JPS60176995A - Preparation of single crystal - Google Patents

Preparation of single crystal

Info

Publication number
JPS60176995A
JPS60176995A JP59031146A JP3114684A JPS60176995A JP S60176995 A JPS60176995 A JP S60176995A JP 59031146 A JP59031146 A JP 59031146A JP 3114684 A JP3114684 A JP 3114684A JP S60176995 A JPS60176995 A JP S60176995A
Authority
JP
Japan
Prior art keywords
raw material
material melt
group
single crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59031146A
Other languages
Japanese (ja)
Other versions
JP2529934B2 (en
Inventor
Koji Tada
多田 紘二
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59031146A priority Critical patent/JP2529934B2/en
Priority to EP85301147A priority patent/EP0159113B1/en
Priority to DE8585301147T priority patent/DE3574745D1/en
Publication of JPS60176995A publication Critical patent/JPS60176995A/en
Priority to US07/038,447 priority patent/US5145550A/en
Priority to US07/842,979 priority patent/US5256381A/en
Application granted granted Critical
Publication of JP2529934B2 publication Critical patent/JP2529934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B27/00Single-crystal growth under a protective fluid
    • C30B27/02Single-crystal growth under a protective fluid by pulling from a melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain high-quality single crystal with a few crystal defects and a small amount of impurites, by putting an element of group in a container, controlling a temperarure, growing single crystal from raw material melt while regulating vapor pressure of element of V group in the raw material melt. CONSTITUTION:The seed crystal 6 is supported under the end of the upper shaft 2. The seed crystal 6 is immersed in the raw material melt 5. When the upper shaft 2 is gradually pulled up from the lower shaft 3, the single crystal 7 following the seed crystal 6 is grown. At the lower part of the bottom 1, the element 12 such as As, etc. of group V is laid. In order to control vapor pressure of the element 12 of V group, the temperature in this zone is regulated by the second heater 22. The side wall of the crucible 4 is short, and provided with the partition pipe 16 with a small diameter. The liquid capsuling agent 17 of B2O3 is put in the crucible 4. It in not put in the partition pipe 16. Partial pressure of the element of B group is equilibrated with the atmosphere gas 14 and the raw material melt 5 as a whole. Since the raw material melt 5 is brought into contact with the liquid capsuling agent 17 at the interface 18 of different liquids, so impurities are removed from the raw material melt.

Description

【発明の詳細な説明】 C力 技 術 分 野 この発明は化合物半導体単結晶の製造方法に関する。[Detailed description of the invention] C Power Technique Branch The present invention relates to a method for manufacturing a compound semiconductor single crystal.

化合物半導体単結晶は、集積回路の基板、発光ダイオー
ド、レーザダイオード、或は各種のセンサの基板として
広い用途を持っている。用途によって、半絶縁性、n型
或はp型の単結晶が製造される。
Compound semiconductor single crystals have a wide range of uses as substrates for integrated circuits, light emitting diodes, laser diodes, and various sensors. Depending on the application, semi-insulating, n-type or p-type single crystals are produced.

ここで化合物半導体というのは、I−V族化合物の事−
tlする。GaAs 、 GaP 、InP XInA
s 、 InSb 。
Compound semiconductors here refer to IV group compounds.
tl. GaAs, GaP, InP XInA
s, InSb.

GaSb、・・・・・など様々な組合せの化合物がある
There are various combinations of compounds such as GaSb,...

(イ) 従 来 技 術 ■−■化合物単結晶を製造する際、V族元素の解離圧が
高いので、ストイキオメ) IJシック結晶を作るのが
難しい、という問題がある。
(a) Conventional technology ■-■ When producing compound single crystals, there is a problem in that it is difficult to produce stoichiometric (IJ) thick crystals because the dissociation pressure of group V elements is high.

解離圧が高い化合物半導体単結晶を生成或は育成する方
法として、その蒸気圧を制御した雰囲気下で、揮発性成
分の圧力を平衡状態にして結晶を育成する方法がある。
As a method for producing or growing a compound semiconductor single crystal with a high dissociation pressure, there is a method of growing a crystal in an atmosphere where its vapor pressure is controlled and the pressure of volatile components is brought to an equilibrium state.

この蒸気圧制御法は、熱応力、組成ずれなどの影響が少
なく、結晶のストイキオメ) IJに於て優れている。
This vapor pressure control method is less affected by thermal stress, compositional deviation, etc., and is excellent in terms of crystal stoichiometry (IJ).

また転位密度も少ない単結晶が得られる。Furthermore, a single crystal with a low dislocation density can be obtained.

しかし反面、高純度の結晶を得る、という点では、いま
ひとつ問題がある。さらに、アンドープの単結晶では、
半絶縁性が得られず、比抵抗が小さいものになる。FE
Tなどの基板にするには、半絶縁性の単結晶が必要であ
る。抵抗率を上げるため、蒸気圧制御法で単結晶を作る
場合、クロムなどの不純物元素をドープする事が必要と
なっている。
However, on the other hand, there is still a problem in obtaining highly pure crystals. Furthermore, in an undoped single crystal,
Semi-insulating properties cannot be obtained, resulting in low resistivity. FE
A semi-insulating single crystal is required for use as a substrate for T or the like. In order to increase the resistivity, when producing single crystals using the vapor pressure control method, it is necessary to dope them with impurity elements such as chromium.

蒸気圧制御法のカテ占゛リーに属するものに水平式ブリ
ッジマン法(HB)がある。これは石英ボートの中に原
料を入れて水平に置き、石英管の中に封じ入れて、一方
の端にV族単体を置き、水平方法の温度分布を徐々に変
える事により、固液界面を横に移動させながら結晶成長
させる。蒸気圧の制御は温度分布によってなされる。水
平式のものは、斗ンゴット形状が半円柱状になり、円形
ウェハを得る場合、無駄が多いという難点もある。
The horizontal Bridgman method (HB) belongs to the category of vapor pressure control methods. This is done by placing raw materials in a quartz boat and placing it horizontally, sealing it in a quartz tube, placing a group V element at one end, and gradually changing the temperature distribution in the horizontal method to create a solid-liquid interface. Crystals grow while moving sideways. Vapor pressure is controlled by temperature distribution. In the horizontal type, the ingot shape is semi-cylindrical, and there is a problem that there is a lot of waste when obtaining circular wafers.

これに対し、液体封止法(LEC法)という化合物半導
体単結晶育成方法がある。これは、るつぼの中に化合物
の原料、不純物などの原料融液を入れておき、液体カプ
セル層で原料融液を追い、上方から種結晶を垂下して原
料融液に漬けて、これを引上げてゆき単結晶を得るもの
である。結晶引上装置の容器内は高圧を掛けて、液体カ
プセル層を抑えてV族元素の揮散を防止する。
On the other hand, there is a compound semiconductor single crystal growth method called the liquid confinement method (LEC method). This involves placing a raw material melt containing raw materials for compounds, impurities, etc. in a crucible, following the raw material melt with a liquid capsule layer, dropping a seed crystal from above, immersing it in the raw material melt, and pulling it up. This method is used to obtain single crystals. High pressure is applied inside the container of the crystal pulling device to suppress the liquid capsule layer and prevent volatilization of group V elements.

液体カプセルの種類は、これが封止すべき化合物原料融
液による。GaAsの場合は、B2O3を液体カプセル
とする。
The type of liquid capsule depends on the compound raw material melt to be sealed. In the case of GaAs, B2O3 is used as a liquid capsule.

液体封止法は、不純物をトープしなくても、半絶縁性の
単結晶を製造できる、という長所がある。
The liquid sealing method has the advantage that semi-insulating single crystals can be produced without doping with impurities.

また、封止剤としてB2O3を用いる場合、B2O3が
不純物元素を捕獲する、という効果がある。この為、育
成された結晶がより高純度になる、という長所がある。
Furthermore, when B2O3 is used as a sealant, B2O3 has the effect of capturing impurity elements. This has the advantage that the grown crystals have higher purity.

さらに、液体封止法は縦型の成長法であるから、円形断
面のインゴットを得る事ができ、円形ウェハを切り取る
際、無駄が少い、という長所もある。
Furthermore, since the liquid sealing method is a vertical growth method, it is possible to obtain an ingot with a circular cross section, and has the advantage that there is little waste when cutting circular wafers.

容器内がAsなとの有毒のガスで汚染されない、という
利点もある。
Another advantage is that the inside of the container is not contaminated with toxic gases such as As.

しかしながら、液体封止法は、るつぼの周囲だけをヒー
タで加熱し、容器の他の部分は比較的低温に保たれる。
However, in the liquid sealing method, only the periphery of the crucible is heated with a heater, and the other parts of the container are kept at a relatively low temperature.

容器壁面は水冷される事が多い。Container walls are often water-cooled.

又、B2O3には断熱効果がある。このような理由で、
固液界面近傍の温度勾配が大きい。このため、引上げた
後、冷却する間に熱応力が発生し、格子欠陥が多量に発
生する。転位密度が高くなる。つまり、良い結晶を作る
のが困難である。さらに、引上げられた結晶がストイキ
オメトリになりにくいという欠点がある。また゛、液体
で蓋をしているが、それでも■族元素の揮散を完全にな
くすというわけにはゆかない。
Additionally, B2O3 has a heat insulating effect. For this reason,
The temperature gradient near the solid-liquid interface is large. Therefore, thermal stress occurs during cooling after pulling, and a large number of lattice defects occur. Dislocation density increases. In other words, it is difficult to make good crystals. Furthermore, there is a drawback that the pulled crystal is difficult to achieve stoichiometry. Also, although the lid is covered with a liquid, it is still not possible to completely eliminate the volatilization of Group I elements.

縦型の、蒸気圧制御法に属する方法も既に知られている
。これは、るつぼ近傍だけを加熱するのではなく、容器
の上下方向にわたって、全体を加熱し、上下方向の温度
勾配をゆるやかにする。■族元素を容器内に置いて、蒸
気圧を平衡させる。
Vertical methods belonging to the vapor pressure control method are also already known. This does not heat only the vicinity of the crucible, but heats the entire container in the vertical direction, making the temperature gradient in the vertical direction gentle. Place group ① elements in a container and balance the vapor pressure.

容器内の温度分布を制御して、固液界面での■族元素の
蒸気圧を一定とする。
The temperature distribution in the container is controlled to keep the vapor pressure of the Group Ⅰ element constant at the solid-liquid interface.

引上げ法であるので、原料融液に種結晶を漬け、相対回
転しながら引上げる点は同じである。容器内の圧力は高
圧ではなく、はぼ−気圧である。原料融液中の■族元素
の圧力と、容器内の■族元素の分圧が平衡していなけれ
ばならないから、原料融液の上方は解放されており、容
器内の■族ガスに接している。
Since it is a pulling method, the seed crystal is soaked in the raw material melt and pulled up while rotating relative to each other. The pressure inside the container is not high pressure, but near atmospheric pressure. Since the pressure of the group III element in the raw material melt and the partial pressure of the group III element in the container must be in balance, the upper part of the raw material melt is open and does not come in contact with the group III gas in the container. There is.

縦型蒸気圧制御法は、水平式ブリッジマン法(HB)を
縦にしたようなもので、容器の上方の空間は、GaAs
結晶引上げの場合、約600’C程度にしている。
The vertical vapor pressure control method is like a vertical version of the horizontal Bridgman method (HB), in which the space above the container is made of GaAs.
In the case of crystal pulling, the temperature is about 600'C.

第1図は縦型蒸気圧制御法による結晶製造装置の断面図
である。
FIG. 1 is a sectional view of a crystal manufacturing apparatus using the vertical vapor pressure control method.

容器1は密封構造の容器で、内部には、上方から上軸2
が、下方から下軸3が回転昇降自在に設けられている。
The container 1 is a container with a sealed structure, and inside there is an upper shaft 2 from above.
However, a lower shaft 3 is provided so that it can rotate and move up and down from below.

下軸3の上にはるつぼ4が取付けてあり、この中に原料
融液5がある。
A crucible 4 is mounted on the lower shaft 3, and a raw material melt 5 is contained in the crucible 4.

上2軸2の下端には種結晶6か支持されている。A seed crystal 6 is supported at the lower end of the upper two shafts 2.

種結晶6を原料融液5に漬けてから、徐々に上軸2を下
軸3に対して引上げてゆく。すると種結晶6に続いて単
結晶7が成長してゆく。
After the seed crystal 6 is immersed in the raw material melt 5, the upper shaft 2 is gradually pulled up relative to the lower shaft 3. Then, following the seed crystal 6, the single crystal 7 grows.

容!a1の構造は、開閉のための機構、シールのための
機構などを含み、より複雑であるが、ここでは単純化し
て示している。
Yong! Although the structure of a1 is more complicated, including an opening/closing mechanism, a sealing mechanism, etc., it is shown here in a simplified manner.

」二軸2の軸通し六8と、下軸3の軸通し穴9には、V
族元素が漏れるのを防ぐために、液体封止剤10.11
が、開口を覆うように設けである。
” The shaft through hole 68 of the two shafts 2 and the shaft through hole 9 of the lower shaft 3 have a V
Liquid sealant 10.11 to prevent group elements from leaking.
is provided to cover the opening.

これは例えば、B2O3である。This is, for example, B2O3.

この例では、5つのヒータが用いられ、上下方向に、ゆ
るやかな温度分布を与えるようにしている。第1ヒータ
21はミ容器1の最下部を加熱する。これは、液体封止
剤11を原料に先たって溶融し、容器1を密封する役割
をも持っている。
In this example, five heaters are used to provide a gentle temperature distribution in the vertical direction. The first heater 21 heats the lowest part of the container 1. This also has the role of melting the liquid sealant 11 before the raw material and sealing the container 1.

第2ヒータ22は容器の下部を加熱する。容器1の下部
には、Asなどの■族元素12か置かれている。V族元
素12の蒸気圧を制御するため、第2ヒータ22で、こ
の領域の温度を適当な範囲内に調整する。
The second heater 22 heats the lower part of the container. At the bottom of the container 1, group Ⅰ elements 12 such as As are placed. In order to control the vapor pressure of the group V element 12, the second heater 22 adjusts the temperature in this region within an appropriate range.

第3ヒータ23は、原料を加熱し溶融し、液体状態を維
持するようにする。また、引上げられた結晶も第3ヒー
タ23によって加熱されるから、引上げられた結晶に強
い熱応力が生巳ない。温度勾配が緩和されるからである
The third heater 23 heats and melts the raw material to maintain a liquid state. Further, since the pulled crystal is also heated by the third heater 23, the pulled crystal is not subjected to strong thermal stress. This is because the temperature gradient is alleviated.

第4ヒータ24は容器1の最上部を加熱する。The fourth heater 24 heats the top of the container 1.

これは、上軸通し穴8の液体封止剤1oを原料溶融、■
族元素加熱に先だって溶融しておくためにも必要である
This involves melting the liquid sealant 1o in the upper shaft through hole 8 as a raw material, and
It is also necessary to melt the group elements prior to heating.

第1〜第4ヒータのパワーを適当に設定し、再調整しな
がら、容器1内で、温度勾配が急にならないようにし、
気液界面13で、気体と液体との■族元素の分圧が平衡
するようにしている。■族元素の気液界面13に於ける
分圧゛が一定で、ある適当な値であれば、ストイキオメ
トリツクな単結晶を引上げることができる。
While appropriately setting and readjusting the power of the first to fourth heaters, make sure that the temperature gradient does not become steep in the container 1,
At the gas-liquid interface 13, the partial pressures of group Ⅰ elements between the gas and the liquid are balanced. If the partial pressure of the group (1) element at the gas-liquid interface 13 is constant and at a certain appropriate value, a stoichiometric single crystal can be pulled.

このような既に提案されている縦型蒸気圧制御引上法で
は、ストイキオメトリの優れた転位密度の低い単結晶が
得られる。
Such a previously proposed vertical vapor pressure controlled pulling method yields a single crystal with excellent stoichiometry and a low dislocation density.

(つ)従来技術とその問題点 縦型の蒸気圧制御法は、しかしながら、液体カプセル剤
によって融液を覆わないので、液体カプセル剤による不
純物捕獲効果が望めない。
(1) Prior art and its problems In the vertical vapor pressure control method, however, the liquid capsule does not cover the melt, so the impurity trapping effect of the liquid capsule cannot be expected.

不純物を液体カプセル剤の作用で減少させるために、原
料融液5の上にB2O3を入れたとする。そうすると、
不純物を吸収する作用はあるが、原料融液5と雰囲気ガ
ス14との間が、液体カプセルによって遮断される。こ
の為、■族元素の蒸気圧が気体と液体の間に於て平衡せ
ず、蒸気圧を制御する事ができなくなる。
It is assumed that B2O3 is placed on top of the raw material melt 5 in order to reduce impurities by the action of a liquid capsule. Then,
Although it has the effect of absorbing impurities, the liquid capsule blocks the raw material melt 5 and the atmospheric gas 14. For this reason, the vapor pressure of the group (Ⅰ) element is not balanced between the gas and the liquid, making it impossible to control the vapor pressure.

液体カプセルB2O3を薄くする、という事も考えられ
るカベそれでも十分ではない。■族元素の液体、気体間
での交換が起ってはしめて平衡状態になるわけであるか
ら、B2qが介在すれば、完全な平衡状態にはならない
のである。
Although it is possible to make the liquid capsule B2O3 thinner, it is still not sufficient. Since the exchange between the liquid and the gas of group (1) elements occurs, an equilibrium state is reached, so if B2q is present, a complete equilibrium state will not be reached.

(:C)発明の目的 本発明は、蒸気圧制御法のカテゴリーに入るが、液体カ
プセル剤の不純物捕獲効果も有効に生がした化合物半導
体単結晶の製造方法を与える。
(:C) Object of the Invention The present invention falls under the category of vapor pressure control method, and provides a method for producing a compound semiconductor single crystal that also effectively takes advantage of the impurity trapping effect of a liquid capsule.

け)本発明の方法 本発明は、蒸気圧制御法の長所と、液体カプセルの不純
物捕獲効果を両立させるため、原料融液5の表面の一部
を液体カプセル材で覆い、表面の残りの部分が雰囲気ガ
スに接するようにしたものである。原料融液5を仕切る
手段は仕切管を液中に立てる事によって行われる。原料
融液5の表面14のどの部分を仕切るかは任意である。
K) Method of the present invention In order to achieve both the advantages of the vapor pressure control method and the impurity capture effect of the liquid capsule, a part of the surface of the raw material melt 5 is covered with a liquid encapsulant, and the remaining part of the surface is is in contact with atmospheric gas. The raw material melt 5 is partitioned by placing partition pipes in the liquid. It is arbitrary which part of the surface 14 of the raw material melt 5 is partitioned.

第2図は本発明の方法を示すための、るつぼ近傍のみの
拡大断面図である。容器1やヒータの図示は省略した。
FIG. 2 is an enlarged sectional view of only the vicinity of the crucible to illustrate the method of the present invention. Illustrations of the container 1 and the heater are omitted.

るつぼ4の側壁に短くて、゛口径の小さい仕切管16を
取付けである。るつぼ4の中にB2O3の液体カプセル
剤17を入れる。仕切管16の中には入れない。原料融
液の表面15は、仕切管16の中では雰囲気ガス14に
接し、仕切管16の外では液体カプセル剤17に接する
A short partition pipe 16 with a small diameter is attached to the side wall of the crucible 4. A B2O3 liquid capsule 17 is placed in the crucible 4. Do not enter the partition pipe 16. The surface 15 of the raw material melt is in contact with the atmospheric gas 14 inside the partition pipe 16 and in contact with the liquid capsule 17 outside the partition pipe 16 .

表面5の内、雰囲気ガス14に接触する部分を気液界面
13、液体カプセル剤17に接する部分を異液界面18
とここでは呼ぶ事にする。
The part of the surface 5 that comes into contact with the atmospheric gas 14 is called a gas-liquid interface 13, and the part that comes into contact with the liquid capsule 17 is called a different liquid interface 18.
I will call it here.

気液界面13では、雰囲気ガスと接するから、V族元素
の分圧か融液5と雰囲気ガス14との間で平衡する。融
液5は対流によって、成分比や温度か均一になるように
なっている。結局、■族元素の分圧は、雰囲気ガス14
と原料融液5の全体に於て平衡する事になる。
At the gas-liquid interface 13, since it comes into contact with the atmospheric gas, the partial pressure of the group V element is balanced between the melt 5 and the atmospheric gas 14. The melt 5 is made to have a uniform component ratio and temperature by convection. In the end, the partial pressure of group Ⅰ elements is 14
This results in equilibrium throughout the raw material melt 5.

異液界面18では、原料融液5と液体カプセル剤17と
が接触するから、原料融液から不純物が除かれてゆく。
Since the raw material melt 5 and the liquid capsule 17 come into contact at the different liquid interface 18, impurities are removed from the raw material melt.

気液界面13、異液界面18の面積比や分布は任意であ
る。
The area ratio and distribution of the gas-liquid interface 13 and the different liquid interface 18 are arbitrary.

第3図、第4図は他の実施例を示するつぼの断面図(a
)と、平面図(b)である。
FIGS. 3 and 4 are cross-sectional views (a
) and a plan view (b).

第3図の例は、るつぼに対して同心円状になるように仕
切管16を設けている。仕切管16の内部に液体カプセ
ル剤17が入っており、仕切管16の外部は雰囲気ガス
14の中へ露出している。仕切管16の固定手段は示し
ていないが、脚をつけて、るつぼ4の底部に立てても良
い。また、るつぼの側壁に対して固定する事もできる。
In the example shown in FIG. 3, the partition pipe 16 is provided so as to be concentric with the crucible. A liquid capsule 17 is contained inside the partition pipe 16, and the outside of the partition pipe 16 is exposed to the atmospheric gas 14. Although the means for fixing the partition tube 16 is not shown, it may be erected on the bottom of the crucible 4 by attaching legs. It can also be fixed to the side wall of the crucible.

この例では、単結晶は、液体カプセル剤17を通って引
上げられる。
In this example, the single crystal is pulled through the liquid capsule 17.

原料融液5の表面15は、内側で異液界面18、外側で
気液界面13となる。
The surface 15 of the raw material melt 5 has a different liquid interface 18 on the inside and a gas-liquid interface 13 on the outside.

第4図の例では、逆に仕切管16の外側に液体カプセル
剤17を入れ、内側は開放している。仕切管16の内側
で原料融液は雰囲気ガス14に接する。
In the example shown in FIG. 4, on the contrary, the liquid capsule 17 is placed on the outside of the partition pipe 16, and the inside is open. The raw material melt contacts the atmospheric gas 14 inside the partition pipe 16 .

(力) 効 果 (1)縦型の蒸気圧制御法であるから、ストイキオメ)
 IJフッタ化合物半導体単結晶を製造する事ができる
。組成ずれが少いし、組成ずれを任意に制御できる。
(Force) Effects (1) Since it is a vertical steam pressure control method, stoichiometric)
IJ footer compound semiconductor single crystals can be manufactured. Compositional deviation is small, and compositional deviation can be controlled arbitrarily.

(2)上下方向の温度勾配が小さいので、結晶欠陥の少
い良質の単結晶を得る事ができる。
(2) Since the temperature gradient in the vertical direction is small, a high quality single crystal with few crystal defects can be obtained.

(3)原料融液の表面の一部を液体カプセル剤で覆って
いるから、不純物がこれによって除去される。不純物の
少い単結晶を作る事ができる。特に、アンドープであっ
ても、半絶縁性の単結晶を得る事ができる。
(3) Since a part of the surface of the raw material melt is covered with a liquid capsule, impurities are removed thereby. Single crystals with few impurities can be made. In particular, a semi-insulating single crystal can be obtained even if it is undoped.

(ト) 用 途 この発明は、解離圧の高いV族元素を含む化合物半導体
単結晶の成長に広く用いられる。例えば、GaP 、I
nP XGaAs 、 InAs 、 ・−・=などで
ある。
(g) Applications This invention is widely used for growing compound semiconductor single crystals containing group V elements with high dissociation pressure. For example, GaP, I
nPXGaAs, InAs, etc.

(り) 実 施 例 I nAs単結晶を本発明の方法によって製造した。(ri) Implementation example An InAs single crystal was manufactured by the method of the present invention.

屯結晶引上装置は第1図のような構造をしており、るつ
ぼ4の中が第2図のような配置になっている。容器1、
るつぼ4、仕切管16はノセイロリテイツクボロンナイ
トライド製(PBN)のものを用いた。
The Ton crystal pulling device has a structure as shown in FIG. 1, and the inside of the crucible 4 is arranged as shown in FIG. container 1,
The crucible 4 and the partition tube 16 were made of Noseiro Litique boron nitride (PBN).

I nAsの融点943°C付近で結晶育成を行なう。Crystal growth is performed near the melting point of InAs, 943°C.

容器内のAs圧力がInAsの解離圧(0,33atm
 )になるよう木、第2ヒータ22で、底部近くの温度
をコントロールした。
The As pressure in the container is the dissociation pressure of InAs (0.33 atm
), and the temperature near the bottom was controlled using the second heater 22.

結晶回転数、及びるつぼの回転数は1〜1−OrF’で
、育成速度は3〜IQ+++a+/hである。B2O3
を液体カプセルとした。厚みは5〜20mmとした。
The crystal rotation speed and the crucible rotation speed are 1 to 1-OrF', and the growth rate is 3 to IQ+++a+/h. B2O3
was made into a liquid capsule. The thickness was 5 to 20 mm.

得られた結晶は、直径が50闘φ、長さが15.0’W
ffで、転位密度は1000/z以下であった。組成ず
れはなかった。
The obtained crystal has a diameter of 50 mm and a length of 15.0'W.
ff, and the dislocation density was 1000/z or less. There was no difference in composition.

不純物も少なく、抵抗値が103〜109Ω(7)の半
絶縁性の結晶が得られた。
A semi-insulating crystal with few impurities and a resistance value of 10 3 to 10 9 Ω (7) was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の蒸気圧制御単結晶製造装置の縦断面図。 第2図は本発明の単結晶製造方法を実行するためのるつ
ぼ近傍の装置の縦断面図。 第3図は他の実施例を示すためのるつぼの図で、(a)
は縦断面図、(b)は平面図である。 第4図はその他の実施例を示すためのるつぼの図で、(
a)は縦断面図、(b)は平面図である。 1 ・ ・ 容 器 2 ・・ ・ 上 軸 3 ・ ・ 下 軸 4 ・ ・・・・ る つ ぼ 5 ・・・・・ 原料融液 6 ・ ・・・・・ 柚 結 晶 7 ・・・ ・・・ 単 結 晶 8.9 ・・・ 軸通し穴 10.11・・・・ 液体封止剤 12 ・・・・・ ■族元金 13 ・ ・・・ 気液界面 14 ・ 雰囲気ガス 15 ・ ・ 原料融液の表面 16 仕切管 17 ・・・ 液体カプセル剤 18 ・ ・ 異液界面 21〜24・・ ・・・ ヒ − タ 発 明 者 多 1) 紘 二 □龍 見 雅 美 特許出願人 住友電気工業株式会社 第2図 第3図 15 (a) 第4図
FIG. 1 is a longitudinal sectional view of a known vapor pressure controlled single crystal manufacturing apparatus. FIG. 2 is a longitudinal sectional view of an apparatus near a crucible for carrying out the single crystal manufacturing method of the present invention. FIG. 3 is a diagram of a crucible to show another embodiment, (a)
is a vertical sectional view, and (b) is a plan view. FIG. 4 is a diagram of a crucible for showing other embodiments.
(a) is a longitudinal sectional view, and (b) is a plan view. 1... Container 2... Upper axis 3... Lower axis 4... Crucible 5... Raw material melt 6... Yuzu crystal 7...・Single crystal 8.9 ... Axial hole 10.11 ... Liquid sealant 12 ... ■Group element 13 ... Gas-liquid interface 14 - Atmospheric gas 15 ... Raw material Surface of melt 16 Partition pipe 17 ... Liquid capsule 18 ... Different liquid interfaces 21 to 24 ... Heater inventor: 1) Hiroji Masami Ryuumi Patent applicant: Sumitomo Electric Industries, Ltd. Co., Ltd. Figure 2 Figure 3 Figure 15 (a) Figure 4

Claims (1)

【特許請求の範囲】[Claims] 密封された容器1と、容器1を囲んで上下方向に複数個
設けられるヒータ21.22、・・・・・と、容器1内
に於て昇降回転自在に設けられる上軸2と、下軸3と、
下軸3によって支持されるるつぼ4とよりなる単結晶製
造装置のるつぼ4には化合物半導体の原料を入れヒータ
によって溶融して原料融液5とし、容器1内に化合物半
導体を構成する■族元素12を置き、るつぼ4の中には
仕切管16を立てて原料融液5°の表面を二分し、一方
は液体カプセル剤17で覆い、表面の残りは雰囲気ガス
14に接するようにし、■族元素12及び容器内の温度
を調節する事により原料融液5の中のV族元素の蒸気圧
を制御しながら、原料融液5から単結晶7を育成させる
事を特徴とする単結晶の製造方法。
A sealed container 1, a plurality of heaters 21, 22, . 3 and
A raw material for a compound semiconductor is put into the crucible 4 of the single crystal manufacturing apparatus, which is made up of a crucible 4 supported by a lower shaft 3, and is melted by a heater to form a raw material melt 5, and in the container 1, group Ⅰ elements constituting the compound semiconductor are placed. A partition pipe 16 is placed in the crucible 4 to divide the 5° surface of the raw material melt into two parts, one of which is covered with the liquid capsule 17 and the rest of the surface is in contact with the atmospheric gas 14. Production of a single crystal characterized by growing a single crystal 7 from the raw material melt 5 while controlling the vapor pressure of the group V element in the raw material melt 5 by adjusting the element 12 and the temperature inside the container. Method.
JP59031146A 1984-02-21 1984-02-21 Single crystal manufacturing method Expired - Lifetime JP2529934B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59031146A JP2529934B2 (en) 1984-02-21 1984-02-21 Single crystal manufacturing method
EP85301147A EP0159113B1 (en) 1984-02-21 1985-02-21 Process and apparatus for growing single crystals of iii - v compound semiconductor
DE8585301147T DE3574745D1 (en) 1984-02-21 1985-02-21 METHOD AND DEVICE FOR PRODUCING SINGLE CRYSTALS FROM III-V SEMICONDUCTOR CONNECTIONS.
US07/038,447 US5145550A (en) 1984-02-21 1987-04-14 Process and apparatus for growing single crystals of III-V compound semiconductor
US07/842,979 US5256381A (en) 1984-02-21 1992-02-28 Apparatus for growing single crystals of III-V compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031146A JP2529934B2 (en) 1984-02-21 1984-02-21 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPS60176995A true JPS60176995A (en) 1985-09-11
JP2529934B2 JP2529934B2 (en) 1996-09-04

Family

ID=12323294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031146A Expired - Lifetime JP2529934B2 (en) 1984-02-21 1984-02-21 Single crystal manufacturing method

Country Status (4)

Country Link
US (1) US5145550A (en)
EP (1) EP0159113B1 (en)
JP (1) JP2529934B2 (en)
DE (1) DE3574745D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251191A (en) * 1984-05-25 1985-12-11 Res Dev Corp Of Japan Process for growing single crystal of compound having high dissociation pressure
JPS623096A (en) * 1985-06-27 1987-01-09 Res Dev Corp Of Japan Growth of compound semiconductor single crystal having high dissociation pressure
JP3015656B2 (en) * 1994-03-23 2000-03-06 株式会社東芝 Method and apparatus for producing semi-insulating GaAs single crystal
JP3201305B2 (en) 1996-04-26 2001-08-20 住友電気工業株式会社 Method for producing group III-V compound semiconductor crystal
JP3596337B2 (en) 1998-03-25 2004-12-02 住友電気工業株式会社 Method for manufacturing compound semiconductor crystal
JP4827107B2 (en) * 2006-03-24 2011-11-30 日本碍子株式会社 Method for producing nitride single crystal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523239A (en) * 1978-08-04 1980-02-19 Hitachi Zosen Corp Execution process for marine structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE562704A (en) * 1956-11-28
US3198606A (en) * 1961-01-23 1965-08-03 Ibm Apparatus for growing crystals
GB996008A (en) * 1961-09-29 1965-06-23 Mullard Ltd Improvements in and relating to the manufacture of crystals
DE1934369C3 (en) * 1969-07-07 1974-10-03 Wacker-Chemitronic Gesellschaft Fuer Elektronik-Grundstoffe Mbh, 8263 Burghausen Process for the production of single crystals from HI-V compounds
DE2245250A1 (en) * 1972-09-15 1974-03-21 Philips Patentverwaltung Growing crystals esp garnet monocrystals - in inner chamber partitioned from outer chamber by perforated dividing wall
US4352784A (en) * 1979-05-25 1982-10-05 Western Electric Company, Inc. Double crucible Czochralski crystal growth apparatus
JPS5914440B2 (en) * 1981-09-18 1984-04-04 住友電気工業株式会社 Method for doping boron into CaAs single crystal
JPS58181799A (en) * 1982-04-16 1983-10-24 Nippon Telegr & Teleph Corp <Ntt> Manufacture of gaas single crystal containing boron
JPS598695A (en) * 1982-07-06 1984-01-17 Fujitsu Ltd Crystal growth apparatus
JPS5913480A (en) * 1982-07-15 1984-01-24 Hitachi Ltd Video recording and reproducing device
JPS6046998A (en) * 1983-08-26 1985-03-14 Sumitomo Electric Ind Ltd Pulling up of single crystal and its device
JPS60251191A (en) * 1984-05-25 1985-12-11 Res Dev Corp Of Japan Process for growing single crystal of compound having high dissociation pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523239A (en) * 1978-08-04 1980-02-19 Hitachi Zosen Corp Execution process for marine structure

Also Published As

Publication number Publication date
EP0159113B1 (en) 1989-12-13
DE3574745D1 (en) 1990-01-18
US5145550A (en) 1992-09-08
JP2529934B2 (en) 1996-09-04
EP0159113A1 (en) 1985-10-23

Similar Documents

Publication Publication Date Title
CA1301034C (en) Process for growing a multi-component crystal
JPS60176995A (en) Preparation of single crystal
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
US5256381A (en) Apparatus for growing single crystals of III-V compound semiconductors
US4824520A (en) Liquid encapsulated crystal growth
JPS60264390A (en) Growing method for single crystal
JPH0314800B2 (en)
JPS63195188A (en) Production of compound semiconductor single crystal and apparatus therefor
JPH06128096A (en) Production of compound semiconductor polycrystal
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS6251237B2 (en)
JP3557690B2 (en) Crystal growth method
JPS60239389A (en) Pulling device for single crystal
JPS6128634B2 (en)
JPS63144194A (en) Production of compound semiconductor single crystal and apparatus therefor
JP2885452B2 (en) Boat growth method for group III-V compound crystals
JPH01122995A (en) Growth of compound semiconductor single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPS62197397A (en) Production of single crystal
JPS6381918A (en) Manufacture of mixed crystal
JPH0952789A (en) Production of single crystal
JPS62158187A (en) Method and device for producing single crystal of semiconductor
JPH0559878B2 (en)