JPS6317288A - Production of gallium arsenide single crystal and quartz reaction tube - Google Patents

Production of gallium arsenide single crystal and quartz reaction tube

Info

Publication number
JPS6317288A
JPS6317288A JP15767886A JP15767886A JPS6317288A JP S6317288 A JPS6317288 A JP S6317288A JP 15767886 A JP15767886 A JP 15767886A JP 15767886 A JP15767886 A JP 15767886A JP S6317288 A JPS6317288 A JP S6317288A
Authority
JP
Japan
Prior art keywords
reaction tube
single crystal
quartz reaction
pressure
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15767886A
Other languages
Japanese (ja)
Other versions
JPH0699214B2 (en
Inventor
Tetsuya Inoue
哲也 井上
Takashi Shimoda
下田 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15767886A priority Critical patent/JPH0699214B2/en
Publication of JPS6317288A publication Critical patent/JPS6317288A/en
Publication of JPH0699214B2 publication Critical patent/JPH0699214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To stably grow a GaAs single crystal in good yield, by subjecting parts adjacent to an arsenic pressure controlling point to frosting treatment and keeping the part at the minimum temperature in growing the GaAs single crystal under a given arsenic pressure in a reaction tube by a gradient freezing (GF) method. CONSTITUTION:A thermocouple 7 for controlling an As pressure is mounted on the end part on the side opposite to the side for inserting a quartz boat 4 in a quartz reaction tube 1 and frosting processed parts 8 are formed on the inner and outer surfaces of the reaction tube 1 adjacent to the thermocouple 7. Thereby propagation of infrared rays in the parts can be reduced and kept at the minimum temperature in the reaction tube. GaAs polycrystals are then put in the quartz boat 4 and a seed crystal 2 is set on a speed shelf. The quartz boat 4 is then inserted into the reaction tube 1 to evacuate and hermetically seal the reaction tube 1. The tube 1 is then heated to melt the GaAs polycrystals and grow a single crystal by a gradient freezing (GF) method. A current is simultaneously passed through the thermocouple 7 to keep the temperature at 617 deg.C and carry out growing by keeping the interior of the reaction tube 1 at 1atm As pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガリウム砒素(GaAs )単結晶の製造方
法及びこれに使用される石英反応管に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a gallium arsenide (GaAs) single crystal and a quartz reaction tube used in the method.

′ピ、背景技術と問題点コ 従来、GaAs単結晶を製造する場合、第3図に示すよ
うな装置を用いていた。
BACKGROUND ART AND PROBLEMS Conventionally, when producing GaAs single crystals, an apparatus as shown in FIG. 3 has been used.

図において1は石英反応管であり、4は横型の石英製ボ
ート、5は拡散バリア、7はAs圧制御用熱電対である
In the figure, 1 is a quartz reaction tube, 4 is a horizontal quartz boat, 5 is a diffusion barrier, and 7 is a thermocouple for controlling the As pressure.

挿入し、ドーパントとしてSlを入れ、管内を真空引き
して封入し、図示していないが、加熱炉により、GaA
s多結晶を溶融して融#t3として、温度傾斜法(GF
法)によってGaAs単結晶を成長させる。
GaA
The s polycrystal is melted as melt #t3, and the temperature gradient method (GF
A GaAs single crystal is grown by a method (method).

第3図は、またGaAs単結晶成長中における各領域の
温度を示しているが、図示のようにGaAs融液3の部
分は、融点以上の高温度T1°Cに、固液界面10より
拡散バリア5を越えて中間部分までが中間温度T2”C
に、更に拡散バリア5を越えた中間部分より石英反応管
端部までの間が73 = lit 7〜620℃に保た
れる。
FIG. 3 also shows the temperature of each region during the growth of the GaAs single crystal. The temperature beyond barrier 5 to the middle portion is T2”C.
Furthermore, the temperature between the middle portion beyond the diffusion barrier 5 and the end of the quartz reaction tube is maintained at 73=lit 7 to 620°C.

のAsがとび出し、化学Ω論的組成比(ストイキオメト
リ−) Ga:As=1 : 1が失われるので、As
が融液からとび出さないように、当初に少量のAsを蒸
発皿に入れ、Asを蒸発させてこのとび出しを抑え込ん
でいる。
As the As of the molten metal protrudes and the stoichiometric composition ratio (stoichiometry) of Ga:As=1:1 is lost, As
In order to prevent As from jumping out of the melt, a small amount of As is initially placed in an evaporating dish to evaporate the As and suppress this jumping out.

GaAs融点におけるAsNm圧は約1気圧であり、密
閉真空中におけるAsを加熱した場合、その飽和蒸気圧
は817℃で約1気圧となるため、第3図の如き密閉し
た石英反応管の一部を最低温度点として617 ”Cに
保持すれば、他の部分の温度が変化してもその影響を受
けずに石英反応管内は1気圧のAs圧に維持される。
The AsNm pressure at the melting point of GaAs is about 1 atm, and when As is heated in a closed vacuum, its saturated vapor pressure is about 1 atm at 817°C. If the lowest temperature point is maintained at 617''C, the As pressure inside the quartz reaction tube will be maintained at 1 atm without being affected by changes in the temperature of other parts.

従って最低−底点を817℃に常時維持すれば、つまり
As圧を一定に保てば、この環境で安定にGaAsの成
長をさせることができる。
Therefore, if the lowest-bottom point is always maintained at 817° C., that is, if the As pressure is kept constant, GaAs can be grown stably in this environment.

従って、石英反応管1の端部にAs圧制御用熱電対7を
取り付け、この点が最低温度点となり、且つlit7°
Cに維持されるとすれば、GaAsの単結晶の成長は安
定に進行する。
Therefore, a thermocouple 7 for As pressure control is attached to the end of the quartz reaction tube 1, and this point becomes the lowest temperature point, and lit7°
If the temperature is maintained at C, the growth of the GaAs single crystal will proceed stably.

ところが、第3図に示すような装置においては、高温部
の熱が石英反応管内を、あるいは石英内は赤外線の透過
性が良いことから赤外線となって伝達され、As圧を制
御する熱電対7の設置箇所の温度がその近傍よりも高く
なり、精度よく制御することが困難となる問題があった
However, in the apparatus shown in FIG. 3, the heat in the high temperature section is transmitted in the quartz reaction tube or in the form of infrared rays because quartz has good infrared transmittance, and a thermocouple 7 is used to control the As pressure. There was a problem in that the temperature at the installation location was higher than that in the vicinity, making it difficult to control accurately.

[発明の目的、構成] 本発明は上述のように石英反応管内においてそのボート
内のGaAs融液より、一定As圧下においてGaAs
の単結晶を成長させる方法において、As圧を制御する
温度感知用の熱電対設置箇所の温度が近傍より高くなら
ないようにして常時精確な最低点温度が検出できるよう
にして、As圧の一定化をはかれるようにしてGaAs
単結晶の成長を行うものであって、これを熱電対設置箇
所、つまりAs圧圧制御点綴接部フロスト加工を施した
石英反応管を用いることによって実現するものである。
[Objects and Structure of the Invention] As described above, the present invention produces GaAs from a GaAs melt in a boat in a quartz reaction tube under a constant As pressure.
In the method of growing a single crystal, the As pressure is kept constant by preventing the temperature at the temperature sensing thermocouple installation point for controlling the As pressure from becoming higher than that in the vicinity so that an accurate lowest point temperature can be detected at all times. GaAs
A single crystal is grown, and this is achieved by using a quartz reaction tube with a frosted thermocouple installation location, that is, an As pressure control point joint.

以下第1図に示す実施例により本発明の詳細な説明する
。第3図と同一部分は同一符号で示す。
The present invention will be explained in detail below with reference to the embodiment shown in FIG. The same parts as in FIG. 3 are indicated by the same reference numerals.

石英反応管1において、シード棚を備える横型の石英ボ
ート4が挿入される側より拡散バリア5を介して反対側
の端部にAs圧制御用熱電対7が取付けられることにつ
いては第3図とかわりなく、本発明ではこの熱電対7の
位置に隣接した部分の表面、又は内面もしくしは両面に
フロスト加工部8を形成している。
The As pressure control thermocouple 7 is attached to the end of the quartz reaction tube 1 on the opposite side via the diffusion barrier 5 from the side into which the horizontal quartz boat 4 with the seed shelf is inserted, as shown in FIG. Instead, in the present invention, the frosted portion 8 is formed on the surface, inner surface, or both surfaces of the portion adjacent to the position of the thermocouple 7.

フロスト加工部8は石英の表面をあらして、赤外線を乱
反射させるためのものであるから、上述のように内、外
面に適宜施される。
Since the frosted portion 8 is intended to roughen the surface of the quartz and diffusely reflect infrared rays, it is appropriately applied to the inner and outer surfaces as described above.

このAs圧制御用熱電対7の位置、つまり最低温度点は
石英反応管の構造そのものからして、一般的には石英反
応管の端部に設定しやすいが、この位置に限定されるも
のではない。
The position of the As pressure control thermocouple 7, that is, the lowest temperature point, is generally easy to set at the end of the quartz reaction tube due to the structure of the quartz reaction tube, but it is not limited to this position. do not have.

[実施例1] 径GOm麿、長さ+ 500 mmの石英反応管の端部
より熱電対設置位置を除き、これに隣接する部分より約
100 msわたり、フロスト加工部を備えるものを用
い、横型の石英製ボートにGaAs多結晶を38509
入れ、シード棚に種結晶をセットし、Siを140■g
入れて、これをGF法により成長作業を行ったところ、
約180時間で成長が完了し、35003が単結晶化し
た。成長中、第1図の位置で、TAよりTFまで温度を
モニターした結果は、TA (81ブC)とTB、 T
C,TDとの温度差は全て0,3°C以内で常にTAが
低かった。
[Example 1] A quartz reaction tube with a diameter of 0 m and a length of + 500 mm was provided with a frosted part for approximately 100 ms from the end of the tube, excluding the thermocouple installation position, and adjacent to this. GaAs polycrystalline 38509 on a quartz boat
Place the seed crystal on the seed shelf, and add 140g of Si.
When I put it in and grew it using the GF method,
Growth was completed in about 180 hours, and 35003 became a single crystal. During growth, the temperature was monitored from TA to TF at the position shown in Figure 1, and the results were TA (81buC), TB, and T.
The temperature difference with C and TD was all within 0.3°C, and TA was always low.

ま、た、TEとTFは、TAより15℃以上請い温度を
示していた。又、成長中、Asの固着位置を観察すると
TAの位置にあった。これらの状態は第2図に示される
Well, TE and TF showed temperatures 15 degrees Celsius or more lower than TA. Furthermore, when observing the fixed position of As during growth, it was found to be at the TA position. These conditions are shown in FIG.

実施例2 300璽■にわたり、フロスト加工部を備えるものを用
い、実施例と同じ分量の材料により、同じGF法で成長
作業を行ったところ、約185時間で成長が完了し、3
2009が単結晶化していた。TA(lit8”C)と
Ta、 Tc、 Toとの温度差は0.2°C以内であ
り、TEとTFは15°C以上高い温度であった。また
成長中全行程でAsはTAの位置に固着していた。
Example 2 When growth was performed using the same GF method using the same amount of material as in Example using a 300cm-sized machine equipped with a frosted part, growth was completed in about 185 hours and 3.
2009 had become a single crystal. The temperature difference between TA (lit 8”C) and Ta, Tc, and To was within 0.2 °C, and TE and TF were at temperatures more than 15 °C higher.Also, during the entire growth process, As was higher than that of TA. It was stuck in place.

実施例3 実施例1.2と同寸法の石英反応管のボートが位置する
ところ以外全部フロスト加工、を施したもので、同様試
験を行ったが、結果は実施例2と変るところは殆んどな
かうた。
Example 3 A quartz reaction tube with the same dimensions as Example 1.2 was frosted in all areas except where the boat was located, and the same tests were conducted, but the results were almost the same as in Example 2. What song?

比較例 美装反応管を使用し、同じ分量の材料により同じ方法で
成長させた。
Comparative Example A beautiful reaction tube was used and the same amount of material was grown in the same manner.

約180時間で成長完了し、!2009が単結晶化した
。残りは多結晶化した。TA (817℃)とTB、 
Tc。
Growth is completed in about 180 hours! 2009 became a single crystal. The rest was polycrystalline. TA (817℃) and TB,
Tc.

To各々との温度差は2.1’Cあり、Tn、 Tc+
 Toの温度が全てTAより低く、成長中、AsはTA
部を除いた外周部に固着していた。以上、GF法を用い
るものについて説明したが、石英反応管を用い水平ブリ
ッジマン法による場合にも適用できる。
The temperature difference between To and each is 2.1'C, Tn, Tc+
The temperatures of To are all lower than TA, and during growth, As is TA
It was stuck to the outer periphery except for the outer part. Although the explanation has been given above using the GF method, it is also applicable to the horizontal Bridgman method using a quartz reaction tube.

なお熱電対にはすべてクロメル、アルメル熱電対を使用
している。
All thermocouples used are chromel and alumel thermocouples.

[効果コ 以上説明したように、As圧を精密に設定した温度で成
長期間全行程に亘って制御するには、石英反応管のAs
 圧制御位置周辺をフロスト加工することによって、こ
の部分に対する赤外線の伝播を激減させることが可能と
なり、単結晶化の歩留を向上させ、かつ組成比の精密制
御に対して利用することができる。
[Effects] As explained above, in order to control the As pressure at a precisely set temperature throughout the growth period,
By frosting the area around the pressure control position, it is possible to drastically reduce the propagation of infrared rays to this area, which can be used to improve the yield of single crystallization and precisely control the composition ratio.

又、従来の石英反応管にフロスト加工を行ったものを使
用すればよいので、製造コストは殆んど増加しない。
Furthermore, since a conventional quartz reaction tube that has been frosted can be used, the manufacturing cost will hardly increase.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す。第2図は本発明実施例
における各部分の温度杖態を示す。 第3図は従来のGaAsの製造方法及び石英反応管の説
明図である。 1・・・石英製反応管、2・・・種結晶、3・・・Ga
As融液、4・・・石英製ボート、5・・・拡散バリア
、6・・・As57・・・As圧制御用熱電対、8・・
・フロスト加工部。 第 1 囚 第 2 図 ′$ 3 口
FIG. 1 shows an embodiment of the invention. FIG. 2 shows the temperature profile of each part in the embodiment of the present invention. FIG. 3 is an explanatory diagram of a conventional GaAs manufacturing method and a quartz reaction tube. 1... Quartz reaction tube, 2... Seed crystal, 3... Ga
As melt, 4... Quartz boat, 5... Diffusion barrier, 6... As57... Thermocouple for As pressure control, 8...
・Frost processing section. 1st Prisoner 2nd Figure'$ 3 Mouth

Claims (2)

【特許請求の範囲】[Claims] (1)密閉した石英反応管内に横型ボートを設置し、一
定砒素圧下において、該ボート内のガリウム砒素融液か
ら単結晶を成長させる方法において、石英反応管の砒素
圧制御点隣接部分にフロスト加工を施し、該砒素圧制御
点を石英反応管中最低温度に維持することを特徴とする
ガリウム砒素単結晶の製造方法。
(1) In a method in which a horizontal boat is installed in a sealed quartz reaction tube and a single crystal is grown from a gallium arsenide melt in the boat under constant arsenic pressure, the portion of the quartz reaction tube adjacent to the arsenic pressure control point is frosted. A method for producing a gallium arsenide single crystal, characterized in that the arsenic pressure control point is maintained at the lowest temperature in a quartz reaction tube.
(2)密閉した石英反応管内に横型ボートを設置し、一
定砒素圧下において、該ボート内のガリウム砒素融液か
ら単結晶を成長させる方法に使用される石英反応管であ
って、砒素制御点隣接部分の石英反応管の表面もしくは
内面の一部もしくは内面の一部、又は内面の一部にフロ
スト加工部を有することを特徴とする石英反応管。
(2) A quartz reaction tube used in a method in which a horizontal boat is installed in a sealed quartz reaction tube and a single crystal is grown from a gallium arsenide melt in the boat under a constant arsenic pressure, and the tube is adjacent to an arsenic control point. A quartz reaction tube characterized in that it has a frosted part on the surface or a part of the inner surface of the quartz reaction tube, or a part of the inner surface, or a part of the inner surface.
JP15767886A 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube Expired - Lifetime JPH0699214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15767886A JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15767886A JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Publications (2)

Publication Number Publication Date
JPS6317288A true JPS6317288A (en) 1988-01-25
JPH0699214B2 JPH0699214B2 (en) 1994-12-07

Family

ID=15654991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15767886A Expired - Lifetime JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Country Status (1)

Country Link
JP (1) JPH0699214B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425168B1 (en) * 1994-09-30 2002-07-30 Shin-Etsu Handotai Co., Ltd. Quartz glass jig for heat-treating semiconductor wafers and method for producing same
CN109650749A (en) * 2018-12-04 2019-04-19 有研光电新材料有限责任公司 Quartz boat surface treatment method, quartz boat and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6425168B1 (en) * 1994-09-30 2002-07-30 Shin-Etsu Handotai Co., Ltd. Quartz glass jig for heat-treating semiconductor wafers and method for producing same
CN109650749A (en) * 2018-12-04 2019-04-19 有研光电新材料有限责任公司 Quartz boat surface treatment method, quartz boat and application

Also Published As

Publication number Publication date
JPH0699214B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JPS6317288A (en) Production of gallium arsenide single crystal and quartz reaction tube
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPH1087392A (en) Production of compound semiconductor single crystal
US4528062A (en) Method of manufacturing a single crystal of a III-V compound
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
Kikuma et al. Growth of ZnSe crystals free from rod-like low angle grain boundaries from the melt under argon pressure
JP2543449B2 (en) Crystal growth method and apparatus
JP3788156B2 (en) Method for producing compound semiconductor single crystal and PBN container used therefor
CA1228524A (en) Method for growing a gaas single crystal by pulling from gaas melt
JP2781857B2 (en) Single crystal manufacturing method
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JP4479291B2 (en) Method and apparatus for producing compound semiconductor single crystals
JPH08290991A (en) Method for growing compound semiconductor single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPS60255690A (en) Production of semiconductor crystal
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPH08119792A (en) Determination of crystallization rate in sublimation method, purification of crystal and method for growing single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6229394B2 (en)
JP2000327496A (en) Production of inp single crystal
JPH0567598B2 (en)
JPS61136987A (en) Vessel for growing single crystal
JPS59232997A (en) Method and device for producing single crystal
JPS62143898A (en) Production of iii-v compound semiconductor single crystal
JPH04357189A (en) Production of compound semiconductor crystal