抑制される。
In addition, indium is generated by the discharge of a composite sulfide of copper and indium, and this indium reacts with the lithium negative electrode to form a film of indium or an indium-lithium alloy on the surface of the negative electrode. This prevents the formation of a passive film and suppresses the increase in internal resistance.

(へ)実施例 実施例1 市販特級の酸化第二銅70重@チに、添加剤としてのC
u工n5z20重量幅、導電剤としての黒鉛5重量%及
び結着剤としてのフッ素樹脂粉末5重J1%を加えて混
合した後、この混合物を約2トン/iの圧力で加圧成型
して径15.Off、厚み1゜1flの成型体を得、こ
の成型体を200〜300℃の温度で熱処理して正極と
する。
(f) Examples Example 1 Adding C as an additive to commercially available special grade cupric oxide 70%
After adding and mixing 5% by weight of graphite as a conductive agent and 1% of 5 weight J of fluororesin powder as a binder, this mixture was press-molded at a pressure of about 2 tons/i. Diameter 15. Off, a molded body with a thickness of 1° and 1 fl is obtained, and this molded body is heat-treated at a temperature of 200 to 300°C to form a positive electrode.

負極はリチウム板を約0.6ffの厚みに圧廻しこのリ
チウム圧延板を径15.Offに打抜いたものである。
The negative electrode is a lithium plate rolled to a thickness of approximately 0.6 ff, and this lithium rolled plate is rolled to a diameter of 15 mm. It was punched off.

電解液はプロピレンカーボネートと1.2ジメトキシエ
タンとの混合溶媒に過塩素酸リチウムを1tル/l溶解
させたものを用い、又セパレータはポリプロピレン不織
布を用いて直径20.Off、厚み2.5ffの本発明
電池(A1)を作成した。
The electrolyte used was a mixed solvent of propylene carbonate and 1.2 dimethoxyethane in which 1 ton/l of lithium perchlorate was dissolved, and the separator was made of polypropylene non-woven fabric with a diameter of 20 mm. Off, a battery of the present invention (A1) with a thickness of 2.5 ff was created.

第1図は本発明電池の縦断面図を示し、本発明の要旨と
する正極(1)は正極罐(2)の内底面に固着せる正極
集電体(3)に圧接されている。一方リチウム負極(4
)は負極V!1f51の内底面に固着せる負極集電体(
6)に圧着されている。(7)はセパレータ、+81 
i′i絶aパ9キングである。
FIG. 1 shows a longitudinal cross-sectional view of the battery of the present invention, in which a positive electrode (1), which is the gist of the present invention, is pressed into contact with a positive electrode current collector (3) fixed to the inner bottom surface of a positive electrode can (2). On the other hand, the lithium negative electrode (4
) is the negative pole V! Negative electrode current collector (
6) is crimped. (7) is a separator, +81
i'i absolutely a pa 9 king.

実施例2 添加剤としてCu工nS、(D代わりにOu工n26a
を用いることを除いて他は実施例1と同様の本発明電池
(A2)を作成した。
Example 2 Cu-nS as additive, (Ou-n26a instead of D)
A battery (A2) of the present invention was prepared in the same manner as in Example 1 except that the battery was used.

実施例3 添加剤としてCuIn5.の代わりにCu2In54を
用いることを除いて他は実施例1と同様の本発明電池(
A3)を作成した。
Example 3 CuIn5. as an additive. A battery of the present invention (
A3) was created.

比較例1 CuInS2  を添加せず酸化第二銅単独を活物質と
することを除いて他は実施例1と同様の比較電池の(を
作成した。
Comparative Example 1 A comparative battery (()) was prepared in the same manner as in Example 1 except that CuInS2 was not added and cupric oxide alone was used as the active material.

比較例2 酸化第二銅を用いずCu 工n S t  単独を活物
質とすることを除いて他は実施例1と同様の比較電池t
C+を作成した。
Comparative Example 2 A comparative battery similar to Example 1 except that cupric oxide was not used and Cu alone was used as the active material.
Created C+.

尚、本発明電池及び比較電池はいずれも電池組立後、開
路電圧を下げる目的で電池容量の約4%を予じめ放電し
て完成電池とした。
In addition, after the battery of the present invention and the comparative battery were assembled, approximately 4% of the battery capacity was discharged in advance to lower the open circuit voltage to obtain a completed battery.

第2図は本発明電池(A1)と比較電池tBltelと
の温度25℃、負荷1にΩにおける放電特性比較図を示
し、第2図より本発明電池(A1)は比較電池CBl 
tc+に比して放電初期の電圧落込みがなく、至高容量
を有することがわかる。
Figure 2 shows a comparison diagram of the discharge characteristics of the battery of the present invention (A1) and the comparative battery tBltel at a temperature of 25°C and a load of 1.
It can be seen that, compared to tc+, there is no voltage drop at the beginning of discharge and it has the highest capacity.

第3図は銅とインジウムの複合硫化物の添加量と、電池
の放電容量との関係を示し、添加量としては正極に対し
て5〜30重量鴨の範囲が好ましいことがわかる。
FIG. 3 shows the relationship between the amount of composite sulfide of copper and indium added and the discharge capacity of the battery, and it can be seen that the amount added is preferably in the range of 5 to 30% by weight relative to the positive electrode.

又、第4図は本発明電池(AI ) (A2 ) (A
3)と比較電池の)とを温度60℃、湿度90%で保存
した時の内部抵抗の経時変化を示す。第4図より本発明
電池は高温、高湿下で保存しても内部抵抗の増大は抑制
されているのがわかる。
Moreover, FIG. 4 shows the battery of the present invention (AI) (A2) (A
Figure 3 shows the change in internal resistance over time when the battery 3) and the comparative battery 2) were stored at a temperature of 60°C and a humidity of 90%. From FIG. 4, it can be seen that the increase in internal resistance of the battery of the present invention is suppressed even when stored at high temperature and high humidity.

(ト)発明の効果 上述シタ如く、リチウム又はリチウム合金を活物質とす
る負極と、非水電解液と、酸化第二銅を活物質とする正
極とを備えた非水電解液電池において、正極に銅とイン
ジウムの複合硫化物を添加することにより高率放電特性
及び保存特性を改善することができるものであり、この
種電池の用途拡大に資するところ場めて大である。
(G) Effects of the invention As mentioned above, in a non-aqueous electrolyte battery comprising a negative electrode made of lithium or a lithium alloy as an active material, a non-aqueous electrolyte, and a positive electrode made of cupric oxide as an active material, the positive electrode By adding a composite sulfide of copper and indium to the battery, the high rate discharge characteristics and storage characteristics can be improved, and this will greatly contribute to expanding the uses of this type of battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の半断面図、第2図は電池の高率放
電特性図、第3図は銅とインジウムの複合硫化物の添加
僅と電池の放電容量との関係を示す図、第4図は電池の
内部抵抗の経時変化を示す図である。 (1)・・・正極、(2)・・・正極罐、(3)・・・
正極集電体、(4)・・・負極、(5)・・・負極罐、
(6)・・・負極集電体、(7)・・・セパレータ、(
8)・・・絶縁バッキング。
FIG. 1 is a half-sectional view of the battery of the present invention, FIG. 2 is a high-rate discharge characteristic diagram of the battery, and FIG. 3 is a diagram showing the relationship between the amount of addition of a composite sulfide of copper and indium and the discharge capacity of the battery. FIG. 4 is a diagram showing the change over time in the internal resistance of the battery. (1)...Positive electrode, (2)...Positive electrode can, (3)...
Positive electrode current collector, (4)... negative electrode, (5)... negative electrode can,
(6)...Negative electrode current collector, (7)...Separator, (
8)...Insulating backing.

Claims (2)

【特許請求の範囲】[Claims] (1)リチウム又はリチウム合金を活物質とする負極と
、非水電解液と、酸化第二銅を活物質とする正極とを備
えるものであって、前記正極に銅とインジウムの複合硫
化物を添加したことを特徴とする非水電解液電池。
(1) A device comprising a negative electrode using lithium or a lithium alloy as an active material, a non-aqueous electrolyte, and a positive electrode using cupric oxide as an active material, the positive electrode containing a composite sulfide of copper and indium. A non-aqueous electrolyte battery characterized by the addition of additives.
(2)前記複合硫化物の添加量が正極に対して5〜30
重量%であることを特徴とする特許請求の範囲第(1)
項記載の非水電解液電池。
(2) The amount of the composite sulfide added is 5 to 30% relative to the positive electrode.
Claim No. (1) characterized in that it is % by weight.
The non-aqueous electrolyte battery described in .
JP62005241A 1987-01-13 1987-01-13 Nonaqueous electrolyte cell Pending JPS63174270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62005241A JPS63174270A (en) 1987-01-13 1987-01-13 Nonaqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62005241A JPS63174270A (en) 1987-01-13 1987-01-13 Nonaqueous electrolyte cell

Publications (1)

Publication Number Publication Date
JPS63174270A true JPS63174270A (en) 1988-07-18

Family

ID=11605703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62005241A Pending JPS63174270A (en) 1987-01-13 1987-01-13 Nonaqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS63174270A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064709A1 (en) * 2003-12-22 2005-07-14 The Gillette Company Battery cathode
CN113054173A (en) * 2021-03-12 2021-06-29 合肥国轩高科动力能源有限公司 Low-temperature lithium iron phosphate and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005064709A1 (en) * 2003-12-22 2005-07-14 The Gillette Company Battery cathode
CN113054173A (en) * 2021-03-12 2021-06-29 合肥国轩高科动力能源有限公司 Low-temperature lithium iron phosphate and preparation method and application thereof
CN113054173B (en) * 2021-03-12 2022-04-12 合肥国轩高科动力能源有限公司 Low-temperature lithium iron phosphate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3358478B2 (en) Organic electrolyte secondary battery
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
WO2015141120A1 (en) Lithium primary battery
JPS63174270A (en) Nonaqueous electrolyte cell
JP3152307B2 (en) Lithium secondary battery
JP2664469B2 (en) Non-aqueous electrolyte battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPS63124364A (en) Nonaqueous electrolyte battery
JPH0770315B2 (en) Non-aqueous electrolyte battery
JPS6130383B2 (en)
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPS63174269A (en) Nonaqueous electrolyte cell
JPH01163969A (en) Nonaqueous electrolyte battery
JPS61163564A (en) Nonaqueous electrolytic solution
JPS61181072A (en) Non-aqueous electrolyte battery
JPS63148544A (en) Nonaqueous electrolyte cell
JP2000021445A (en) Nonaqueous electrolyte secondary battery
JPH0586626B2 (en)
JPS61107662A (en) Nonaqueous electrolyte battery
JPH0626120B2 (en) Non-aqueous electrolyte battery
JPS60160566A (en) Nonaqueous electrolyte battery
JPS60150555A (en) Nonaqueous electrolyte cell
JPS59130074A (en) Nonaqueous electrolytic secondary battery
JPH07226231A (en) Lithium secondary battery
JPS636750A (en) Nonaqueous electrolyte battery