JPH01122995A - Growth of compound semiconductor single crystal - Google Patents

Growth of compound semiconductor single crystal

Info

Publication number
JPH01122995A
JPH01122995A JP28035487A JP28035487A JPH01122995A JP H01122995 A JPH01122995 A JP H01122995A JP 28035487 A JP28035487 A JP 28035487A JP 28035487 A JP28035487 A JP 28035487A JP H01122995 A JPH01122995 A JP H01122995A
Authority
JP
Japan
Prior art keywords
single crystal
graphite crucible
growth
crucible
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28035487A
Other languages
Japanese (ja)
Inventor
Fujio Tamai
玉井 富士夫
Kazunari Kitamura
北村 和成
Michio Takahashi
高橋 道生
Yoshimasa Masukata
舛方 義政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP28035487A priority Critical patent/JPH01122995A/en
Publication of JPH01122995A publication Critical patent/JPH01122995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To accomplish growth of the above single crystal in high quality and yield using the LEC process, by facing the upper end of the outer circumference of a graphite crucible and the inner circumference of a thermal insulating plate each other and carrying out pulling of single crystal. CONSTITUTION:An inner crucible 8 made of PBN is put in a graphite crucible 2, and a raw material for GaAs growth and a sealer are put in the inner crucible 8. Thence, a pressure vessel 1 is evacuated to vacuum followed by introducing Ar gas into said vessel 1 to effect pressurization. The crucibles are heated by a heater 4 to melt the raw material and sealer into raw melt 9 and liquid sealer 10 respectively, followed by allowing the pulling shaft to descend to bring a seed crystal into contact with the surface of the raw melt 9 and performing pulling growth of a GaAs single crystal 11 by a specified operation. This process will reduce variation in the diameter of the single crystal, enhance the single crystal yield and enable high-quality crystal growth in high reproducibility. This process can also be applied to the other group III to V compound semiconductors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体封止引上法により化合物半導体単結晶の成
長を行なう方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for growing a compound semiconductor single crystal by a liquid-sealed pulling method.

〔従来の技術〕[Conventional technology]

GaAS等の化合物半導体はSi半導体以上の比抵抗、
電子移動度及び発光確率を有し、ICや発光素子として
近年開発が進められて来ている。
Compound semiconductors such as GaAS have a resistivity higher than that of Si semiconductors,
It has high electron mobility and light emission probability, and has been developed in recent years as an IC and light emitting device.

このような化合物半導体単結晶の製造方法の中では最も
工業的な生産手段として液体封止引上法(以下LEC法
と略記する)が多く用いられている。
Among the methods for manufacturing such compound semiconductor single crystals, the liquid encapsulation pulling method (hereinafter abbreviated as LEC method) is often used as the most industrial production means.

このLEC法は例えば第3図に示すように耐圧容器(1
)内に回転軸(3)が底面に固定され、さらに5iOz
又はPBN製の内側ルツボ(8)を内設した円筒状黒鉛
ルツボ(2)を設け、該ルッボ(2)の側面の外周の周
囲に黒鉛ルツボ加熱ヒーター(4)を設け、かつ該ヒー
ターの上方にヒーターの熱による雰囲気ガスの熱対流を
防ぐ円環状断熱プレート(7)を設けた装置を用いて、
SiO2又はPAN製の内側ルツボ(8)内に成長用原
料を入れその上を8203等の封止剤で覆っておく。
This LEC method uses a pressure-resistant container (1
), the rotating shaft (3) is fixed to the bottom, and 5iOz
Alternatively, a cylindrical graphite crucible (2) with an inner crucible (8) made of PBN is provided, and a graphite crucible heating heater (4) is provided around the outer periphery of the side surface of the crucible (2), and above the heater. Using a device equipped with an annular heat insulating plate (7) that prevents thermal convection of the atmospheric gas due to the heat of the heater,
A raw material for growth is placed in an inner crucible (8) made of SiO2 or PAN, and the top thereof is covered with a sealant such as 8203.

次に耐圧容器(1)内を真空排気後、Ar等の不活性ガ
スを導入して5〜100 K’J/cd程度に加圧し、
加熱ヒーター(4)により成長用原料及び封止剤を溶融
してそれぞれ融液原料(9)及び液体封止剤(10)と
する。その後耐圧容器(1)の上面から貫入し上下移動
と回転自在な引上軸(5)の下端に目的単結晶の種結晶
(6)を取り付け、該引上軸(5)を黒鉛ルツボ(2)
上方から降下し種結晶(6)を液体封止剤(10)の層
を貫通させて融液原料(9)に接触させ、引上軸(5)
を回転しながら溶液の温度、種結晶(6)の引上速度等
を制御して種結晶(6)と同一結晶方位の結晶を引上成
長させる。なお図中(12)は観察用のぞき窓である。
Next, after evacuating the inside of the pressure container (1), an inert gas such as Ar is introduced and pressurized to about 5 to 100 K'J/cd.
A heating heater (4) melts the growth raw material and the sealant to form a melt raw material (9) and a liquid sealant (10), respectively. Thereafter, a seed crystal (6) of the desired single crystal is attached to the lower end of a pulling shaft (5) that penetrates from the upper surface of the pressure container (1) and can move up and down and freely rotate. )
The seed crystal (6) descends from above and penetrates the liquid sealant (10) layer to contact the melt raw material (9), and then the pulling shaft (5)
While rotating, the temperature of the solution, the pulling speed of the seed crystal (6), etc. are controlled to grow a crystal having the same crystal orientation as the seed crystal (6). Note that (12) in the figure is a peephole for observation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のようなLEC法での結晶成長では結晶成長中の加
圧圧力等の影響により容器内の待に融液上方での熱対流
が大きく、雰囲気中の温度変動が大きくなってしまう。
In crystal growth using the LEC method as described above, thermal convection above the melt in the container is large due to the influence of pressure applied during crystal growth, and temperature fluctuations in the atmosphere become large.

そしてこれが原因で成長界面での固相成長速度に変動を
来たし、結晶径の変動あるいは界面不均一による異結晶
の発生を生じ易くなり問題となっていた。
This causes fluctuations in the solid phase growth rate at the growth interface, which tends to cause variations in crystal diameter or generation of foreign crystals due to non-uniformity at the interface, which has become a problem.

[問題点を解決するための手段] 本発明はこれに鑑み種々検討の結果、上記の欠点を平易
な手法で除去せしめLEC法により高品質かつ高歩留り
で単結晶を成長させる方法を提供するものである。
[Means for Solving the Problems] In view of this, and as a result of various studies, the present invention provides a method for growing single crystals with high quality and high yield by the LEC method, which eliminates the above-mentioned drawbacks using a simple method. It is.

即ち耐圧容器内に回転軸を底面に設けた黒鉛ルツボを設
け、該ルツボの側面外周の周囲に黒鉛ルツボ加熱用のヒ
ーターを設け、該ヒーターの上方に断熱プレートを環状
に設けて黒鉛ルツボ内の化合物半導体を溶融し、液体封
止引上法により単結晶を成長させる方法において、黒鉛
ルツボの外周面の上端部と断熱プレートの内周面とを対
設させて単結晶の引き上げを行なうことを特徴とするも
のであり、黒鉛ルツボの外周面の上端部と断熱プレート
の内周面との対設面の垂直方向のオーバーラツプ部の長
さを1及び黒鉛ルツボの外周面と断熱プレートの内周面
との間隙幅をdとしたときに、次式(1)の関係を満た
して単結晶の引き上げを行なうのが良好な方法である。
That is, a graphite crucible with a rotating shaft on the bottom is provided in a pressure-resistant container, a heater for heating the graphite crucible is provided around the outer periphery of the side surface of the crucible, and an annular heat insulating plate is provided above the heater to heat the graphite crucible. In a method of melting a compound semiconductor and growing a single crystal by liquid-sealed pulling, the single crystal is pulled by aligning the upper end of the outer peripheral surface of a graphite crucible with the inner peripheral surface of a heat insulating plate. The length of the vertical overlap between the upper end of the outer circumferential surface of the graphite crucible and the inner circumferential surface of the heat insulating plate is 1, and the length of the vertical overlap between the upper end of the outer circumferential surface of the graphite crucible and the inner circumferential surface of the heat insulating plate is A good method is to pull a single crystal while satisfying the following equation (1), where d is the gap width with respect to the surface.

! ≧ 3d ・・・・・・・・ (1)〔作 用〕 このように黒鉛ルツボの外周面の上端部と断熱プレート
の内周面とを対設させるのはヒーターで加熱されること
により生ずる雰囲気ガスの熱対流が直接ルツボ上方の空
間に影響を及ぼさないようにし、雰囲気の温度安定性を
高めるためである。
! ≧ 3d (1) [Function] This arrangement of the upper end of the outer peripheral surface of the graphite crucible and the inner peripheral surface of the heat insulating plate is caused by heating with a heater. This is to prevent the thermal convection of the atmospheric gas from directly affecting the space above the crucible and to improve the temperature stability of the atmosphere.

またこの対設する面の垂直方向のオーバーラツプする長
ざ1とそれらの間隙幅dとの関係を上記(1)式のよう
に規定したのは、ヒーターで加熱された雰囲気ガスがこ
の間隙を上向に流出する際の助走区間として動き上方へ
の流れに整流作用を起こし、結晶成長に必要な融液面上
方での雰囲気温度を安定させる効果がより大きくなるか
らである。一方1の寸法がOくlく3dの場合は上記の
対設部からの雰囲気ガスの流れが乱流となってしまい黒
鉛ルツボの外周面の上端部と断熱プレートの内周面とを
対設させたことによる温度安定効果を低減させてしまう
Furthermore, the reason why the relationship between the vertical overlapping length 1 of the opposing surfaces and the gap width d is defined as in equation (1) above is because the atmospheric gas heated by the heater passes over this gap. This is because it acts as a run-up section when flowing in the direction, and causes a rectifying effect on the upward flow, thereby increasing the effect of stabilizing the ambient temperature above the melt surface, which is necessary for crystal growth. On the other hand, if the dimension of 1 is O~3d, the flow of atmospheric gas from the above-mentioned opposed parts becomes turbulent, and the upper end of the outer circumferential surface of the graphite crucible and the inner circumferential surface of the heat insulating plate are placed opposite each other. This will reduce the temperature stabilizing effect caused by this.

(実施例〕 本発明の一実施例を第1図により説明する。(Example〕 An embodiment of the present invention will be explained with reference to FIG.

(1)は耐圧容器、(2)は底面に回転軸(3)を固定
した円筒状黒鉛ルツボ、(4)は黒鉛ルツボ(2)の側
面周囲に設けた11口熱ヒーター、(5)は下端にGa
AS単結晶の種結晶(6)を取付けた上下移動と回転自
在の引上軸であり、ヒーター(4)の上方に円環状断熱
プレート(7)を設けた装置において、ざらに該断熱プ
レート(7)と黒鉛ルツボ(2)との位置関係は第2図
に示すように構成した。即ち黒鉛ルツボ(2)の外周面
の上端部と断熱プレート(7)の内周面との対設面の垂
直方向のオーバーラツプ部の長さ(i)を黒鉛ルツボ(
2)の外周面と断熱プレート(7)の内周面との間隙幅
(d>の4倍、従って第(1)式の条件を満足する関係
を保った。
(1) is a pressure-resistant container, (2) is a cylindrical graphite crucible with a rotating shaft (3) fixed to the bottom, (4) is an 11-hole thermal heater installed around the side of the graphite crucible (2), and (5) is Ga at the bottom end
This is a vertically movable and rotatable pulling shaft to which an AS single crystal seed crystal (6) is attached, and an annular heat insulating plate (7) is provided above the heater (4). 7) and the graphite crucible (2) were configured as shown in FIG. In other words, the length (i) of the vertical overlap between the upper end of the outer circumferential surface of the graphite crucible (2) and the inner circumferential surface of the heat insulating plate (7) is calculated as follows:
2), the gap width between the outer circumferential surface and the inner circumferential surface of the heat insulating plate (7) was 4 times the gap width (d>), thus maintaining a relationship that satisfied the condition of equation (1).

このような装置で、黒鉛ルツボ(2)内にPBNUHの
内側ルツボ(8)を内設し、GaAS成長用原料と封止
剤を入れ、耐圧容器(1)内を真空排気した後Arガス
を導入して加圧した。次に加熱ヒーター(4)でルツボ
を加熱し、内部の原料及び封止剤を溶融させてそれぞれ
融液原料(9)と液体封止剤(10)とした。その後引
上軸(5)を降下させ種結晶を融液原料(9)の表面に
接触させ所定の操作によりGaAS単結晶(11)の引
上成長を行なったところ、従来の方法に比較して直径変
動が減少し、単結晶化率が向上し、ざらに再現性の良い
高品質の結晶成長が可能となった。
In such a device, an inner crucible (8) of PBNUH is installed inside the graphite crucible (2), raw materials for GaAS growth and a sealant are put in, and after the inside of the pressure container (1) is evacuated, Ar gas is evacuated. was introduced and pressurized. Next, the crucible was heated with a heating heater (4), and the raw material and sealant inside were melted to form a melt raw material (9) and a liquid sealant (10), respectively. After that, the pulling shaft (5) was lowered, the seed crystal was brought into contact with the surface of the melt raw material (9), and a GaAS single crystal (11) was pulled and grown by a predetermined operation. Diameter fluctuations have been reduced, the single crystallization rate has been improved, and high-quality crystal growth with excellent reproducibility has become possible.

以上はGaASについての実施例であるが本発明の方法
は他の■−v族化合物半導体にも適用できるものである
Although the above is an example for GaAS, the method of the present invention can also be applied to other Ⅰ-v group compound semiconductors.

(発明の効果〕 このように本発明によればLEC法による結晶成長で成
長結晶の径変動を大幅に減少させ、高歩留りで単結晶を
再現性良く成長できる等工業上顕著な効果を奏するもの
である。
(Effects of the Invention) As described above, according to the present invention, the variation in the diameter of the grown crystal can be significantly reduced through crystal growth using the LEC method, and single crystals can be grown with high yield and good reproducibility, resulting in remarkable industrial effects. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側断面図、第2図は第
1図のA部を示す拡大図、第3図は従来例を示す側断面
図である。 1・・・・・・・・耐圧容器 2・・・・・・・・円筒状黒鉛ルツボ 3・・・・・・・・回転軸 4・・・・・・・・加熱ヒーター 5・・・・・・・・引上軸 6・・・・・・・・種結晶 7・・・・・・・・円環状断熱プレート8・・・・・・
・・内側ルツボ 9・・・・・・・・融液原料 10・・・・・・・・液体封止剤 11・・・・・・・・GaAS単結晶 第1図 第2図
FIG. 1 is a side sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged view of section A in FIG. 1, and FIG. 3 is a side sectional view showing a conventional example. 1......Pressure vessel 2...Cylindrical graphite crucible 3...Rotating shaft 4...Heating heater 5... ..... Pulling shaft 6 ..... Seed crystal 7 ..... Annular heat insulating plate 8 .....
...Inner crucible 9...Melt raw material 10...Liquid sealant 11...GaAS single crystal Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)耐圧容器内に回転軸を底面に設けた黒鉛ルツボを
設け、該ルツボの側面外周の周囲に黒鉛ルツボ加熱用の
ヒーターを設け、該ヒーターの上方に断熱プレートを環
状に設けて黒鉛ルツボ内の化合物半導体を溶融し、液体
封止引上法により単結晶を成長させる方法において、黒
鉛ルツボの外周面の上端部と断熱プレートの内周面とを
対設させて単結晶の引き上げを行なうことを特徴とする
化合物半導体単結晶の成長方法。
(1) A graphite crucible with a rotating shaft on the bottom is provided in a pressure-resistant container, a heater for heating the graphite crucible is provided around the outer periphery of the side surface of the crucible, and a heat insulating plate is provided in an annular shape above the heater. In a method of melting a compound semiconductor in a graphite crucible and growing a single crystal using a liquid-sealed pulling method, the single crystal is pulled by aligning the upper end of the outer peripheral surface of the graphite crucible with the inner peripheral surface of the heat insulating plate. A method for growing a compound semiconductor single crystal, characterized in that:
(2)黒鉛ルツボの外周面の上端部と断熱プレートの内
周面との対設面の垂直方向のオーバーラップ部の長さを
l及び黒鉛ルツボの外周面と断熱プレートの内周面との
間隙幅をdとしたときに、次式の関係を満たして単結晶
の引き上げを行なう特許請求の範囲第1項記載の化合物
半導体単結晶の成長方法。 l≧3d
(2) The length of the vertical overlap between the upper end of the outer circumferential surface of the graphite crucible and the inner circumferential surface of the heat insulating plate, and the length of the vertical overlap between the outer circumferential surface of the graphite crucible and the inner circumferential surface of the heat insulating plate. 2. The method for growing a compound semiconductor single crystal according to claim 1, wherein the single crystal is pulled while satisfying the following relationship, where d is the gap width. l≧3d
JP28035487A 1987-11-06 1987-11-06 Growth of compound semiconductor single crystal Pending JPH01122995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28035487A JPH01122995A (en) 1987-11-06 1987-11-06 Growth of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28035487A JPH01122995A (en) 1987-11-06 1987-11-06 Growth of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH01122995A true JPH01122995A (en) 1989-05-16

Family

ID=17623834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28035487A Pending JPH01122995A (en) 1987-11-06 1987-11-06 Growth of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH01122995A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291659A (en) * 1991-07-03 1994-03-08 Roland Dg Corporation Plotting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291659A (en) * 1991-07-03 1994-03-08 Roland Dg Corporation Plotting system

Similar Documents

Publication Publication Date Title
US6780244B2 (en) Method for producing a semiconductor crystal
US6254677B1 (en) Semiconductor crystal, and method and apparatus of production thereof
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
US4664742A (en) Method for growing single crystals of dissociative compounds
JPS6041036B2 (en) GaAs floating zone melting grass crystal production equipment
JPH01122995A (en) Growth of compound semiconductor single crystal
JPS63195188A (en) Production of compound semiconductor single crystal and apparatus therefor
JPH0297478A (en) Single crystal pulling up device
JPS60176995A (en) Preparation of single crystal
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPS6251237B2 (en)
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH05139884A (en) Production of single crystal
JPS62197397A (en) Production of single crystal
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPS58151398A (en) Method and device for pulling group 3-5 compound semiconductor single crystal
JPS61227989A (en) Production of single crystal and apparatus therefor
JPH07206589A (en) Method for producing compound semiconductor single crystal
JPH01145395A (en) Production of compound semiconductor single crystal
JP2004338960A (en) METHOD FOR MANUFACTURING InP SINGLE CRYSTAL
JPS5973500A (en) Preparation of compound semiconductor