JPS59232997A - Method and device for producing single crystal - Google Patents

Method and device for producing single crystal

Info

Publication number
JPS59232997A
JPS59232997A JP10763683A JP10763683A JPS59232997A JP S59232997 A JPS59232997 A JP S59232997A JP 10763683 A JP10763683 A JP 10763683A JP 10763683 A JP10763683 A JP 10763683A JP S59232997 A JPS59232997 A JP S59232997A
Authority
JP
Japan
Prior art keywords
crucible
melt
single crystal
quartz tube
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10763683A
Other languages
Japanese (ja)
Inventor
Toshihiro Kotani
敏弘 小谷
Koji Tada
多田 紘二
Akihisa Kawasaki
河崎 亮久
Shintaro Miyazawa
宮澤 信太郎
Yasuyuki Nanishi
名西 「やす」之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10763683A priority Critical patent/JPS59232997A/en
Publication of JPS59232997A publication Critical patent/JPS59232997A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce stably a single crystal having high quality by closing hermetrically the space in which the melt in a crucible is pulled up with a quartz tube and pulling up the single crystal. CONSTITUTION:A quartz tube 13 is attached to a pull-up furnace chamber 11. A crucible 2 is made into a double construction. A raw material melt GAm is put into the inside crucible 2'. A crucible having a larger upper part is used for the outside crucible 2''. A sealant B2O3 melt Bm is put between both inside and outside crucible and in the upper part of the raw material melt GAm. After the B2O3 is melted, the position of the crucible is risen and a quartz tube 13 is inserted into the B2O3 melt between both inside and outside crucibles. A single crystal is thereafter grown in the same way as in the ordinary pulling up method. Since the melt in the crucible is closed hermetically by the quartz tube, the intrusion of impurities from carbon parts and chamber wall is prevented; moreover, the quartz tube has the effect of a heat insulating cylinder and since the space in the upper part of the crucible is small, thermal flow by the convectional flow of the gas is decreased and the temp. gradient of the melt and B2O3 layer in the crucible is decreased. The stable crystal is thus obtd.

Description

【発明の詳細な説明】 本発明はチョクラルスキー法による単結晶製造法の改良
、およびそのための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing a single crystal using the Czochralski method, and an apparatus therefor.

従来の液体カプセルチョクラルスキー法による半導体結
晶の製造を第1図で説明する。炉1内にルツボ2が下軸
(ルツボ軸)5にのった形で設けられ、ルツボ2は周囲
をカーボンサセプタ4で支持され、更にその外側にカー
ボンヒータ5が設置されている。ルツボ2内には原料融
液であるGaAθ メル) GAmが入れられて、その
上部は封止剤たるB、、03  メル)’Bm が封入
されている。ルツボ温度全上昇させB2O3メルトから
GaA、  メルト全順次溶融させると共に、ルツボを
上昇させて引上軸(シード軸)6をメルト内に挿入、シ
ードに単結晶Cを成長させて後、引上を行うものである
。7はのぞき窓で炉内の様子全観察できるようになって
いる〇 この従来法の欠点としては、原料融液を含んだルツボは
炉内ではオーブンになっているため、加圧ガスの対流に
より、ヒーター、サセプター等炉内カーボン部品からの
カーボンや、更にチャンバー壁からのwe 、 cr 
、 Ni等が原料に混入する。混入カーボンはGaAs
  中で浅いアクセプター性の不純物となシ、育成した
GaAs  単結晶の電気特性に悪影響を与え、また他
の半導体材料でも電気的に活性な不純物となり、電気特
性に影響を与えるものである。
The production of semiconductor crystals by the conventional liquid capsule Czochralski method will be explained with reference to FIG. A crucible 2 is provided in a furnace 1 on a lower shaft (crucible shaft) 5, the crucible 2 is supported around the periphery by a carbon susceptor 4, and a carbon heater 5 is further installed outside the crucible 2. In the crucible 2, a raw material melt of GaAθ (Mel)GAm is placed, and a sealing agent (B, 03Mel)'Bm is sealed above the crucible. The temperature of the crucible is completely raised to sequentially melt the B2O3 melt, GaA, and the entire melt, and the crucible is raised and the pulling shaft (seed shaft) 6 is inserted into the melt. After growing the single crystal C on the seed, the pulling is started. It is something to do. No. 7 has a peephole that allows the entire situation inside the furnace to be observed. The disadvantage of this conventional method is that the crucible containing the raw material melt is an oven inside the furnace, so the convection of pressurized gas , carbon from carbon parts inside the furnace such as heaters and susceptors, and furthermore we, cr from the chamber walls.
, Ni, etc. are mixed into the raw material. The mixed carbon is GaAs
Among them, impurities with shallow acceptor properties adversely affect the electrical properties of the grown GaAs single crystal, and also become electrically active impurities in other semiconductor materials, affecting the electrical properties.

本発明は上記従来液体封止チョクラルスキー法における
欠点を改良することを目的とするもので、炉チャンバー
上部シード軸の回シに石英チューブを取付け、一方、ル
ツボは2重とし、外側と内側のルツボ間に封止剤BxO
s  k入れ、ルツボの上下移動によシ上記石英チュー
ブを該封止剤中に挿入することによシ、ルツボ内メルト
およびその引上げ空間を密閉できるようにした点を特徴
とするものである。
The purpose of the present invention is to improve the drawbacks of the conventional liquid-sealed Czochralski method.A quartz tube is attached to the rotary shaft of the seed shaft in the upper part of the furnace chamber. A sealing agent BxO is placed between the crucible.
The melt in the crucible and the space from which it is drawn can be sealed by inserting the quartz tube into the sealant by moving the crucible up and down.

本発明方法および装置を第2図で具体的に説明する。図
中、第1図と同じ番号を付したものは第1図と同じもの
を示す0 引上炉チャンバー11にバッキング12で取付けた石英
チューブ15′(r−シード軸6の周シに設ける。6′
はシードであるo14けヒーターである。
The method and apparatus of the present invention will be specifically explained with reference to FIG. In the figure, the same numbers as in FIG. 1 indicate the same ones as in FIG. 6′
is the o14 heater which is the seed.

原料を収納するルツボ2を図のように2重構造にし、内
側のルツボ2′(ここではPBN (pyrO−1yt
ic boron n1trle )製〕に原料メルト
GAm奮入れ、外側のルツボ2′(ここでは石英製)は
上部径が大きくなったものを用い、該ルツボ2′ 内に
上記ルツボ2′ヲ入れる0内側のルツボ2′ と外側の
ルツボ2′ 問および、内側ルツボ2′ の原料メル)
 GAm上部に、封止剤B2O3メル) Bm  を入
れる0 結晶の成長方法は通常の液体カプセルチョクラルスキー
法と同様に、ルツボ温度を上げB2O3をまず溶融させ
た後、ルツボ位置を上昇させ、上記石英チューブを、外
側と内側のルツボ間に入れたB2O3メルト中に挿入す
る0その後は通常の引上法と同様にして単結晶’ig長
させる。
The crucible 2 that stores the raw materials has a double structure as shown in the figure, and the inner crucible 2' (here, PBN (pyrO-1yt
ic boron n1trle)], use the outer crucible 2' (made of quartz here) with a larger upper diameter, and place the crucible 2' into the crucible 2'. Crucible 2', outer crucible 2', and raw material melt of inner crucible 2')
Place the sealant B2O3 (Mel) Bm on top of GAm. The crystal growth method is the same as the normal liquid capsule Czochralski method. After raising the crucible temperature and melting B2O3, the crucible position is raised and the above steps are performed. A quartz tube is inserted into the B2O3 melt placed between the outer and inner crucibles.Then, the single crystal is lengthened in the same manner as the usual pulling method.

本発明では、ルツボ内メル)?石英チューブにより密閉
できるためカーボン部品およびチャンバー壁からの不純
物混入を防止でき、また石英チューブが保温筒の効果を
有すると共に、ルツボ上部空間容積が小さいためガス対
流による熱流動が少なく、ルツボ内メル)、B、O,層
の温度勾配を低下でき、安定な結晶を得ることができる
。そして本発明装置は従来の液体封止チョクラルスキー
法装置に、石英チューブおよびチューブ取付具を追加し
、サセプタおよびルツボ構造を変更するという簡単な装
置変更のみでよく、構造も簡単である。
In the present invention, melt in the crucible)? Since it can be sealed with a quartz tube, it is possible to prevent impurities from entering the carbon parts and the chamber wall.The quartz tube also has the effect of a heat-insulating cylinder, and since the space above the crucible has a small volume, there is little heat flow due to gas convection, and the melt inside the crucible is reduced. , B, O, the temperature gradient of the layers can be reduced, and stable crystals can be obtained. The device of the present invention has a simple structure, requiring only simple changes to the conventional liquid-sealed Czochralski method device, such as adding a quartz tube and tube fittings and changing the susceptor and crucible structure.

本発明方法および装置は、GaAs 、 Gap、工n
P等l−■族化合物半導体の製造やその他、引上げ法會
用いた酸化物結晶等の製造に有効に用いることができる
The method and apparatus of the present invention can be applied to GaAs, Gap,
It can be effectively used in the production of I-III group compound semiconductors such as P, as well as in the production of oxide crystals using a pulling method.

実施例 第2図の装置において、内側ルツボPBN製75wφ、
外側ルツボ上部外径115Wφ石英製のルツボ金、石英
チューブとして95簡φのものを使用して、チョクラル
スキー法によシGaAs  単結晶を育成した。
Example In the apparatus shown in Fig. 2, the inner crucible was made of PBN 75wφ,
A GaAs single crystal was grown by the Czochralski method using a gold crucible made of quartz with an outer diameter of 115 Wφ in the upper part of the outer crucible, and a quartz tube with a diameter of 95 mm.

原料としてのGa  250 f (5,586モルフ
、A3275f(工670モル)、その上部にB、0.
120f’tl”内側のPBNルツボ内に入れた。
Ga 250f (5,586 morphs, A3275f (670 mols) as a raw material, B on top, 0.
It was placed in a PBN crucible inside a 120f'tl''.

また外側と内側のルツボ間にはB、03500 f’i
入れ、原料の入ったルツボを550℃、約6時間真空ベ
ーキングした。その後N、  ガスで約60気圧まで加
圧し約450℃まで昇温、B2O3を溶融させた後、ル
ツボを徐々に上昇させ、石英チューブを、外側と内側の
ルツボ間に入れたB2O3メルト中に約15〜20mの
深さまで挿入した。更に昇温させてGa  とAB f
反応させ、GaAs  多結晶をつくった後、ガス圧を
10気圧まで降圧、約1250℃まで更に昇温、GaA
s多結晶を溶融させた。以後は通常の引上法と同様、種
結晶を原料融液となじませた後、単結晶の引上を開始し
た。引上速度は9 w@/hr、シード回転数は9rp
m、ルツボ回転数は10 rpmであった。単結晶引上
終了後、約500℃まで降温した時点でルツボを再び下
降させ、石英チューブt=Bgos  メルトよシ引抜
いた。引上げた結晶は直径35膿φ中で、長さ&56n
、重量410fの単結晶であった。
Also, between the outer and inner crucibles is B, 03500 f'i.
The crucible containing the raw materials was vacuum baked at 550°C for about 6 hours. After that, the pressure was increased to about 60 atm with N gas and the temperature was raised to about 450°C to melt the B2O3, and then the crucible was gradually raised and the quartz tube was placed between the outer and inner crucibles into the B2O3 melt. It was inserted to a depth of 15-20 m. By further increasing the temperature, Ga and AB f
After reacting to form GaAs polycrystals, the gas pressure was lowered to 10 atm, and the temperature was further raised to about 1250°C to form GaAs polycrystals.
s polycrystal was melted. Thereafter, as in the usual pulling method, after the seed crystal was blended with the raw material melt, pulling of the single crystal was started. Pulling speed is 9 w@/hr, seed rotation speed is 9 rp
m, and the crucible rotation speed was 10 rpm. After pulling the single crystal, the crucible was lowered again when the temperature was lowered to about 500° C., and the quartz tube t=Bgos melt was pulled out. The pulled crystal is in a diameter of 35mm and has a length of &56n.
It was a single crystal with a weight of 410f.

引上げた結晶の質量分析(55M5 、スパークンース
質量分析)を行なったところ、結晶中の炭素(C)の濃
度は5 X 1015atoms/6n”と、従来の液
体カプセルチョクラルスキー法による結晶の1〜6 X
 10” atoms/6n” ノア2以下、!:イウ
値カ得られた。
When the pulled crystal was subjected to mass spectrometry (55M5, spark-once mass spectrometry), the concentration of carbon (C) in the crystal was 5 x 1015 atoms/6n'', which was compared to 1 to 6 of the crystal by the conventional liquid capsule Czochralski method. X
10” atoms/6n” Noah 2 or less,! :Iu value was obtained.

Fθ、cr 、 Ni  についてはSIMSによる分
析を行なったところ、5 X 1014atoms /
(−以下と従来法とほぼ同等の結果が得られた。
When Fθ, cr, and Ni were analyzed by SIMS, 5 x 1014 atoms/
(-The following results were obtained which were almost the same as the conventional method.

結晶欠陥については、結晶のフロント部およびテイル部
でEiPD (エッチピット密度〕が約20〜50%減
少していることが判った。すなわち、フロント部で従来
の5 X 10’ cm−”から2 X 10’儒−2
に、テイル部で9 X 10’ cm−”から7 X 
10’ cm−2にと減少した0本発明装置および方法
?用いて引上げた結晶では、いずれも上記のような低不
純物濃度、低転位密度を示し、安定して高品質の単結晶
が得られることか明らかになった。
Regarding crystal defects, it was found that the EiPD (etch pit density) was reduced by about 20-50% at the front and tail parts of the crystal. That is, from the conventional 5 X 10' Confucian-2
from 9 x 10' cm-” to 7 x at the tail.
0 reduced to 10' cm-2?The apparatus and method of the present invention? All of the crystals pulled using this method showed low impurity concentrations and low dislocation densities as described above, making it clear that single crystals of high quality could be obtained stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチョクラルスキー法による単結晶引上げ
製造法および装置の概略を示す断面図であシ、第2図は
本発明方法および装置の特徴を示す引上炉内の主要部の
概略図である0代理人  内 1)  明 代理人  萩 原 亮 −
Fig. 1 is a cross-sectional view schematically showing a conventional Czochralski method for producing a single crystal and an apparatus, and Fig. 2 is a schematic diagram of the main parts inside a pulling furnace showing the features of the method and apparatus of the present invention. 0 agents in the diagram 1) Akira agent Ryo Hagiwara -

Claims (2)

【特許請求の範囲】[Claims] (1)炉内の、原料溶融メルト及び原料溶融メルトヲ封
止するB2O5k含有するルツボ内に引上げ軸を挿入し
て単結晶を成長させ、引上げる単結晶製造法において、
ルツボ内のメルトを引上げる空間を石英チューブによシ
密閉して単結晶引上げを行うことを特徴とする単結晶の
製造方法。
(1) In a single crystal manufacturing method in which a pulling shaft is inserted into a crucible containing molten raw material and B2O5k that seals the molten raw material in a furnace to grow and pull a single crystal,
A method for producing a single crystal, which comprises pulling a single crystal by sealing a space in a crucible for pulling the melt with a quartz tube.
(2)炉、炉内に設けられた上下移動可能なルツボ、該
ルツボ上部に垂下された引上げ軸を主たる構成とする単
結晶製造装置において、引上げ軸のまわシに石英チュー
ブを取付け、ルツボ全上部外径に差のある2重ルツボ構
造とし、かつ、この2つのル、ツボ間に封止剤としてB
、O,融液を設けて石英チューブを封止することを特徴
とする、単結晶の製造装置。
(2) In a single-crystal manufacturing equipment that mainly consists of a furnace, a vertically movable crucible installed in the furnace, and a pulling shaft hanging above the crucible, a quartz tube is attached to the shaft of the pulling shaft, and the entire crucible is It has a double crucible structure with a difference in the outer diameter of the upper part, and B is used as a sealant between the two crucibles.
, O, a single crystal manufacturing apparatus characterized in that a quartz tube is sealed by providing a melt.
JP10763683A 1983-06-17 1983-06-17 Method and device for producing single crystal Pending JPS59232997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10763683A JPS59232997A (en) 1983-06-17 1983-06-17 Method and device for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10763683A JPS59232997A (en) 1983-06-17 1983-06-17 Method and device for producing single crystal

Publications (1)

Publication Number Publication Date
JPS59232997A true JPS59232997A (en) 1984-12-27

Family

ID=14464210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763683A Pending JPS59232997A (en) 1983-06-17 1983-06-17 Method and device for producing single crystal

Country Status (1)

Country Link
JP (1) JPS59232997A (en)

Similar Documents

Publication Publication Date Title
US5895527A (en) Single crystal pulling apparatus
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPS59232997A (en) Method and device for producing single crystal
JP3788156B2 (en) Method for producing compound semiconductor single crystal and PBN container used therefor
JP3945073B2 (en) Single crystal manufacturing method
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0920596A (en) Device for producing lithium tetraborate single crystal
JPH03247581A (en) Production of gaas single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JPH09278582A (en) Production of single crystal and apparatus therefor
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPS62197397A (en) Production of single crystal
JPH0558772A (en) Production of compound semiconductor single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH01145395A (en) Production of compound semiconductor single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPS59131597A (en) Production of high-quality gallium arsenide single crystal
JP3200204B2 (en) Method for producing group III-V single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JP2001151593A (en) Quartz boat and method of producing compound semiconductor single crystal by boat method using the same
JPH07206584A (en) Production of compound semiconductor single crystal
CN110284187A (en) Incude kyropoulos crystal growing apparatus and its control method
JPS6077191A (en) Production of semiconductor single crystal
JPS6317288A (en) Production of gallium arsenide single crystal and quartz reaction tube