JPH0699214B2 - Method for producing gallium arsenide single crystal and quartz reaction tube - Google Patents

Method for producing gallium arsenide single crystal and quartz reaction tube

Info

Publication number
JPH0699214B2
JPH0699214B2 JP15767886A JP15767886A JPH0699214B2 JP H0699214 B2 JPH0699214 B2 JP H0699214B2 JP 15767886 A JP15767886 A JP 15767886A JP 15767886 A JP15767886 A JP 15767886A JP H0699214 B2 JPH0699214 B2 JP H0699214B2
Authority
JP
Japan
Prior art keywords
reaction tube
quartz reaction
single crystal
gallium arsenide
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15767886A
Other languages
Japanese (ja)
Other versions
JPS6317288A (en
Inventor
哲也 井上
隆司 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15767886A priority Critical patent/JPH0699214B2/en
Publication of JPS6317288A publication Critical patent/JPS6317288A/en
Publication of JPH0699214B2 publication Critical patent/JPH0699214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガリウム砒素(GaAs)単結晶の製造方法及び
これに使用される石英反応管に係わる。
The present invention relates to a method for producing a gallium arsenide (GaAs) single crystal and a quartz reaction tube used for the method.

[背景技術と問題点] 従来、GaAs単結晶を製造する場合、第3図に示すような
装置を用いていた。
[Background Art and Problems] Conventionally, when manufacturing a GaAs single crystal, an apparatus as shown in FIG. 3 has been used.

図において1は石英反応管であり、4は横型の石英製ボ
ート、5は拡散バリア、7はAs圧制御用熱電対である。
In the figure, 1 is a quartz reaction tube, 4 is a horizontal quartz boat, 5 is a diffusion barrier, and 7 is a thermocouple for controlling As pressure.

石英ボート4にGaAs多結晶を入れ、シード棚に種結晶2
をセットし、これを石英反応管1内に挿入し、ドーパン
トとしてSiを入れ、管内を真空引きして封入し、図示し
ていないが、加熱炉により、GaAs多結晶を溶融して融液
3として、温度傾斜法(GF法)によってGaAs単結晶を成
長させる。
Put GaAs polycrystal in quartz boat 4 and seed crystal 2 in seed shelf.
Set, insert this into the quartz reaction tube 1, insert Si as a dopant, evacuate and seal the tube, and melt the GaAs polycrystal by melting it with a heating furnace (not shown). As a method, a GaAs single crystal is grown by the temperature gradient method (GF method).

第3図は、またGaAs単結晶成長中における各領域の温度
を示しているが、図示のようにGaAs融液3の部分は、融
点以上の高温度T1℃に、固液界面10より拡散バリア5を
越えて中間部分までが中間温度T2℃に、更に拡散バリア
5を越えた中間部分より石英反応管端部までの間がT3
617〜620℃に保たれる。
FIG. 3 also shows the temperature of each region during the growth of the GaAs single crystal. As shown in the figure, the portion of the GaAs melt 3 diffuses from the solid-liquid interface 10 to a high temperature T 1 ° C above the melting point. The intermediate temperature beyond the barrier 5 to the intermediate portion is T 2 ℃, and the distance between the intermediate portion beyond the diffusion barrier 5 and the end of the quartz reaction tube is T 3 =
It is kept at 617-620 ℃.

炉により加熱され温度が上昇すると、GaAs中のAsがとび
出し、化学量論的組成比(ストイキオメトリー)Ga:As
=1:1が失われるので、Asが融液からとび出さないよう
に、当初に少量のAsを蒸発皿に入れ、Asを蒸発させてこ
のとび出しを迎え込んでいる。
When heated in a furnace and the temperature rises, As in GaAs jumps out and stoichiometric composition ratio (stoichiometry) Ga: As
Since = 1: 1 is lost, a small amount of As is initially placed in the evaporation dish to evaporate As and welcome this jump so that As does not jump out of the melt.

GaAs融点におけるAs解離圧は約1気圧であり、密閉真空
中におけるAsを加熱した場合、その飽和蒸気圧は617℃
で約1気圧となるため、第3図の如き密閉した石英反応
管の一部を最低温度点として617℃に保持すれば、他の
部分の温度が変化してもその影響を受けずに石英反応管
内は1気圧のAs圧に維持される。
The As dissociation pressure at the melting point of GaAs is about 1 atm, and when As is heated in a closed vacuum, its saturated vapor pressure is 617 ° C.
Since the atmospheric pressure is about 1 atm, if a part of the closed quartz reaction tube as shown in Fig. 3 is kept at 617 ° C as the lowest temperature point, the quartz will not be affected even if the temperature of other parts changes, The As pressure of 1 atm is maintained in the reaction tube.

従って最低温度点を617℃に常時維持すれば、つまりAs
圧を一定に保てば、この環境で安定にGaAsの成長をさせ
ることができる。
Therefore, if the lowest temperature point is always maintained at 617 ° C, that is, As
If the pressure is kept constant, GaAs can be grown stably in this environment.

従って、石英反応管1の端部にAs圧制御用熱電対7を取
り付け、この点が最低温度点となり、且つ617℃に維持
されるとすれば、GaAsの単結晶の成長は安定に進行す
る。
Therefore, if the As pressure controlling thermocouple 7 is attached to the end of the quartz reaction tube 1 and this point becomes the lowest temperature point and is maintained at 617 ° C., the growth of the GaAs single crystal proceeds stably. .

ところが、第3図に示すような装置においては、高温部
の熱が石英反応管内を、あるいは石英内は赤外線の透過
性が良いことから赤外線となって伝達され、As圧を制御
する熱電対7の設置箇所の温度がその近傍よりも高くな
り、精度よく制御することが困難となる問題があった。
However, in the apparatus as shown in FIG. 3, the heat of the high temperature part is transmitted as infrared rays in the quartz reaction tube or in the quartz due to its good infrared permeability, and the thermocouple 7 for controlling the As pressure is used. There was a problem that the temperature of the installation location of was higher than that of its vicinity, and it became difficult to control with high accuracy.

[発明の目的.構成] 本発明は上述のように石英反応管内においてそのボート
内のGaAs融液より、一定As圧下においてGaAsの単結晶を
成長させる方法において、As圧を制御する温度感知用の
熱電対設置箇所の温度が近傍より高くならないようにし
て常時精確な最低点温度が検出できるようにして、As圧
の一定化をはかれるようにしてGaAs単結晶の成長を行う
ものであって、これを熱電対設置箇所、つまりAs圧制御
点隣接部にフロスト加工を施した石英反応管を用いるこ
とによって実現するものである。
[Object of the invention. Configuration] The present invention is a method of growing a GaAs single crystal under a constant As pressure from a GaAs melt in a boat in a quartz reaction tube as described above, and in the temperature sensing thermocouple installation location for controlling the As pressure. The GaAs single crystal is grown by keeping the As pressure constant so that the temperature does not become higher than the neighborhood and the accurate minimum temperature can be detected at all times. In other words, it is realized by using a frosted quartz reaction tube adjacent to the As pressure control point.

以下第1図に示す実施例により本発明の実施を説明す
る。第3図同一部分は同一符号で示す。
The embodiment of the present invention will be described below with reference to the embodiment shown in FIG. In FIG. 3, the same parts are designated by the same reference numerals.

石英反応管1において、シード棚を備える横型の石英ボ
ート4が挿入される側より拡散バリア5を介して反対側
の端部にAs圧制御用熱電対7が取付けられることについ
ては第3図とかわりなく、本発明ではこの熱電対7の位
置に隣接した部分の表面、又は内面もしくは両面にフロ
スト加工部8を形成している。
Regarding the quartz reaction tube 1, as shown in FIG. 3, the As pressure controlling thermocouple 7 is attached to the end portion on the opposite side of the side where the horizontal quartz boat 4 having the seed rack is inserted via the diffusion barrier 5. Instead, in the present invention, the frosted portion 8 is formed on the surface of the portion adjacent to the position of the thermocouple 7, or on the inner surface or both surfaces.

フロスト加工部8は石英の表面をあらして、赤外線を乱
反射させるためのものであるから、上述のように内、外
面に適宣施される。
The frosted portion 8 is provided to roughen the surface of quartz and diffuse infrared rays, so that it is appropriately applied to the inner and outer surfaces as described above.

このAs圧制御用熱電対7の位置、つまり最低温度点は石
英反応管の構造そのものからして、一般的には石英反応
管の端部に設定しやすいが、この位置に限定されるもの
ではない。
The position of the As pressure control thermocouple 7, that is, the lowest temperature point is generally easy to set at the end of the quartz reaction tube due to the structure of the quartz reaction tube itself, but it is not limited to this position. Absent.

[実施例1] 径60mm、長さ1500mmの石英反応管の端部より熱電対設置
位置を除き、これに隣接する部分より約100mmわたり、
フロスト加工部を備えるものを用い、横型の石英製ボー
トにGaAs多結晶を3850g入れ、シード棚に種結晶をセッ
トし、Siを140mg入れて、これをGF法により成長作業を
行ったところ、約180時間で成長が完了し、3500gが単結
晶化した。成長中、第1図の位置で、TAよりTFまで温度
をモニターした結果は、TA(617℃)とTB,TC,TDとの温
度差は全て0.3℃以内で常にTAが低かった。
[Example 1] Except for the thermocouple installation position from the end of a quartz reaction tube having a diameter of 60 mm and a length of 1500 mm, it extends about 100 mm from the portion adjacent to it.
Using a thing with a frosted part, 3850 g of GaAs polycrystal was put in a horizontal quartz boat, a seed crystal was set on a seed shelf, 140 mg of Si was put, and when this was grown by the GF method, The growth was completed in 180 hours, and 3500 g was single crystallized. During the growth, the temperature was monitored from T A to T F at the position shown in Fig. 1, and the results were that the temperature difference between T A (617 ° C) and T B , T C , T D was all within 0.3 ° C and T A was low.

また、TEとTFは、TAより15℃以上高い温度を示してい
た。又、成長中、Asの固着位置を観察するとTAの位置に
あった。これらの状態は第2図に示される。
Moreover, T E and T F were higher than T A by 15 ° C or more. Also, when the As fixing position was observed during growth, it was at the T A position. These states are shown in FIG.

実施例2 径60mm、長さ1500mmの石英反応管の端部より熱電対設置
位置を除き、これに隣接する部分より約300mmにわた
り、フロスト加工部を備えるものを用い、実施例と同じ
分量の材料により、同じGF法で成長作業を行ったとこ
ろ、約185時間で成長が完了し、3200gが単結晶化してい
た。TA(618℃)とTB,TC,TDとの温度差は0.2℃以内であ
り、TEとTFは15℃以上高い温度であった。また成長中全
行程でAsはTAの位置に固着していた。
Example 2 A material having the same amount as that of the example was used, except that a thermocouple installation position was removed from the end of a quartz reaction tube having a diameter of 60 mm and a length of 1500 mm, and a frosted part was provided for about 300 mm from a part adjacent to this. According to the same GF method, the growth work was completed in about 185 hours, and 3200 g was single-crystallized. The temperature difference between T A (618 ° C) and T B , T C , T D was within 0.2 ° C, and T E and T F were higher than 15 ° C. Also, As was fixed at the position of T A during the entire process during growth.

実施例3 実施例1,2と同寸法の石英反応管のボートが位置すると
ころ以外全部フロスト加工を施したもので、同様試験を
行ったが、結果は実施例2と変るところは殆んどなかっ
た。
Example 3 The same test was carried out except that the quartz reaction tube having the same dimensions as those in Examples 1 and 2 was subjected to frosting except where the boat was located, and the results were almost the same as those in Example 2. There wasn't.

比較例 実施例1においてフロスト加工部を有しない石英製反応
管を使用し、同じ分量の材料により同じ方法で成長させ
た。
Comparative Example A quartz reaction tube having no frosted portion in Example 1 was used, and the same amount of material was used to grow the same.

約180時間で成長完了し、1200gが単結晶化した。残りは
多結晶化した。TA(617℃)とTB,TC,TD各々との温度差
は2.1℃あり、TB,TC,TDの温度が全てTAより低く、成長
中、AsはTA部を除いた外周部に固着していた。以上、GF
法を用いるものについて説明したが、石英反応管を用い
水平ブリッジマン法による場合にも適用できる。なお熱
電対にはすべてクロメル.アルメル熱電対を使用してい
る。
The growth was completed in about 180 hours, and 1200 g was single crystallized. The rest became polycrystalline. T A (617 ° C.) and T B, T C, the temperature difference between T D each is 2.1 ℃, T B, T C , the temperature of T D is lower than all T A, growing, As the T A portion It was adhered to the outer peripheral portion except for. Above, GF
Although the method using the method has been described, the method can also be applied to the case using the horizontal Bridgman method using a quartz reaction tube. All thermocouples were chromel. I am using an alumel thermocouple.

[効果] 以上説明したように、As圧を精密に設定した温度で成長
期間全行程に亘って制御するには、石英反応管のAs圧制
御位置周辺をフロスト加工することによって、この部分
に対する赤外線の伝播を激減させることが可能となり、
単結晶化の歩留を向上させ、かつ組成比の精密制御に対
して利用することができる。
[Effects] As described above, in order to control the As pressure over the entire growth period at a precisely set temperature, frost processing is performed around the As pressure control position of the quartz reaction tube, and It is possible to drastically reduce the propagation of
The yield of single crystallization can be improved, and it can be used for precise control of the composition ratio.

又、従来の石英反応管にフロスト加工を行ったものを使
用すればよいので、製造コストは殆んど増加しない。
Further, since a conventional quartz reaction tube subjected to frost processing may be used, the manufacturing cost hardly increases.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す。第2図は本発明実施例
における各部分の温度状態を示す。 第3図は従来のGaAsの製造方法及び石英反応管の説明図
である。 1……石英製反応管、2……種結晶、3……GaAs融液、
4……石英製ボート、5……拡散バリア、6……As、7
……As圧制御用熱電対、8……フロスト加工部。
FIG. 1 shows an embodiment of the present invention. FIG. 2 shows the temperature condition of each part in the embodiment of the present invention. FIG. 3 is an explanatory view of a conventional GaAs manufacturing method and a quartz reaction tube. 1 ... Quartz reaction tube, 2 ... Seed crystal, 3 ... GaAs melt,
4 ... Quartz boat, 5 ... Diffusion barrier, 6 ... As, 7
...... As pressure control thermocouple, 8 frost processing section.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】密閉した石英反応管内に横型ボートを設置
し、一定砒素圧下において、該ボート内のガリウム砒素
融液から単結晶を成長させる方法において、石英反応管
の砒素圧制御点隣接部分にフロスト加工を施し、該砒素
圧制御点を石英反応管中最低温度に維持することを特徴
とするガリウム砒素単結晶の製造方法。
1. A method for growing a single crystal from a gallium arsenide melt in a horizontal boat installed in a closed quartz reaction tube under a constant arsenic pressure, wherein the quartz reaction tube is adjacent to an arsenic pressure control point. A method for producing a gallium arsenide single crystal, characterized by performing frosting and maintaining the arsenic pressure control point at the lowest temperature in a quartz reaction tube.
【請求項2】密閉した石英反応管内に横型ボートを設置
し、一定砒素圧下において、該ボート内のガリウム砒素
融液から単結晶を成長させる方法に使用される石英反応
管であって、砒素制御点隣接部分の石英反応管の表面も
しくは内面の一部もしくは内面の一部、又は内面の一部
にフロスト加工部を有することを特徴とする石英反応
管。
2. A quartz reaction tube used in a method of growing a single crystal from a gallium arsenide melt in a horizontal boat installed in a closed quartz reaction tube under a constant arsenic pressure. A quartz reaction tube characterized by having a frosted portion on the surface or a part of the inner surface or a part of the inner surface or a part of the inner surface of the quartz reaction tube adjacent to the point.
JP15767886A 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube Expired - Lifetime JPH0699214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15767886A JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15767886A JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Publications (2)

Publication Number Publication Date
JPS6317288A JPS6317288A (en) 1988-01-25
JPH0699214B2 true JPH0699214B2 (en) 1994-12-07

Family

ID=15654991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15767886A Expired - Lifetime JPH0699214B2 (en) 1986-07-03 1986-07-03 Method for producing gallium arsenide single crystal and quartz reaction tube

Country Status (1)

Country Link
JP (1) JPH0699214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473715B2 (en) * 1994-09-30 2003-12-08 信越半導体株式会社 Quartz glass wafer boat
CN109650749A (en) * 2018-12-04 2019-04-19 有研光电新材料有限责任公司 Quartz boat surface treatment method, quartz boat and application

Also Published As

Publication number Publication date
JPS6317288A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
Schmit Growth, properties and applications of HgCdTe
US4840699A (en) Gallium arsenide crystal growth
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH0699214B2 (en) Method for producing gallium arsenide single crystal and quartz reaction tube
Mochizuki Effect of the Deviation from Stoichiometry of a Source Specimen on the Vapor Transport of CdTe
JP3991400B2 (en) Single crystal growth method and apparatus
JPS58197270A (en) Crucible for evaporating source
US4728388A (en) Process for producing a monocrystal of a compound by crystallizing a polycrystal of said compound by transferring a solvent zone
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2709272B2 (en) Measurement method of crystallization rate in sublimation method
JP2543449B2 (en) Crystal growth method and apparatus
CA1228524A (en) Method for growing a gaas single crystal by pulling from gaas melt
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPS62158186A (en) Production of single crystal of compound semiconductor
JP2536201B2 (en) Method for manufacturing compound semiconductor crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPH08319189A (en) Production of single crystal and device therefor
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH06239699A (en) Compound semiconductor polycrystal and its synthesis
JPH06329492A (en) Production of gaas compound semiconductor crystal
JPS6229394B2 (en)