JPS63166148A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPS63166148A
JPS63166148A JP61312205A JP31220586A JPS63166148A JP S63166148 A JPS63166148 A JP S63166148A JP 61312205 A JP61312205 A JP 61312205A JP 31220586 A JP31220586 A JP 31220586A JP S63166148 A JPS63166148 A JP S63166148A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
alloy
battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61312205A
Other languages
Japanese (ja)
Inventor
Hide Koshina
秀 越名
Nobuo Eda
江田 信夫
Teruyoshi Morita
守田 彰克
Toru Matsui
徹 松井
Yukio Nishikawa
幸雄 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61312205A priority Critical patent/JPS63166148A/en
Publication of JPS63166148A publication Critical patent/JPS63166148A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the cycle life and capacity of a battery by using a lithium alloy in which the contents of Cd and Bi in wt% are prescribed and the remainder is Pb in the alloy composition except for lithium in a negative electrode. CONSTITUTION:A Li-Cd-Bi-Pb alloy whose composition except for lithium is 20-40 wt% Cd, 20-25 wt% Bi, and the remainder is Pb is used as negative active material of a lithium secondary battery. Thereby, the charge-discharge efficiency is heightened and the life is lengthened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はリチウム二次電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a lithium secondary battery.

従来の技術 従来より、リチウム二次電池用の負極は大きく次の2つ
の方法に別けられる。
BACKGROUND OF THE INVENTION Conventionally, negative electrodes for lithium secondary batteries can be broadly classified into the following two methods.

(1)リチウム金属単体だけで負(至)材料を形成する
もの。
(1) Lithium metal alone forms a negative material.

(2)  リチウムイオンを吸蔵、放出する保持体で負
極材料を形成するもので、主にCd、Pb、an。
(2) A holder that absorbs and releases lithium ions and forms the negative electrode material, mainly Cd, Pb, and anion.

Bi、Inなどを成分とする合金がよく用いられる。Alloys containing Bi, In, etc. are often used.

(1)と(2)を単位体積当りの容量密度で比較した場
合、(1)のリチウム単体では2oθ2mAh/6n、
(2)の保持体を用いる方法では最も吸蔵能力の大きい
も(7) ’t’ 1700 mA h/cmである。
When (1) and (2) are compared in terms of capacity density per unit volume, lithium alone in (1) is 2oθ2mAh/6n,
The method (2) using a holder has the highest storage capacity (7) 't' of 1700 mA h/cm.

しかし実際に上記(1) 、 (2)の2種の負極材料
を用いて、電解液として過塩素酸リチウム(L I C
f1O4)を溶解した炭酸プロピレン(pc)を用いて
電池を構成した場合、(1)のリチウム金属単体の場合
よりも(2)の合金を負極材料として用いた方が充放電
効率は高く、電池の寿命は長くなる。特に正極の可逆性
の良好な部分を使用するための負極容量規制の電池とし
た場合、リチウム金属単体では放電時に負極にリチウム
が残らず、充電時に負極集電体上にリチウムが析出する
ためさらに充放電効率が低くなる。またリチウム金属を
用いた充放電させる場合には電解液の種類によりデンド
ライトが発生することがあり、一般的に電解液の種類に
依存しない合金を用いる方が電池の寿命は長い。
However, in practice, two types of negative electrode materials (1) and (2) above were used, and lithium perchlorate (LIC) was used as the electrolyte.
When a battery is constructed using propylene carbonate (PC) in which f1O4) is dissolved, the charge/discharge efficiency is higher when the alloy (2) is used as the negative electrode material than when lithium metal is used alone (1), and the battery has a longer lifespan. In particular, in the case of a battery with limited negative electrode capacity to use the highly reversible portion of the positive electrode, lithium metal alone does not leave any lithium on the negative electrode during discharge, and lithium precipitates on the negative electrode current collector during charging. Charge/discharge efficiency decreases. Furthermore, when charging and discharging using lithium metal, dendrites may occur depending on the type of electrolyte, and generally the life of the battery is longer if an alloy is used that does not depend on the type of electrolyte.

次に合金の中ではL i −Aj! 、 L i −C
d−I n−Pb 。
Next, among alloys, L i −Aj! , L i -C
d-I n-Pb.

Li−8n−Ni系などがあるが負極容量規制の電池の
場合は充放電効率が98チ以下と小さく、長寿命の二次
電池は期待できない。その合金の種類の中でもLi−C
d−B1−Pb系合金は充放電効率が最も高いが、それ
は合金の組成に依存することがわかった。
There are Li-8n-Ni type batteries, but in the case of batteries with limited negative electrode capacity, the charging/discharging efficiency is as low as 98 inches or less, and a long-life secondary battery cannot be expected. Among the types of alloys, Li-C
It was found that the d-B1-Pb alloy has the highest charge/discharge efficiency, but it depends on the composition of the alloy.

発明が解決しようとする問題点 このような従来の構成では、充放電効率が負極集電体の
材質や電解液の種類に大きく依存するリチウム金属単体
を負極として用いることはできないし、かつ充放電効率
がリチウム金属単体よりも高いLi−An 、Li−C
d−In−Pb1Li−Ni−an系でも正極の可逆性
の良好な部分を使用するための負極容量規制の電池では
充放電効率が短いという問題点がある。
Problems to be Solved by the Invention In such a conventional configuration, lithium metal alone cannot be used as the negative electrode, and the charging and discharging efficiency largely depends on the material of the negative electrode current collector and the type of electrolyte, and the charging and discharging efficiency is Li-An, Li-C with higher efficiency than lithium metal alone
Even in the d-In-Pb1Li-Ni-an system, there is a problem in that the charging/discharging efficiency is short in a battery that uses a portion of the positive electrode with good reversibility and is limited in negative electrode capacity.

本発明はこのような問題点を解決するもので、電池のサ
イクル寿命と容量の安定化の向上を目的とするものであ
る。
The present invention solves these problems and aims to improve the cycle life and stabilize the capacity of batteries.

問題点を解決するだめの手段 上記の問題点を解決するために、本発明はりチウム二次
電池の負極材料に重量%でCdを25〜40、Biを2
o〜25、残りがPbであるCd−B1−Pb系合金を
用いるものである。
Means for Solving the Problems In order to solve the above problems, 25 to 40% by weight of Cd and 2% of Bi were added to the negative electrode material of the lithium secondary battery of the present invention.
A Cd-B1-Pb alloy in which the remainder is Pb is used.

作  用 本発明の範囲内にあるCd−B1−Pb系合金は充放電
効率が99.9%以上と高く、負極容量規制の電池構成
とした時に一定な充放電容量を維持するという作用があ
る。また正極が無機化合物である時、0ボルトまでの過
放電を行うと性能が回復しないが、この負極材料で負極
容量規制の電池は性能が回復することとなる。
Function: The Cd-B1-Pb alloy within the scope of the present invention has a high charge/discharge efficiency of 99.9% or more, and has the effect of maintaining a constant charge/discharge capacity when configured as a battery with negative electrode capacity regulation. . Furthermore, when the positive electrode is an inorganic compound, performance does not recover if overdischarged to 0 volts, but with this negative electrode material, the performance of a battery with limited negative electrode capacity will recover.

実施例 本発明の実施例を第1〜第3図を用いて説明する。Example Embodiments of the present invention will be described using FIGS. 1 to 3.

第1図は本発明の負極合金の充放電効率をみるために用
いた径が20rHR1総高が1.6mmの電池の一部断
面図を示す。1は負極合金、2はステンレス製負極集電
体、3はステンレス製封口板、4はステンレス製ケース
、5はチタン製正極集電体、6は三酸化モリブデンを正
極活物質とした正極合剤、7は微細孔をもつポリプロピ
レン製セパレータ、8はポリプロピレン製含浸材、9は
ポリプロピレン製ガスケットである。
FIG. 1 shows a partial sectional view of a battery having a diameter of 20rHR1 and a total height of 1.6 mm, which was used to examine the charge/discharge efficiency of the negative electrode alloy of the present invention. 1 is a negative electrode alloy, 2 is a stainless steel negative electrode current collector, 3 is a stainless steel sealing plate, 4 is a stainless steel case, 5 is a titanium positive electrode current collector, and 6 is a positive electrode mixture using molybdenum trioxide as a positive electrode active material. , 7 is a polypropylene separator having micropores, 8 is a polypropylene impregnating material, and 9 is a polypropylene gasket.

正極は組成が重量部でMo5s100に対し、カーボン
ブラック16、フッ素樹脂系結着剤16とし、容量が5
0 mAhとなるように正極集電体に充填した後、打抜
いたものを用いた。
The composition of the positive electrode is Mo5s100, carbon black 16, fluororesin binder 16, and the capacity is 5 parts by weight.
A positive electrode current collector was filled with the material so that the current was 0 mAh, and then punched out.

電解液は1 %ル/ 11 (D L ic!!、04
を溶解L*pcを用いた。そして負極は圧延、打抜いた
合金(15mφx 100 pm 、 Cd −B 1
−Pb系)にステンレス製ネットを圧着したのち、封口
板にスポットしている。負極活物質のリチウムは30 
mAhの容量をもつように打抜き、合金にはりつけ、電
池に組込んだ。その後、電池を60°Cの環境温度下で
24時時間−た。電池の中のリチウムは、この過程を通
った後、負極合金中にすでに吸蔵されていることを確認
した。
The electrolyte is 1% L/11 (D Lic!!, 04
was dissolved using L*pc. The negative electrode was made of a rolled and punched alloy (15 mφ x 100 pm, Cd-B 1
-Pb series), a stainless steel net is crimped onto it, and then spotted on a sealing plate. The negative electrode active material lithium is 30
It was punched out to have a capacity of mAh, glued to an alloy, and assembled into a battery. Thereafter, the battery was left at an ambient temperature of 60° C. for 24 hours. It was confirmed that the lithium in the battery was already occluded in the negative electrode alloy after going through this process.

第2図は本発明を第1図に示した電池で実施した際の負
極の充放電効率である。
FIG. 2 shows the charging and discharging efficiency of the negative electrode when the present invention was applied to the battery shown in FIG. 1.

この図はCdの重量パーセントを30にし、あとのBi
とpbの組成を変化させたものである。
In this figure, the weight percent of Cd is 30, and the remaining Bi
The composition of pb and pb was changed.

第2図より、充放電効率が最大となるのがB1で20〜
26重量パーセントの時であること濾わかる。Biが2
0%より小さい時、充放電効率は99%以下であシ、電
池としてのサイクル寿命は短い。またBiが26重量パ
ーセントを超える時、さらに充放電効率の低下が急激で
あることがわかっ九。これはBiの増加にともなう充放
電の際の合金の微粉化が顕著に起るためであることがわ
かった。
From Figure 2, B1 has the highest charging and discharging efficiency at 20~
It can be seen from the filter that it is 26% by weight. Bi is 2
When it is less than 0%, the charge/discharge efficiency is 99% or less, and the cycle life of the battery is short. It was also found that when Bi exceeds 26% by weight, the charge/discharge efficiency decreases even more rapidly. It has been found that this is because the alloy is noticeably pulverized during charging and discharging as the Bi content increases.

さらにCdの重量パーセントを0〜60まで変化させた
時には、0〜20までは極板の微粉化が激しく充放電効
率が低下すること、また40〜6゜までは合金負極の飽
和吸蔵量が小さく 、5mAh/J以内の小さい容量密
度の電池しかできないことがわかった。
Furthermore, when the weight percent of Cd is changed from 0 to 60, it is found that from 0 to 20, the electrode plate is severely pulverized and the charge/discharge efficiency decreases, and from 40 to 6, the saturated occlusion amount of the alloy negative electrode is small. , it was found that only batteries with small capacity densities within 5 mAh/J can be produced.

以上でCd−B1−Pb系合金が本発明の範囲内で優れ
た充放電効率をもち、リチウム二次電池の負極として最
適であることがわかる。
From the above, it can be seen that the Cd-B1-Pb alloy has excellent charge and discharge efficiency within the scope of the present invention and is optimal as a negative electrode for a lithium secondary battery.

第3図は本発明を第1図に示した電池で添加するリチウ
ム量を変化させ、実施した際の電池のサイクル特性であ
る。ここでは負極合金の組成はC(が30.Btが20
、pbが5C1)重量パーセントである合金を使用した
FIG. 3 shows the cycle characteristics of the battery when the present invention was applied to the battery shown in FIG. 1 by varying the amount of lithium added. Here, the composition of the negative electrode alloy is C (30. Bt is 20
, pb was 5C1) weight percent.

充放電条件は電流1 mAで上限2.7■、下限1、o
Vの範囲でサイクルしたものである。ここでは正極の充
放電時に生じる不活性化容量は約10mAh  となっ
た。
Charge/discharge conditions are current 1 mA, upper limit 2.7■, lower limit 1, o
It was cycled in the V range. Here, the inactivation capacity generated during charging and discharging of the positive electrode was approximately 10 mAh.

図中(5)はリチウム添加量30mAhのもの、(B)
は20 mAhのもの、(qは40 mAhのものであ
る。
In the figure, (5) is the one with lithium addition amount of 30mAh, (B)
is of 20 mAh, (q is of 40 mAh.

この図からもわかるように(5)、pについては充放電
の容量密度の差はあるものの充放電効率は99.9%以
上の高い性能をもち、従ってサイクル寿命も長いものと
なっていることがわかる。しかしながら初期に20mA
h/cm以上の容量密度をもつ(B)は充放電効率が低
くサイクル寿命が短いものとなっている。
As can be seen from this figure (5), although there is a difference in charge/discharge capacity density for p, the charge/discharge efficiency is high at over 99.9%, and the cycle life is therefore long. I understand. However, initially 20mA
(B), which has a capacity density of h/cm or more, has a low charge/discharge efficiency and a short cycle life.

以上の例からも本発明の範囲内にあるものはリチウム二
次電池の特性として優れた特性をもっていることがわか
る。
From the above examples, it can be seen that those within the scope of the present invention have excellent characteristics as lithium secondary batteries.

発明の効果 l   以上のように本発明によれば、従来のものより
充放電効率は高くし、寿命を長くするという効果がえら
れる。
Effects of the Invention 1 As described above, according to the present invention, it is possible to obtain the effects of higher charging/discharging efficiency and longer life than the conventional ones.

従ってビデオのタイマーのメモリーバックアップやテレ
ビのリモコンなど充電する機会の多い機種に適する電池
を提供できるものである。
Therefore, it is possible to provide a battery that is suitable for devices that are frequently charged, such as memory backup for video timers and television remote controls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電池の一部断面図、
第2図は同電池の負極合金組成を変化させた時の負極の
充放電効率を示す図、第3図は同電池のサイクル特性を
示す図である。 1・・・・負極合金、2・・・・・・負極集電体、3・
・・・・・封口板、4・・・・ケース、5・・・・・正
極集電体、6・・・・・正極合剤、7・・・・・・セパ
レータ、8・・・・・含浸材、9・・・・・ガスケット
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第3図 サイクル敷
FIG. 1 is a partial cross-sectional view of a battery in an embodiment of the present invention;
FIG. 2 is a diagram showing the charge/discharge efficiency of the negative electrode when the negative electrode alloy composition of the same battery was changed, and FIG. 3 is a diagram showing the cycle characteristics of the same battery. 1... Negative electrode alloy, 2... Negative electrode current collector, 3...
... Sealing plate, 4 ... Case, 5 ... Positive electrode current collector, 6 ... Positive electrode mixture, 7 ... Separator, 8 ...・Impregnating material, 9...Gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Cycle bed

Claims (1)

【特許請求の範囲】[Claims] 負極にLi−Cd−Bi−Pb系合金を用い、容量密度
20mAh/cm^3以内の二次電池において、リチウ
ムを除いた時の合金組成が重量%でCdが20〜40、
Biが20〜25、残りがPbであることを特徴とする
リチウム二次電池。
In a secondary battery using a Li-Cd-Bi-Pb alloy for the negative electrode and having a capacity density of within 20 mAh/cm^3, the alloy composition when excluding lithium is Cd in weight% of 20 to 40,
A lithium secondary battery characterized in that Bi is 20 to 25 and the remainder is Pb.
JP61312205A 1986-12-26 1986-12-26 Lithium secondary battery Pending JPS63166148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61312205A JPS63166148A (en) 1986-12-26 1986-12-26 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61312205A JPS63166148A (en) 1986-12-26 1986-12-26 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS63166148A true JPS63166148A (en) 1988-07-09

Family

ID=18026469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61312205A Pending JPS63166148A (en) 1986-12-26 1986-12-26 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS63166148A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238015A (en) * 1985-04-15 1986-10-23 Nissan Motor Co Ltd Display device for vehicle
JPS6264638A (en) * 1985-09-10 1987-03-23 サン−ゴバン・ヴイトラ−ジユ Front glass with reflector reflecting optical signal in visual field of driver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238015A (en) * 1985-04-15 1986-10-23 Nissan Motor Co Ltd Display device for vehicle
JPS6264638A (en) * 1985-09-10 1987-03-23 サン−ゴバン・ヴイトラ−ジユ Front glass with reflector reflecting optical signal in visual field of driver

Similar Documents

Publication Publication Date Title
US5079110A (en) Alkaline storage cell
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JPH10188963A (en) Sealed lead-acid battery
JP2574952B2 (en) Non-aqueous electrolyte secondary battery
JPS63166148A (en) Lithium secondary battery
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPS6110863A (en) Nonaqueous electrolyte batter
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JPS63146355A (en) Nonaqueous electrolytic secondary cell
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPS62290069A (en) Organic electrolyte secondary battery
JPH0437544B2 (en)
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS63166166A (en) Lithium secondary cell
JPH01134862A (en) Alkaline zinc storage battery
JP2518090B2 (en) Lead acid battery
JPS634554A (en) Organic electrolyte secondary battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS5956353A (en) Organic electrolyte battery
JPH02281572A (en) Electrolyte for lithium secondary battery
JPS6127072A (en) Rechargeable electrochemical system
JPS5916394B2 (en) Zinc alkaline secondary battery
JPH03280363A (en) Lithium battery
JPH01241756A (en) Nonaqueous secondary cell