JPH02167888A - Production of crystal of compound semiconductor of iii-v - Google Patents

Production of crystal of compound semiconductor of iii-v

Info

Publication number
JPH02167888A
JPH02167888A JP32061288A JP32061288A JPH02167888A JP H02167888 A JPH02167888 A JP H02167888A JP 32061288 A JP32061288 A JP 32061288A JP 32061288 A JP32061288 A JP 32061288A JP H02167888 A JPH02167888 A JP H02167888A
Authority
JP
Japan
Prior art keywords
compound semiconductor
melt
iii
crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32061288A
Other languages
Japanese (ja)
Inventor
Takashi Kijima
木島 孝
Shoichi Ozawa
小沢 章一
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP32061288A priority Critical patent/JPH02167888A/en
Publication of JPH02167888A publication Critical patent/JPH02167888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain high-quality uniform single crystal of compound semiconductor of III-V in liquid encapsulated Czochralski method by moving a crucible and seed crystal to an upper low-temperature zone in a state of the seed crystal being in contact with melt of compound semiconductor of III-V and coagulating melt to form single crystal. CONSTITUTION:The top of melt 11 of compound semiconductor of III-V in a crucible 3 whose surroundings are covered with an inert gas atmosphere under $1atm is coated with the melt 11 and an inert liquid encapsulating agent 10 (e.g. B2O3). Then seed crystal 9 of compound semiconductor of III-V is brought into contact with the melt 11 of semiconductor. Then in this state, the crucible 3 and seed crystal 9 are moved to an upper low-temperature zone 5, the melt 11 in contact with the seed crystal 9 in the crucible 3 is coagulated and single crystal of compound semiconductor of III-V is formed to prevent occurrence of polycrystal and twin and to obtain the single crystal of compound semiconductor (e.g. GaAs) of III-V.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はルツボの上7.1−によりlI[−Vl化合物
半導体の単結晶を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a single crystal of a lI[-Vl compound semiconductor using a crucible.

〔従来の技術〕[Conventional technology]

従来GaAs、rnP等の■−■族化合物半導体単結晶
を製造する方法としては液体封止チョクラルスキー法(
LEC法)、横型ボート法(HB法)および4度勾配付
徐冷法(VGF法)等がある。
Conventionally, the liquid-sealed Czochralski method (
These methods include the LEC method), the horizontal boat method (HB method), and the 4-degree gradual cooling method (VGF method).

例えば■、EC法は周囲にヒーターを配設した縦型ルツ
ボ内に目的単結晶の原料および液体封止剤を充填し、該
ルツボを高圧容器内に設置して該容器内を高圧の不活性
ガスで置換(7、ヒーターでルツボを加熱し、原料等を
溶融して原料融液表面を8201等の液体封止剤で覆い
、該原料融液表面に単結晶の種結晶を接触させてその種
結晶の周りに単結晶を成長させながら引き上げることに
より目的単結晶を製造するものである。
For example, in the EC method, raw materials for the desired single crystal and liquid sealant are filled in a vertical crucible with a heater around it, and the crucible is placed in a high-pressure container and the inside of the container is kept under high pressure and inert. Replacement with gas (7. Heat the crucible with a heater, melt the raw materials, etc., cover the surface of the raw material melt with a liquid sealant such as 8201, and contact the surface of the raw material melt with a single crystal seed crystal. The target single crystal is produced by growing a single crystal around a seed crystal and pulling it up.

またVGF法は目的単結晶の原料を入れたルツボを加熱
してこの原料を溶かし、その後加熱温度を徐々に下げる
ことにより原料融液を凝固させて目的単結晶を製造する
方法である。なおこのとき加熱温度を徐々に下げる代わ
りに下部が低温の温度勾配を設けた炉中で上記ルツボを
降下させて原料融液を凝固させるVB法といわれるもの
もある。
Further, the VGF method is a method in which a crucible containing raw materials for the target single crystal is heated to melt the raw materials, and then the heating temperature is gradually lowered to solidify the raw material melt to produce the target single crystal. At this time, instead of gradually lowering the heating temperature, there is also a method called the VB method in which the crucible is lowered in a furnace with a temperature gradient at a lower temperature to solidify the raw material melt.

またHB法は水平方向に温度勾配を設けておき上記VG
F法を横方向に使用したものである。
In addition, in the HB method, a temperature gradient is provided in the horizontal direction, and the VG
This is the method using the F method in the horizontal direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところがこのような方法でm−v族化合物半導体単結晶
を製造する場合には、以下のような問題点があった。
However, when manufacturing an m-v group compound semiconductor single crystal using such a method, there are the following problems.

即ちLEC法では結晶の成長中に温度勾配が変化するた
め、成長界面の形状が変化して多結晶や双晶が多くなっ
てしまう。さらにルツボから引き上げた結晶は液体封止
用のB = O、の上方に露出するため蒸気圧の高いヒ
素等が蒸発してしまい多結晶を発生させる原因となって
いた。
That is, in the LEC method, since the temperature gradient changes during crystal growth, the shape of the growth interface changes, resulting in an increase in polycrystals and twin crystals. Furthermore, since the crystals pulled from the crucible are exposed above B = O, which is used to seal the liquid, arsenic, etc., which have a high vapor pressure, evaporates, causing the generation of polycrystals.

そして単結晶製造上の難易度からすると、大口径化する
場合はその直径制御が困難となり結晶の高品質化に問題
が生じてくる。
Considering the difficulty in producing a single crystal, if the diameter is increased, it becomes difficult to control the diameter, which poses a problem in achieving high quality crystals.

またH B法ではGaAs単結晶を得る際に石英製のボ
ートを用いているために単結晶中にSiの混入があり、
囃結晶の高純度化ができなかった。
Furthermore, in the H B method, a quartz boat is used to obtain the GaAs single crystal, so Si is mixed into the single crystal.
It was not possible to achieve high purity of the hayashi crystal.

さらにVGF法やVB法においては、種子結晶がルツボ
下端に配置されているため種子結晶と半導体融液を接触
させた後の初期凝固相を全く観察することができないの
で単結晶が成長しているか否かの判定ができなかった。
Furthermore, in the VGF method and VB method, since the seed crystal is placed at the bottom of the crucible, it is impossible to observe the initial solidification phase at all after the seed crystal and the semiconductor melt come into contact, so it is difficult to observe whether a single crystal is growing. It was not possible to determine whether or not.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、高品質で均一なI
I−V族化合物半導体単結晶の製造方法を開発したもの
である。
In view of this, as a result of various studies, the present invention has been developed to provide high quality and uniform I.
A method for producing single crystal IV compound semiconductors has been developed.

即ち本発明の方法は周囲を1気圧以上の不活性ガス雰囲
気で覆ったルツボ内の■−V族化合物半導体融液の上面
を、該融液と不活性な不揮発性の液体封止剤融液で被覆
し、この■−v族化合物半導体の種子結晶を半導体融液
に接触させてルツボおよび種子結晶を上方の低温度域に
移動し、種子結晶と接触するルツボ内の融液を凝固せし
めて■−V族化合物半導体の単結晶を得ることを特徴と
するものである。
That is, in the method of the present invention, the upper surface of the ■-V group compound semiconductor melt in a crucible surrounded by an inert gas atmosphere of 1 atm or more is exposed to the melt and an inert nonvolatile liquid sealant melt. The seed crystal of the ■-V group compound semiconductor is brought into contact with the semiconductor melt, the crucible and the seed crystal are moved to an upper low temperature region, and the melt in the crucible in contact with the seed crystal is solidified. (2) This method is characterized by obtaining a single crystal of a group V compound semiconductor.

モして■−v族化合物半導体が融液状態にある融液帯域
の温度をこの■−V族化合物の融点以上で融点より10
0℃高い温度以下とし、低温度域の温度を上記融点以下
で融点より300℃低い温度以上とするのは有効である
The temperature of the melt zone in which the ■-V group compound semiconductor is in the melt state is set to 10° below the melting point of the ■-V group compound semiconductor.
It is effective to set the temperature to 0° C. higher or lower, and to set the temperature in the low temperature range to a temperature lower than or equal to the above melting point and 300° C. lower than the melting point.

さらに■−v族化合物半導体融液を入れるルツボの材質
として、P B N(Pyrolitic Boron
Nitride)、石英またはAlNを用いたり、不活
性ガスとして、Ar、N、、C02もしくはCH4また
はこれらの混合ガスを用いるのは効果がある。
Furthermore, as a material for the crucible containing the ■-V group compound semiconductor melt, PBN (Pyrolitic Boron) is used.
It is effective to use Ar, N, CO2, CH4, or a mixture thereof as an inert gas.

またルツボおよび種子結晶を上方の低温度域に移動して
■−■族化合物半導体を凝固せしめる際に、種子結晶の
引上げ速度をルツボの移動速度より大きくしてその速度
差を20mm/hr以下とするのは好ましく、種子結晶
およびルツボを同一方向に回転しながら上方に移動した
り、和−■族化合物半導体F¥1液の凝固時に融液に磁
場を印加するのもよい。
In addition, when moving the crucible and seed crystal to an upper low-temperature area to solidify the ■-■ group compound semiconductor, the pulling speed of the seed crystal is set higher than the moving speed of the crucible so that the speed difference is 20 mm/hr or less. It is preferable to move the seed crystal and the crucible upward while rotating in the same direction, or to apply a magnetic field to the melt during solidification of the Japanese-■ group compound semiconductor F\1 liquid.

〔作用〕[Effect]

このようにルツボおよびルツボ内のIII −V族化合
物半導体融液に接触させた種子結晶を、融液帯域から種
子結晶の方が僅かに大きい速度差を設けて」二方の低温
度域へ移動するのは、両温度域の境界でこの融液は凝固
するので、常に同一の温度勾配の下で結晶が成長するこ
とになり多結晶が発生せず高品質で均一な結晶を得るこ
とができるからである。さらにルツボ の圧縮応力も速
度差があるため減少させることが可能である。
The crucible and the seed crystal in contact with the III-V compound semiconductor melt in the crucible are moved from the melt zone to the two lower temperature regions with a slightly larger speed difference for the seed crystal. This is because the melt solidifies at the boundary between the two temperature ranges, so the crystals always grow under the same temperature gradient, making it possible to obtain high-quality, uniform crystals without forming polycrystals. It is from. Furthermore, the compressive stress in the crucible can be reduced due to the speed difference.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第1図に示すようにステンレス製高圧容器(1)の下面
を貫通する精密モーターで上下および回転自在なルツボ
軸(2)の上端にPBN製のルツボ(3)を取り付け、
該ルツボ(3)の周囲に融液帯域ヒーター(4)とその
上方に低温度域ヒーター(5)を配置し、さらに高圧容
器(5)の上面を貫通して上下移動と回転自在な種子結
晶軸(6)を設けた単結晶製造装置を作製した。なお(
7)は断熱材を示し、り8)はルツボ内を観察するビュ
ーイングロッドを示す。
As shown in Fig. 1, a PBN crucible (3) is attached to the upper end of a crucible shaft (2) that can be moved up and down and rotated by a precision motor that penetrates the lower surface of a stainless steel high-pressure container (1).
A melt zone heater (4) and a low temperature zone heater (5) are arranged above the crucible (3), and a seed crystal that penetrates the upper surface of the high pressure container (5) and can move up and down and rotate freely. A single crystal manufacturing apparatus provided with a shaft (6) was manufactured. In addition(
7) indicates a heat insulating material, and 8) indicates a viewing rod for observing the inside of the crucible.

上記装置の高圧容器(1)内のルツボ(3)内に約4k
gのG a A s多結晶原料と液体封止剤として20
0gのB = Ojを入れ、種子結晶軸(6)の下端に
GaAs単結晶の種子結晶<9)を取り付けた後、高圧
容器(1)内を真空排気してArを導入して容器内を2
0kg/−に昇圧し、両ヒーター(4)(5)を昇温し
で第2図に示すd度プロファイルに設定した。なお上記
原料としてはGaとAsを一定のモル比で混合し合計で
約4kgとしたものを用いてもよい。
Approximately 4k is stored in the crucible (3) in the high-pressure container (1) of the above device.
20g of GaAs polycrystalline raw material and liquid sealant
After putting 0g of B = Oj and attaching a GaAs single crystal seed crystal <9) to the lower end of the seed crystal shaft (6), the inside of the high-pressure container (1) was evacuated and Ar was introduced to inside the container. 2
The pressure was increased to 0 kg/-, and both heaters (4) and (5) were heated to set the d degree profile shown in FIG. Note that as the above-mentioned raw material, a mixture of Ga and As at a constant molar ratio, with a total weight of about 4 kg, may be used.

次に原料とB t 03を溶融した後、種子結晶をB2
0j融液(lO〉をW通して原料融液(11)に接触し
、ヒーター(4)(5)温度をコントロールすることに
より種づけをした。
Next, after melting the raw material and B t 03, the seed crystals are
The 0j melt (lO) was brought into contact with the raw material melt (11) through W, and seeding was carried out by controlling the temperature of the heaters (4) and (5).

そして結晶が成長するメルト而(第1図および第2図で
共に八で示す)を一定の高さ位置にするために暦度コン
トロールを行いながら、種子結晶(9)を5.5n+m
/hr’、 ルツボ(3)を5non/hrのスピード
で上昇させ、かつ種子結晶(9)およびルツボ(3)を
3rpmで同方向に回転させてGaAs単結晶を引上げ
、ルツボ内の原料融液(11)を全て固化させた。
Then, the seed crystal (9) was placed at a height of 5.5n+m while controlling the degree of rotation to keep the melt (indicated by 8 in both Figures 1 and 2) at a constant height where the crystal grows.
/hr', the crucible (3) is raised at a speed of 5non/hr, and the seed crystal (9) and crucible (3) are rotated in the same direction at 3 rpm to pull up the GaAs single crystal, and the raw material melt in the crucible is (11) was completely solidified.

固化完了後この結晶をルツボ外へ移動して冷却した。こ
のように得られたG a A S単結晶は多結晶の発生
も極めて僅かであり、良好な品質のものであった。
After solidification was completed, the crystals were moved outside the crucible and cooled. The Ga AS single crystal thus obtained had very little polycrystalline formation and was of good quality.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば結晶成長中の温度勾配を一定
に保つことにより、多結晶や双晶等の欠陥の発生を防止
し、また従来大口径化すると困難であった製造単結晶の
直径の制御が大変容易となり、結晶方位が<ioo>方
向で円形高純度の■−V族化合物半導体の製造が可能で
ある等工業上顕著な効果を奏するものである。
As described above, according to the present invention, by keeping the temperature gradient constant during crystal growth, defects such as polycrystals and twins can be prevented from occurring, and the diameter of the manufactured single crystal can be improved, which was previously difficult to achieve by increasing the diameter. It is very easy to control the crystal orientation, and it is possible to produce a highly pure ■-V group compound semiconductor having a circular crystal orientation in the <ioo> direction, which brings about remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す側断面図、第2図は本
発明の単結晶の製造に使用する高圧容器内の温度プロフ
ァイルを示す線図である。 ■ ・ステンレス製高圧容器 2−ルツボ軸 3−ルツボ 4−融液帯域ヒーター 5 低温度域ヒーター 6 種子結晶軸 7−断熱材 8− ビューイングロッド 9・一種子結晶 YO−・B20.融液 11  原料融液
FIG. 1 is a side cross-sectional view showing one embodiment of the present invention, and FIG. 2 is a diagram showing a temperature profile inside a high-pressure vessel used for producing the single crystal of the present invention. ■ - Stainless steel high pressure vessel 2 - Crucible shaft 3 - Crucible 4 - Melt zone heater 5 Low temperature range heater 6 Seed crystal shaft 7 - Insulation material 8 - Viewing rod 9 - One seed crystal YO - B20. Melt 11 Raw material melt

Claims (7)

【特許請求の範囲】[Claims] (1)周囲を1気圧以上の不活性ガス雰囲気で覆ったル
ツボ内のIII−V族化合物半導体融液の上面を、該融液
と不活性な不揮発性の液体封止剤融液で被覆し、このI
II−V族化合物半導体の種子結晶を半導体融液に接触さ
せてルツボおよび種子結晶を上方の低温度域に移動し、
種子結晶と接触するルツボ内の融液を凝固せしめてIII
−V族化合物半導体の単結晶を得ることを特徴とするI
II−V族化合物半導体の結晶製造方法。
(1) The upper surface of the III-V group compound semiconductor melt in a crucible surrounded by an inert gas atmosphere of 1 atm or more is coated with the melt and an inert nonvolatile liquid encapsulant melt. , this I
Bringing a seed crystal of a II-V compound semiconductor into contact with the semiconductor melt and moving the crucible and seed crystal to an upper low temperature region,
The melt in the crucible that comes into contact with the seed crystal is solidified and
- I characterized by obtaining a single crystal of a group V compound semiconductor
A method for manufacturing a crystal of a II-V group compound semiconductor.
(2)III−V族化合物半導体が融液状態にある融液帯
域の温度をこの半導体の融点以上で融点より100℃高
い温度以下とし、低温度域の温度を上記融点以下で融点
より300℃低い温度以上とする請求項(1)記載のI
II−V族化合物半導体の結晶製造方法。
(2) The temperature of the melt zone where the III-V compound semiconductor is in a melt state is set to be above the melting point of the semiconductor and below 100°C higher than the melting point, and the temperature of the low temperature region is set to below the above melting point and 300°C above the melting point. I according to claim (1) where the temperature is lower than or equal to a low temperature.
A method for manufacturing a crystal of a II-V group compound semiconductor.
(3)III−V族化合物半導体融液を入れるルツボの材
質として、PBN(Pyrolitic Boron 
Nitride)、石英またはAlNを用いる請求項(
1)または(2)記載のIII−V族化合物半導体の結晶
製造方法。
(3) PBN (Pyrolitic Boron) is used as the material for the crucible containing the III-V group compound semiconductor melt.
Nitride), quartz or AlN (
1) or (2), the method for producing a crystal of a III-V compound semiconductor;
(4)ルツボおよび種子結晶を上方の低温度域に移動し
てIII−V族化合物半導体を凝固させる際に、種子結晶
の引上げ速度をルツボの移動速度より大きくしてその速
度差を20mm/hr以下とする請求項(1)(2)ま
たは(3)記載のIII−V族化合物半導体の結晶製造方
法。
(4) When moving the crucible and seed crystal to an upper low-temperature region to solidify the III-V group compound semiconductor, the pulling speed of the seed crystal is set higher than the moving speed of the crucible to reduce the speed difference to 20 mm/hr. A method for producing a crystal of a III-V compound semiconductor according to claim (1), (2) or (3) as follows.
(5)不活性ガスとして、Ar、N_2、CO_2もし
くはCH_4またはこれらの混合ガスを用いる請求項(
1)から(4)のいずれか記載のIII−V族化合物半導
体の結晶製造方法。
(5) Claim in which Ar, N_2, CO_2 or CH_4 or a mixture thereof is used as the inert gas (
A method for producing a crystal of a III-V compound semiconductor according to any one of 1) to (4).
(6)種子結晶およびルツボを同一方向に回転しながら
上方に移動する請求項(1)から(5)のいずれか記載
のIII−V族化合物半導体の結晶製造方法。
(6) The method for manufacturing a III-V compound semiconductor crystal according to any one of (1) to (5), wherein the seed crystal and the crucible are moved upward while rotating in the same direction.
(7)III−V族化合物半導体融液の凝固時に融液に磁
場を印加する請求項(1)から(6)のいずれか記載の
III−V族化合物半導体の結晶製造方法。
(7) The method according to any one of claims (1) to (6), wherein a magnetic field is applied to the III-V group compound semiconductor melt during solidification.
A method for producing a crystal of a III-V compound semiconductor.
JP32061288A 1988-12-21 1988-12-21 Production of crystal of compound semiconductor of iii-v Pending JPH02167888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32061288A JPH02167888A (en) 1988-12-21 1988-12-21 Production of crystal of compound semiconductor of iii-v

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32061288A JPH02167888A (en) 1988-12-21 1988-12-21 Production of crystal of compound semiconductor of iii-v

Publications (1)

Publication Number Publication Date
JPH02167888A true JPH02167888A (en) 1990-06-28

Family

ID=18123350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32061288A Pending JPH02167888A (en) 1988-12-21 1988-12-21 Production of crystal of compound semiconductor of iii-v

Country Status (1)

Country Link
JP (1) JPH02167888A (en)

Similar Documents

Publication Publication Date Title
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
WO2005106083A1 (en) InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JPH02167888A (en) Production of crystal of compound semiconductor of iii-v
JP4778188B2 (en) Method for producing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
KR100868726B1 (en) Synthesis vb apparatus and method for gaas
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JPS62197397A (en) Production of single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JPH0341432B2 (en)
JPH05319973A (en) Single crystal production unit
JP3684446B2 (en) Method and apparatus for manufacturing semi-insulating GaAs single crystal
JP2000327496A (en) Production of inp single crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPH01145395A (en) Production of compound semiconductor single crystal
JPS63176397A (en) Production of iii-v compound semiconductor single crystal
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
JPH0412081A (en) Production of single crystal of compound of group iii-v
JPH0365592A (en) Production of compound semiconductor single crystal