JPS62197397A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS62197397A
JPS62197397A JP3669186A JP3669186A JPS62197397A JP S62197397 A JPS62197397 A JP S62197397A JP 3669186 A JP3669186 A JP 3669186A JP 3669186 A JP3669186 A JP 3669186A JP S62197397 A JPS62197397 A JP S62197397A
Authority
JP
Japan
Prior art keywords
group
crucible
single crystal
compound semiconductor
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3669186A
Other languages
Japanese (ja)
Inventor
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Shinichi Sawada
真一 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3669186A priority Critical patent/JPS62197397A/en
Publication of JPS62197397A publication Critical patent/JPS62197397A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce the title high-grade single crystal in a short time by charging the raw material of a group III-V or group II-VI single crystal and a sealant into a crucible provided with a partition wall, then heating the material in one step, and covering only one surface of the melt with the liq. sealant. CONSTITUTION:A communicating tube 26 is arranged in an outer crucible 25 as an inner crucible, a group III or group II element 27 such as Ga and In is charged at the bottom of the outer crucible 25, a III-V or II-VI compd. material 38 is charged thereon, and the lower part of the communicating tube 26 is embedded in the materials. The sealant 29 is charged into only one (e.g., the inside of the communicating tube 26) between the inner and outer crucibles which are separated by the peripheral wall of the communicating tube 26. Only the inside of the communicating tube 26 is covered with the liq. sealant 20 by heating and melting the crucible charged with the raw material and the sealant in one step. The crystallinity is enhanced due to the impurity capturing action of the liq. sealant, the stoichiometry is secured due to the control of the vapor pressure, and further the operation process in the production of a single crystal can be simplified.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はIII−V族またはII−VI族化合物単結晶
のチョクラルスキー法による製造法に関する。更に詳し
くは、I−V族またはII−VI族化合物単結晶原料の
投入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing single crystals of III-V or II-VI compounds by the Czochralski method. More specifically, the present invention relates to a method for introducing a single crystal raw material of a group IV or group II-VI compound.

従来の技術 現代の半導体工業の主役は依然としてSi半導体によっ
て占められているが、通信部門においては、最近光ファ
イバの利用が急速に進んでおり、これにともない光信号
の発生や検出が必要となってきている。光信号の発生に
関しては、Si半導体は現在のところ無力であり、化合
物半導体、特にIn−■族化合物半導体およびII−V
I族化合物半導体が注目されている。
Conventional technology Although Si semiconductors still play a leading role in the modern semiconductor industry, the use of optical fibers has recently rapidly progressed in the communications sector, and with this, the generation and detection of optical signals has become necessary. It's coming. Regarding the generation of optical signals, Si semiconductors are currently powerless, and compound semiconductors, especially In-■ group compound semiconductors and II-V
Group I compound semiconductors are attracting attention.

一方、化合物半導体作製プロセスにおいてはまず第1に
高品位の単結晶の形成が不可欠であり、その半導体の特
性が結晶構造に敏感であるため、材料の組成や結晶の完
全性に関心がもたれ、種々の単結晶成長法が提案されて
いる。中でもチョクラルスキー法(CZ法、引上げ法)
は、単結晶成長が容易であり、また円形のウェハを得る
場合無駄が少ない等の利点があり良く利用されている。
On the other hand, in the compound semiconductor manufacturing process, it is essential to first form a high-quality single crystal, and since the properties of the semiconductor are sensitive to the crystal structure, there is interest in the composition of the material and the integrity of the crystal. Various single crystal growth methods have been proposed. Among them, the Czochralski method (CZ method, pulling method)
This method is often used because of its advantages such as easy single crystal growth and less waste when obtaining circular wafers.

ところで、III−V族およびII−VI族化合物単結
晶を製造する際に問題となるのは、■族および■族元素
の解離平衡蒸気圧が高いことであり、従ってストイキオ
メトリツクな結晶を作ることが難しい。そのため、上記
チョクラルスキー法においても、種々の改良が加えられ
ており、例えば、解離圧が高い元素の蒸気圧を制御した
雰囲気下で、融液からの揮発性成分の蒸発を抑える方法
(以後、蒸気圧制御法と称す)が開発されている。
By the way, a problem when producing single crystals of Group III-V and Group II-VI compounds is that the dissociation equilibrium vapor pressure of Group (I) and Group (II) elements is high, and therefore it is difficult to produce stoichiometric crystals. It's difficult. For this reason, various improvements have been made to the above-mentioned Czochralski method. For example, a method (hereinafter referred to as , vapor pressure control method) has been developed.

上記蒸気圧制御を、添付第5図に基きさらに詳しく説明
する。
The vapor pressure control described above will be explained in more detail based on the attached FIG. 5.

即ち、第5図は蒸気圧制御法にて結晶成長を行うための
装置の概略断面図であり、この装置は、密封構造の揮発
性成分元素封入容器1a(チャンバー)と、容器1aを
上部より気密状態で、上下動および回転自在に貫通する
上軸2と、下部より気密状態で、上下動および回転自在
に貫通する下軸3とを備えている。
That is, FIG. 5 is a schematic cross-sectional view of an apparatus for performing crystal growth using the vapor pressure control method. It has an upper shaft 2 that passes through the shaft in an airtight manner so as to be vertically movable and rotatable, and a lower shaft 3 that penetrates through the shaft from the lower part in an airtight manner so as to be vertically movable and rotatable.

上軸2の下端は、種結晶4を取り付けることができ、下
軸3の上端にはるつぼ5が支持される。
A seed crystal 4 can be attached to the lower end of the upper shaft 2, and a crucible 5 is supported at the upper end of the lower shaft 3.

また容器1aの外部は上下方向に分割されたヒータ6〜
9が設けられている。上軸2および下軸3と容器1aと
の間の気密性は両軸の貫通部11.12を液体封止剤1
3.14で覆うことにより確保される。
Also, the outside of the container 1a is divided into vertically divided heaters 6 to 6.
9 is provided. The airtightness between the upper shaft 2 and lower shaft 3 and the container 1a is ensured by sealing the penetration parts 11 and 12 of both shafts with liquid sealant 1.
3.14 ensured by covering.

この単結晶製造装置を用い単結晶の成長を行うに際して
、まず、種結晶4の下軸3下端への取り付け、n−vi
あるいはII−VI族化合物半導体原料のるつぼ5への
投入および揮発性成分元素16、即ちV族または■族元
素の容器1a底部への投入を行い、しかる後に単結晶成
長に適当な条件を設定する。この条件設定は、ヒータ6
〜9による容器1aの加熱昇温により主に行われ、例え
ば、ヒータ6.9の加熱により軸2.3の貫通部11.
12に設けられた封止剤を融解して貫通部11.12を
覆い内部の気密性を確保し、ヒータ7.8の加熱により
るつぼ5内の原料を融解して原料融液15とし、更にヒ
ータ6.7.8.9により容器1a内部の上下方向に温
度勾配を設け、またヒータ8により容器la内下部に配
置した揮発性単結晶成分元素16、例えば■族または■
族元素を加熱し蒸気圧制御を行う。この様な条件下で、
種結晶4を融液15に浸漬し、徐々に上軸2を下軸3に
対して引上げ、種結晶4から単結晶17を成長させてい
く。
When growing a single crystal using this single crystal manufacturing apparatus, first, the seed crystal 4 is attached to the lower end of the lower shaft 3, and the n-vi
Alternatively, the II-VI group compound semiconductor raw material is charged into the crucible 5 and the volatile component element 16, that is, the group V or group II element is charged into the bottom of the container 1a, and then appropriate conditions for single crystal growth are set. . This condition setting is for heater 6
This is mainly carried out by heating the container 1a by heating the container 1a by the heater 6.9, for example, by heating the penetrating portion 11.9 of the shaft 2.3.
The sealing agent provided in the crucible 5 is melted to cover the penetration part 11.12 to ensure airtightness inside, and the raw material in the crucible 5 is melted as a raw material melt 15 by heating with the heater 7.8. A temperature gradient is created in the vertical direction inside the container 1a by the heater 6.7.8.9, and a volatile single-crystal component element 16, such as a group Ⅰ or a
Heat group elements and control vapor pressure. Under such conditions,
The seed crystal 4 is immersed in the melt 15 and the upper shaft 2 is gradually pulled up relative to the lower shaft 3 to grow a single crystal 17 from the seed crystal 4.

上記蒸気圧制御法は熱応力、組成ずれなどの影響が少な
く、結晶のストイキオメトリ−に於て1憂れており、ま
た転位密度も少ない単結晶が得られる。しかしその反面
、高純度の結晶を得るという点で問題があった。
The vapor pressure control method described above is less affected by thermal stress, compositional deviation, etc., has poor crystal stoichiometry, and produces a single crystal with a low dislocation density. However, on the other hand, there was a problem in obtaining highly pure crystals.

また、上記V族および■族元素の融液表面からの蒸発を
抑える方法として、液体封止チョクラルスキー法(LE
C法)があり、この方法は、例えば添付第6図に示され
る様な装置を用いる。
In addition, as a method of suppressing the evaporation of the above-mentioned group V and group
There is a method (C method), and this method uses, for example, an apparatus as shown in the attached FIG.

この装置において、単結晶を成長させるに際して、まず
上軸2への種結晶4の取り付けおよび下軸3上のるつぼ
5内への原料および封止剤の導入を行う。しかる後、ヒ
ータ7の加熱により上下方向に温度勾配を設けると共に
原料および封止剤を融解し、原料融液15が液体封止剤
20により覆われた状態とする。この時、さらにバルブ
21.22を調節し、管手段23.24から不活性ガス
の導入、排出を行い容器lb内を所定の高圧に保つこと
により融液15からの高解離圧成分の蒸発を防止する。
In this apparatus, when growing a single crystal, first a seed crystal 4 is attached to the upper shaft 2 and a raw material and a sealant are introduced into a crucible 5 on the lower shaft 3. Thereafter, a temperature gradient is created in the vertical direction by heating with the heater 7, and the raw material and the sealant are melted, so that the raw material melt 15 is covered with the liquid sealant 20. At this time, the valves 21.22 are further adjusted to introduce and discharge inert gas from the pipe means 23.24 to maintain the interior of the container lb at a predetermined high pressure, thereby preventing the evaporation of high dissociation pressure components from the melt 15. To prevent.

この際、単結晶17の引き上げに好適な温度勾配を維持
てきるようにヒータ7の外側に断熱板25を備えている
。この様な条件下で、種結晶4を融液15に浸漬し1.
徐々に上軸2を下軸3に対して引上げ、種結晶4に続い
て単結晶17を生成させる。
At this time, a heat insulating plate 25 is provided outside the heater 7 so as to maintain a temperature gradient suitable for pulling the single crystal 17. Under such conditions, the seed crystal 4 is immersed in the melt 15 and 1.
The upper shaft 2 is gradually pulled up with respect to the lower shaft 3, and a single crystal 17 is generated following the seed crystal 4.

上記液体封止法は、封止剤としてB2O3を用いた場合
、B20.が不純物元素を捕獲するため、成長した結晶
がより高純度になり、また原料融液が液体封止剤で覆わ
れているので原料融液表面の温度安定性が良くなり、結
晶の単結晶化率が向上するという長所を有する。しかし
ながら、■族あるいは■族等の高解離圧元素の蒸発を完
全に防ぐことができず、融液のストイキオメトリ−を完
全に維持できないという問題点を有していた。
In the above liquid sealing method, when B2O3 is used as a sealant, B20. captures impurity elements, resulting in higher purity of the grown crystal.Also, since the raw material melt is covered with a liquid sealant, the temperature stability of the raw material melt surface improves, and the crystal becomes a single crystal. It has the advantage of improving efficiency. However, there was a problem in that it was not possible to completely prevent the evaporation of high dissociation pressure elements such as group (1) or group (2), and the stoichiometry of the melt could not be maintained completely.

この様な状況において、本発明者等は、上記二法の長所
を組合せた単結晶の引上げ方法(特開昭60−1769
95号)をすでに開発している。
Under these circumstances, the present inventors developed a method for pulling single crystals (Japanese Patent Application Laid-Open No. 1769-1989) that combines the advantages of the above two methods.
No. 95) has already been developed.

即ち、この発明は、るつぼ内に隔壁をもうけ、該るつぼ
内の■−■族またはII−VT族化合物半導体原料融液
表面を二重し、該表面の一方を液体封止剤で覆い、他方
を雰囲気ガスに接するようにして蒸気圧制御を行いなが
ら、該融液に種結晶を浸漬して引き上げるチョクラルス
キー法にて化合物半導体単結晶を成長させることを特徴
とする方法である。この場合、単結晶を引上げる場所は
特に制限されず、封止剤で覆われた部分、フリーな表面
のいずれであってもよい。
That is, this invention provides a partition wall in the crucible, doubles the surface of the molten liquid of the group ■-■ group or group II-VT compound semiconductor in the crucible, covers one of the surfaces with a liquid sealant, and covers the other surface with a liquid sealant. This method is characterized by growing a compound semiconductor single crystal using the Czochralski method in which a seed crystal is immersed in the melt and pulled up while controlling the vapor pressure by bringing the seed crystal into contact with an atmospheric gas. In this case, the location where the single crystal is pulled is not particularly limited, and may be either a portion covered with a sealant or a free surface.

この方法を採用することにより、該融液面の液体封止剤
で覆われた部分での、該液体封止剤の不純物捕獲作用に
より、高純度の単結晶を得ることが可能である。また、
封止剤で覆われた表面より単結晶を引き上げる場合には
、良好な温度安定性が得られるという利点を有する。さ
らに、該融液表面の高解離圧成分元素の揮発雰囲気ガス
に接する部分により、蒸気圧制御を行うことができるた
め、得られる単結晶は、高純度で、ストイキオメトリ−
性が良くかつ格子欠陥も少ないものとなる。
By employing this method, it is possible to obtain a highly pure single crystal due to the impurity trapping action of the liquid sealant in the portion of the melt surface covered with the liquid sealant. Also,
Pulling a single crystal from a surface covered with a sealant has the advantage of good temperature stability. Furthermore, vapor pressure can be controlled by the part of the melt surface that is in contact with the volatile atmospheric gas of the high dissociation pressure component element, so the resulting single crystal has high purity and stoichiometry.
This results in good properties and fewer lattice defects.

発明が解決しようとする問題点 以上述べた様に、本発明者等の特開昭60−17699
5号公報発明により、蒸気圧制御法および液体封止法の
長所をあわせ持つ方法が開発され、ストイキオメ) I
J−に優れ、転位密度の低い高純度単結晶を得ることが
可能となった。しかしながら、この発明は以下のような
問題点を有していた。
Problems to be Solved by the Invention As stated above, the inventors' patent application
According to the invention in Publication No. 5, a method that combines the advantages of the vapor pressure control method and the liquid sealing method has been developed.
It became possible to obtain a high purity single crystal with excellent J- and low dislocation density. However, this invention had the following problems.

即ち、従来の上記方法において、隔壁により二重された
融液表面の一方のみを液体封止剤により覆うために、下
部に連通部を有する隔壁を設けたるつぼ内に化合物半導
体のみを投入し、ヒーターにより加熱し、原料の少なく
とも一部を融解して隔壁下部の連通部を融液により覆っ
た後、液体封止剤を投入するか、あるいはいったん冷却
して固化した原料により連通部を塞いだ後、封止剤を投
入し、再度加熱する方法が採用されていた。
That is, in the conventional method described above, in order to cover only one of the melt surfaces doubled by the partition wall with a liquid sealant, only the compound semiconductor is placed in a crucible provided with a partition wall having a communication portion at the bottom, and After heating with a heater and melting at least a portion of the raw material to cover the communicating part at the bottom of the partition wall with the melt, a liquid sealant was introduced, or the communicating part was closed with the raw material that had been cooled and solidified. After that, a method was adopted in which a sealant was added and heated again.

しかしながら、上記の方法、即ち原料のるつぼ内への投
入、加熱、液体封止剤のるつぼ内への投入なる手順、あ
るいは原料のるつぼ内への投入、加熱、冷却、封止剤の
るつぼ内への投入、再加熱なる手順で隔壁により二重さ
れた一方のみを液体封止剤で覆う場合、多くの操作を必
要とする。さらに、上記加熱を容器内で行えば、第1の
手順においては、加熱された容器をひらき、内部のるつ
ぼ内に液体封止剤を投入することとなり、高温の容器内
で用い得る特殊な装置を用いなければならない。また、
上記のごとく複雑かつ多数の工程が必要とされる場合、
その過程での不純物混入の確率が高くなる。
However, the above-mentioned method, i.e., charging the raw material into the crucible, heating, and charging the liquid sealant into the crucible; In order to cover only one side of the partition wall with a liquid sealant through the steps of charging and reheating, many operations are required. Furthermore, if the above heating is performed inside the container, the first step involves opening the heated container and pouring the liquid sealant into the internal crucible, which requires special equipment that can be used inside the high-temperature container. must be used. Also,
When complex and numerous processes are required as described above,
The probability of contamination with impurities during this process increases.

この様な問題点を解決することは、単結晶製造工程を簡
単なものとすることにより、製造に要する時間を短縮し
、製品単結晶の品位を向上させる上で非常に重要であり
、本発明の目的もそこにある。
Solving these problems is extremely important in simplifying the single crystal manufacturing process, shortening the time required for manufacturing, and improving the quality of the product single crystal. That is also the purpose of.

問題点を解決するための手段 本発明者等は、上記従来技術の問題点を解決すべく種々
検討、研究した結果、簡単な操作で特開昭60−176
995号公報発明の状態を実現し、かつ上記本発明の目
的を達成し得る本発明を開発した。
Means for Solving the Problems The inventors of the present invention have conducted various studies and researches to solve the problems of the above-mentioned conventional technology.
The present invention has been developed which realizes the state of the invention disclosed in No. 995 and can achieve the above-mentioned objects of the present invention.

即ち、本発明の方法は、るつぼ内に隔壁をもうけ、該る
つぼ内のIII−V族またはII−VI族化合物半導体
原料融液表面を二重し、該表面の一方を液体封止剤で覆
い、他方を雰囲気ガスに接するようにして蒸気圧制御を
行いながら、該融液に種結晶を浸漬して引き上げるチョ
クラルスキー法にて化合物半導体単結晶を成長させるに
際し、上記るつぼ内に、コー■族またはII−VI族原
料化合物半導体および封止剤を投入した後に一工程で加
熱昇温し、上記表面の一方のみを上記液体封止剤で覆う
ことを特徴とする。
That is, in the method of the present invention, a partition wall is provided in a crucible, the surface of the III-V group or II-VI group compound semiconductor raw material melt in the crucible is doubled, and one of the surfaces is covered with a liquid sealant. When growing a compound semiconductor single crystal using the Czochralski method, in which a seed crystal is immersed in the melt and pulled up while controlling the vapor pressure by bringing the other side into contact with atmospheric gas, The method is characterized in that after the group or II-VI group raw material compound semiconductor and the sealant are added, the temperature is increased in one step, and only one of the surfaces is covered with the liquid sealant.

本発明の方法により成長させることのできる■−V族化
合物半導体としては、例えばGaAs、 Ga P、I
nP等を、II−VI族化合物半導体としてCdTeX
Zn5e等を挙げることができる。
■-V group compound semiconductors that can be grown by the method of the present invention include, for example, GaAs, GaP, I
CdTeX using nP etc. as a II-VI group compound semiconductor
Zn5e etc. can be mentioned.

一度の加熱により、上記状態を実現する具体的方法とし
ては、例えば、上記るつぼ底部に上記■−V族またはI
[−VI族化合物半導体原料と、III族またはII族
元素とを投入して上記隔壁下部を埋め、さらに該隔壁に
より二重された一方にのみ封止剤を投入して一工程で加
熱昇温することにより上記成分元素(III族またはI
I族)の少なくとも一部を先に融解し上記隔壁の底部を
咳融液により覆い、該封止剤が融解し連通部を通じて流
出することを防止する方法を上げることができる。■族
元素を充填することにより、得られた融液のストイキオ
メ) IJ−はずれることになるが、このずれは、蒸気
圧制御により回復させることが可能である。また、II
I−V族またはII−VI族化合物原料およびIII族
またはII族元素の投入順序については特に制限はない
As a specific method for realizing the above state by heating once, for example, the above-mentioned group ■-V or I
[-Putting a group VI compound semiconductor raw material and a group III or group II element to fill the lower part of the partition wall, and then adding a sealing agent only to one side doubled by the partition wall and heating and raising the temperature in one step. By doing so, the above component elements (group III or I
A method may be proposed in which at least a portion of Group I) is first melted and the bottom of the partition wall is covered with the cough melt to prevent the sealant from melting and flowing out through the communicating portion. By filling the group (2) element, the stoichiometries (IJ-) of the obtained melt will shift, but this shift can be recovered by vapor pressure control. Also, II
There is no particular restriction on the order in which the group IV or group II-VI compound raw materials and the group III or group II elements are introduced.

また、別の方法として、上記隔壁により二重された少な
くとも一方に上記■−■族またはII−VI族化合物半
導体原料粉末を密に充填して、上記隔壁下部を埋めて栓
とし、さらに該隔壁により2分された一方にのみ封止剤
を投入して一工程で加熱昇温する方法を例示できる。こ
の方法によれば、原料粉末を密に充填することにより、
該封止剤が、該原料よりも先に融解しても、連通部を通
じて流出することはない。
As another method, at least one of the partition walls doubled is filled with the group ■-■ group or II-VI compound semiconductor raw material powder, filling the lower part of the partition wall to form a plug, and furthermore, the partition wall is An example of this method is to inject a sealant into only one of the two halves and heat and raise the temperature in one step. According to this method, by densely packing raw material powder,
Even if the sealant melts before the raw material, it will not flow out through the communication portion.

また、上記粉末材料は、隔壁により二重された少なくと
も一方に密に嵌合され、隔壁下部を覆うように成形され
たものであってもよい。
Further, the powder material may be molded so as to tightly fit into at least one of the double partition walls and cover the lower part of the partition wall.

上記二重において適用し得るるつぼ構造としては、二重
るつぼ構造を好ましい例として挙げることができる。ま
た、その内るつぼ形状としては、上記原料融液表面をそ
の周壁により二重し、かつ下部に連通部を有するもので
あればよく、上部が開口した円筒形の容器であって、そ
の下部、即ち、底壁あるいは周壁下部の少なくとも一方
に連通口を有する形状、あるいは連通管であってよい。
A preferable example of the crucible structure applicable to the double crucible is a double crucible structure. Further, the shape of the inner crucible may be one in which the surface of the raw material melt is doubled by its peripheral wall and has a communicating part at the lower part, and is a cylindrical container with an open upper part, and the lower part, That is, the shape may have a communication port in at least one of the bottom wall or the lower part of the peripheral wall, or it may be a communication pipe.

ここで、本発明の好ましい原料および封止剤充填法の一
例を添付第1図および添付第2図に基づき説明する。即
ち、第1図は、一連通管状の内るつぼを用いた場合の原
料および封止剤の充填状態を示す概略断面図であり、こ
の充填状態は、外るつぼ25内に内るつぼとして連通管
26を配置し、まず外るつぼ25の底部にGa、 ln
等の■族あるいは■族元素27を投入し、次に、その上
に■−■族あるいはI[−VI族化合物原料28を投入
し、これらの原料により連通管26の下部を埋めるよう
にし、しかる後連通管26の周壁により二重された外る
つぼ内分の一方(ここでは連通管26内部)にのみ封止
剤29を投入することにより得られる。この時投入され
るm族あるいは■族元素27は、融解した時点で連通管
26の下部を覆い、その周壁により二重された融液表面
が得られるのに十分な量でなければならない。
Here, an example of a preferable raw material and sealant filling method of the present invention will be explained based on the attached FIG. 1 and the attached FIG. 2. That is, FIG. 1 is a schematic cross-sectional view showing a filling state of raw materials and a sealant when a continuous tubular inner crucible is used. Ga, ln are placed at the bottom of the outer crucible 25.
etc., and then add the ■-■ group or I[-VI group compound raw material 28 on top of it, so that the lower part of the communication pipe 26 is filled with these raw materials, After that, the sealing agent 29 is poured into only one of the inner portions of the outer crucible doubled by the peripheral wall of the communicating tube 26 (here, the inside of the communicating tube 26). The M-group or II-group element 27 introduced at this time must be in an amount sufficient to cover the lower part of the communicating tube 26 when melted and to obtain a double melt surface by its peripheral wall.

かくして原料および封止剤が充填されたるつぼを一工程
で加熱溶解することにより、第2図に示されるように、
外るつぼ25内の融液15の表面を連通管26の周壁に
より二重し、その連通管26内部のみを液体封止剤20
で覆うことが可能である。
By heating and melting the crucible filled with raw materials and sealant in one step, as shown in FIG.
The surface of the melt 15 in the outer crucible 25 is doubled by the peripheral wall of the communicating tube 26, and only the inside of the communicating tube 26 is covered with the liquid sealant 20.
It is possible to cover it with

上記方法において、内るつぼ形状および液体封止剤によ
り覆われる部分については、特に限定的ではなく、例え
ば、添付第3図に示される様に、上端が開口した円筒型
容器の底部に連通穴を設けた内るつぼ30を用い、その
周壁により外るつぼ25内の融液15を二重し、内るつ
ぼ30内部の融液15の表面を液体封止剤20で覆うこ
とも可能である。また、添付第4図に示されるように内
径の小さな連通管を内るつぼ30として用い、その内る
つぼ30外部の融液15の表面を液体封止剤20で覆っ
てもよい。
In the above method, the shape of the inner crucible and the portion covered by the liquid sealant are not particularly limited. For example, as shown in the attached FIG. It is also possible to use the provided inner crucible 30 to double the melt 15 in the outer crucible 25 with its peripheral wall, and cover the surface of the melt 15 inside the inner crucible 30 with the liquid sealant 20. Alternatively, as shown in the attached FIG. 4, a communicating tube with a small inner diameter may be used as the inner crucible 30, and the surface of the melt 15 outside the inner crucible 30 may be covered with the liquid sealant 20.

また、上記内るつぼの材料としては、石英、PBNおよ
びSiNを好ましい例として挙げられる。
In addition, preferable examples of the material for the inner crucible include quartz, PBN, and SiN.

罫浬 上記従来技術の問題点を解決し、単結晶製造工程を簡単
なものとするためには、上記方法のごとく原料および封
止剤をるつぼに投入した後、一工程で加熱昇温しでるつ
ぼ内に設けられた隔壁により融液表面を二重し、その一
方のみを液体封止剤で覆うことが好ましい。
In order to solve the problems of the above-mentioned conventional technology and simplify the single crystal manufacturing process, it is possible to heat and raise the temperature in one step after putting the raw materials and sealant into the crucible as in the above method. It is preferable that the surface of the melt is doubled by a partition wall provided in the crucible, and only one of the surfaces is covered with the liquid sealant.

その好ましい態様としてすでに述べた第1の方法は、以
下の知見より得られたものである。即ち、液体封止剤と
して用いられるB2O3は、融点が577℃程度であり
、1nsbを除<m−v族化合物の融点712℃〜16
00℃およびII−VI族化合物の融点1240℃〜1
850℃と比較して、非常に低い。従って、■−V族化
合物またはIf−VI族化合物と封止剤を一所にるつぼ
内に投入し加熱した場合、封止剤は先に融解し、るつぼ
内を二重する隔壁下部の連通部からもれ、一方のみを封
止剤で覆うことはできない。
The first method, which has already been described as a preferred embodiment thereof, was obtained from the following findings. That is, B2O3 used as a liquid sealant has a melting point of about 577°C, and the melting point of the m-v group compound, excluding 1nsb, is 712°C to 16°C.
00℃ and melting point of II-VI group compound 1240℃~1
Very low compared to 850°C. Therefore, when the -V group compound or the If-VI group compound and the sealant are put into a crucible at one place and heated, the sealant melts first, and the communicating part at the bottom of the partition wall that doubles inside the crucible melts. It is not possible to cover only one side with sealant.

ところが、m族元素であるGaおよびInは、それぞれ
融点が29.8℃および156.4℃であり、また■族
元素2n、 Cdはそれぞれ融点419℃および320
.9℃である。従って、るつぼ内に化合物原料および十
分な量のm族またはII族元素を投入して隔壁下部を埋
め、さらに隔壁により二重された一方にのみ封止剤を配
置し、加熱することにより、まず融点の低いm族または
II族元素が融解して、隔壁下部の連通部を覆うことが
可能となる。
However, the m-group elements Ga and In have melting points of 29.8°C and 156.4°C, respectively, and the group-I elements 2n and Cd have melting points of 419°C and 320°C, respectively.
.. It is 9℃. Therefore, by charging the compound raw material and a sufficient amount of Group M or Group II elements into the crucible to fill the lower part of the partition wall, and placing the sealant only on one side of the partition wall and heating it, The m-group or II-group element having a low melting point melts, and it becomes possible to cover the communicating portion at the lower part of the partition wall.

更に、第2の方法は、あらかじめ原料粉末を密に充填す
るかあるいは原料粉末成形体を嵌合することにより、る
つぼ内隔壁の下部を覆い栓とし先に融解した封止剤が隔
壁下部の連通部より流出することを防止するものである
Furthermore, in the second method, the lower part of the partition wall in the crucible is covered and plugged by densely filling the raw material powder in advance or by fitting the raw material powder molded body, so that the sealant melted earlier is connected to the lower part of the partition wall. This prevents the liquid from flowing out from the inside.

実施例 以下実施例に基き、本発明を更に詳しく説明するが、本
実施例は回答本発明の範囲を限定しない。
EXAMPLES The present invention will be explained in more detail based on Examples below, but these Examples do not limit the scope of the present invention.

Ga八へ単結晶の育成に添付第1図に示される様な装置
を用い本発明を適用した。内るつぼとしては、内径80
mmφ(3n+n+厚)の石英円管26を用い、外るつ
ぼ25としては4インチ径のPBNるつぼを用いた。化
合物原料28としてHB(水平ブリッジマン)炉で製造
した1500 gのGa八へ多結晶を、またm族元素2
7として100 gのGaを用い、これらを外るっぽ2
5内に順次投入した後、内るつぼ内に液体封止剤20と
して100 gのB2O3を投入した。その結果完全メ
ルト後には第2図の様な状態になり、かつ原料融液15
中のGaが過剰な状態は容器1内のAsガスの圧力の調
節によりストイキオメトリツクな状態に修正できた。
The present invention was applied to the growth of a single crystal of Ga 8 using an apparatus as shown in the attached FIG. As an inner crucible, the inner diameter is 80
A quartz circular tube 26 with a diameter of mmφ (3n+n+thickness) was used, and a PBN crucible with a diameter of 4 inches was used as the outer crucible 25. Polycrystals were added to 1500 g of Ga8 produced in an HB (horizontal Bridgman) furnace as compound raw material 28, and M group element 2
Using 100 g of Ga as 7, remove these from 2
5, and then 100 g of B2O3 as a liquid sealant 20 was charged into the inner crucible. As a result, after complete melting, the state will be as shown in Figure 2, and the raw material melt 15
The excessive amount of Ga inside the container 1 could be corrected to a stoichiometric state by adjusting the pressure of the As gas inside the container 1.

Asガス圧は、1.2atm、引上速度は5 mm 7
時、上/下軸回転数は5/25rpmであった。
As gas pressure is 1.2 atm, pulling speed is 5 mm 7
At that time, the upper/lower shaft rotation speed was 5/25 rpm.

この条件で引上げを行なったところ、結晶の単結晶化率
は向上し、しかも結晶中のGaと八sの組成比もストイ
キオメトリツクであることが分かった。
When pulling was carried out under these conditions, it was found that the single crystallization rate of the crystal was improved, and the composition ratio of Ga and 8S in the crystal was also stoichiometric.

発明の効果 かくして、本発明の方法により一工程の加熱で、るつぼ
表面を二重し、一方のみを封止剤で覆うことが可能とな
り、液体封止法および蒸気圧制御法の両方の長所即ち、
液体封止剤の不純物捕獲作用による単結晶の高純度化お
よび温度安定化作用による高結晶化率と、蒸気圧制御に
よるストイキオメ) IJ−の確保とを合せ持つ単結晶
製造法の作業工程を単純化できた。
Effects of the Invention Thus, the method of the present invention makes it possible to double the surfaces of the crucible and cover only one side with a sealant in one heating step, which has the advantages of both the liquid sealing method and the vapor pressure control method. ,
Simplify the work process of the single crystal manufacturing method, which combines high purity of the single crystal by the impurity capture effect of the liquid sealant, high crystallization rate by the temperature stabilization effect, and securing of stoichiometry (IJ-) by controlling the vapor pressure. I was able to turn it into

【図面の簡単な説明】[Brief explanation of drawings]

添付第1図は、本発明の方法による、原料および封止剤
のるつぼ内への投入状態を示す概略断面図であり、 添付第2図は、第1図に示した状態のるつぼを加熱昇温
した場合の原料融液および液体封止剤の状態を示す概略
断面図であり、 添付第3図および第4図は、本発明の方法における、好
ましい内るつぼ形状および原料融液および液体封止剤の
状態を示す概略断面図であり、添付第5図は、従来の蒸
気圧制御法に用いる装置を示す概略断面図であり、 添付第6図は、従来の液体封止法を説明するための概略
断面図である。 (主な参照番号) 1a・・・揮発性成分死票封入容器、 4・・・種結晶、 5・・・るつぼ、 6〜9・・・ヒータ、 15・・・原料融液、 16・・・揮発性単結晶成分元素、 17・・・単結晶、 20・・・液体封止剤、25・・
・外るつぼ、26・・・連通管、27・・・■族あるい
は■族元素、 28・・・化合物原料、29・・・封止剤、30・・・
内るつぼ
Attached FIG. 1 is a schematic cross-sectional view showing the state in which raw materials and sealant are charged into a crucible according to the method of the present invention, and attached FIG. 2 shows the crucible in the state shown in FIG. It is a schematic cross-sectional view showing the state of the raw material melt and the liquid sealant when heated, and the attached FIGS. 3 and 4 show the preferred inner crucible shape, raw material melt, and liquid sealant in the method of the present invention. 5 is a schematic cross-sectional view showing the state of the agent, attached FIG. 5 is a schematic cross-sectional view showing a device used in a conventional vapor pressure control method, and attached FIG. 6 is a schematic cross-sectional view showing a conventional liquid sealing method. FIG. (Main reference numbers) 1a... Volatile component death certificate enclosing container, 4... Seed crystal, 5... Crucible, 6-9... Heater, 15... Raw material melt, 16...・Volatile single crystal component element, 17... Single crystal, 20... Liquid sealant, 25...
- Outer crucible, 26... Communication tube, 27... Group ■ or Group ■ element, 28... Compound raw material, 29... Sealing agent, 30...
inner crucible

Claims (7)

【特許請求の範囲】[Claims] (1)るつぼ内に隔壁をもうけ、該るつぼ内のIII−V
族またはII−VI族化合物半導体原料融液表面を二分し、
該表面の一方を液体封止剤で覆い、他方を雰囲気ガスに
接するようにして蒸気圧制御を行いながら、該融液に種
結晶を浸漬して引き上げるチョクラルスキー法にて化合
物半導体単結晶を成長させるに際し、 上記るつぼ内に、III−V族またはII−VI族単結晶の原
料および封止剤を投入した後に一工程で加熱昇温し、上
記表面の一方のみを上記液体封止剤で覆うことを特徴と
する上記化合物半導体単結晶の製造法。
(1) A partition wall is provided in the crucible, and III-V in the crucible is
Divide the surface of the group or II-VI group compound semiconductor raw material melt into two parts,
One side of the surface is covered with a liquid encapsulant and the other side is brought into contact with atmospheric gas to control the vapor pressure while a compound semiconductor single crystal is immersed in the melt and pulled up using the Czochralski method. When growing, the III-V group or II-VI group single crystal raw materials and sealant are put into the crucible, and then the temperature is raised in one step, and only one of the surfaces is covered with the liquid sealant. The method for producing the compound semiconductor single crystal described above, which comprises covering the compound semiconductor single crystal.
(2)上記るつぼ底部に上記III−V族またはII−VI族
化合物半導体原料と、III族またはII族元素とを投入し
て上記隔壁下部を埋め、さらに該隔壁により二分された
一方にのみ封止剤を投入して一工程で加熱昇温し、封止
剤より先に上記III族またはII族元素の少なくとも一部
を融解し上記隔壁下部をその融液により覆うことを特徴
とする特許請求の範囲第1項に記載の化合物半導体単結
晶の製造法。
(2) The III-V group or II-VI group compound semiconductor raw material and the group III or group II element are charged into the bottom of the crucible to fill the lower part of the partition wall, and further, only one of the two parts divided by the partition wall is sealed. A patent claim characterized in that a sealing agent is introduced and the temperature is raised in one step to melt at least a portion of the group III or group II element before the sealant, and the lower part of the partition wall is covered with the melt. A method for producing a compound semiconductor single crystal according to item 1.
(3)上記隔壁により二分された少なくとも一方に上記
III−V族またはII−VI族化合物半導体を含む原料粉末
を密に充填して、上記隔壁下部を埋めて栓とし、さらに
該粉末が充填された一方にのみ封止剤を投入して一工程
で加熱昇温することことを特徴とする特許請求の範囲第
1項または第2項に記載の化合物半導体単結晶の製造法
(3) At least one of the two parts divided by the partition wall has the above
In one step, a raw material powder containing a group III-V or group II-VI compound semiconductor is densely packed, the lower part of the partition wall is filled to form a plug, and a sealant is added only to one side filled with the powder. 3. The method for producing a compound semiconductor single crystal according to claim 1 or 2, wherein the temperature is increased by heating.
(4)上記粉末原料が、上記隔壁により二分された少な
くとも一方に密に嵌合するように成形されることを特徴
とする特許請求の範囲第3項に記載の化合物半導体単結
晶の製造法。
(4) The method for producing a compound semiconductor single crystal according to claim 3, wherein the powder raw material is shaped so as to fit tightly into at least one of the two halves divided by the partition wall.
(5)上記るつぼを、二重るつぼ構造とし、その内るつ
ぼの周壁を上記隔壁とすることを特徴とする特許請求の
範囲第1項ないし第4項のいずれか1項に記載の化合物
半導体単結晶の製造法。
(5) The compound semiconductor monomer according to any one of claims 1 to 4, wherein the crucible has a double crucible structure, and the peripheral wall of the inner crucible is the partition wall. Method of manufacturing crystals.
(6)上記内るつぼが、上部が開口した円筒形の容器で
あって、その下部に連通穴を有することを特徴とする特
許請求の範囲第5項に記載の化合物半導体単結晶の製造
法。
(6) The method for manufacturing a compound semiconductor single crystal according to claim 5, wherein the inner crucible is a cylindrical container with an open top and has a communicating hole in the bottom.
(7)上記内るつぼが、連通管であることを特徴とする
特許請求の範囲第5項に記載の化合物半導体単結晶の製
造法。
(7) The method for producing a compound semiconductor single crystal according to claim 5, wherein the inner crucible is a communicating tube.
JP3669186A 1986-02-21 1986-02-21 Production of single crystal Pending JPS62197397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3669186A JPS62197397A (en) 1986-02-21 1986-02-21 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3669186A JPS62197397A (en) 1986-02-21 1986-02-21 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS62197397A true JPS62197397A (en) 1987-09-01

Family

ID=12476834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3669186A Pending JPS62197397A (en) 1986-02-21 1986-02-21 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS62197397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030551A1 (en) * 1989-09-29 1991-04-11 Osaka Titanium Silicon single crystal prodn. - by czochralski method with oxygen concn. controlled by varying crucible partition immersion depth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030551A1 (en) * 1989-09-29 1991-04-11 Osaka Titanium Silicon single crystal prodn. - by czochralski method with oxygen concn. controlled by varying crucible partition immersion depth
DE4030551C2 (en) * 1989-09-29 1992-12-17 Osaka Titanium Co. Ltd., Amagasaki, Hyogo, Jp
US5392729A (en) * 1989-09-29 1995-02-28 Osaka Titanium Co., Ltd. Method of producing silicon single crystal
US5471949A (en) * 1989-09-29 1995-12-05 Sumitomo Sitix Corporation Apparatus for producing silicon single crystal

Similar Documents

Publication Publication Date Title
JPS5914440B2 (en) Method for doping boron into CaAs single crystal
US10519563B2 (en) Device and method for continuous VGF crystal growth through rotation after horizontal injection synthesis
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
JPS62197397A (en) Production of single crystal
JPH0314800B2 (en)
JPH11147785A (en) Production of single crystal
JPS60176995A (en) Preparation of single crystal
CN205398768U (en) Continuous crystal growth's of compound in situ synthesis VGF pressure furnace
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3684446B2 (en) Method and apparatus for manufacturing semi-insulating GaAs single crystal
JPS6395194A (en) Production of compound single crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JP3030584B2 (en) Method and apparatus for producing compound semiconductor single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPS63185885A (en) Crystal growing device of horizontal type
JPH02167888A (en) Production of crystal of compound semiconductor of iii-v
JPS6128634B2 (en)
JP2000327496A (en) Production of inp single crystal
JPH01122995A (en) Growth of compound semiconductor single crystal
JPH02229783A (en) Method for growing single crystal of compound semiconductor by vertical type boat method
JPS63319286A (en) Method for growing single crystal