JPS63164606A - Cyclic type digital filter - Google Patents

Cyclic type digital filter

Info

Publication number
JPS63164606A
JPS63164606A JP31208486A JP31208486A JPS63164606A JP S63164606 A JPS63164606 A JP S63164606A JP 31208486 A JP31208486 A JP 31208486A JP 31208486 A JP31208486 A JP 31208486A JP S63164606 A JPS63164606 A JP S63164606A
Authority
JP
Japan
Prior art keywords
circuit
signal
output
rounding
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31208486A
Other languages
Japanese (ja)
Other versions
JPH0732348B2 (en
Inventor
Shoichi Nishino
正一 西野
Seiichi Hashimoto
清一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31208486A priority Critical patent/JPH0732348B2/en
Publication of JPS63164606A publication Critical patent/JPS63164606A/en
Publication of JPH0732348B2 publication Critical patent/JPH0732348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Complex Calculations (AREA)

Abstract

PURPOSE:To prevent the oscillation to be caused by a limit cycle by providing a rounding means making an output of a multiplier circuit equal to have the same effective digits to those of the output of a delay circuit and allowing the rounding means to avoid rounding zero when a difference signal is not zero. CONSTITUTION:The rounding circuit 11 is a circuit rounding the difference signal being a twice value obtained from a multiplier circuit in the state of absolute value and when the absolute value of the input of the rounding circuit 11 is a minimum identification value of the delay circuit 8, the minimum identification value is outputted in the state of the absolute value, that is, the absolute value round-up is executed. An arithmetic circuit 12 is a circuit to correct a difference signal from the circuit 11 into a retarded output signal from the delay circuit 8, gives its output to an output terminal 7 and leads it to the delay circuit 8. The rounding by the rounding circuit 11 is executed by the truncation of the absolute value or the round-off in the absolute value state.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、標本化されたディジタル信号を処理するのに
用いられる巡回形ディジタルフィルタに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to recursive digital filters used to process sampled digital signals.

°従来の技術 第3図は従来の巡回形ディジタルフィルタの一例を示す
ブロック図である。1は標本化周期Tで標本化されたデ
ィジタル信号を入力する入力端子、2は出力端子である
。3は信号をnT(nは正の整数)の期間遅延する遅延
回路、4は遅延回路3よシ得た信号に乗iaを乗じる乗
算回路、6は入・万端子1よシ得た入力信号に乗算回路
4出力を加えて出力端子2および前記遅延回路3に導く
加算回路である。
3. Background Art FIG. 3 is a block diagram showing an example of a conventional recursive digital filter. 1 is an input terminal into which a digital signal sampled at a sampling period T is input, and 2 is an output terminal. 3 is a delay circuit that delays the signal for a period of nT (n is a positive integer), 4 is a multiplication circuit that multiplies the signal obtained from delay circuit 3 by ia, and 6 is an input signal obtained from input terminal 1. This is an adder circuit that adds the output of the multiplier circuit 4 to the output terminal 2 and leads it to the output terminal 2 and the delay circuit 3.

以上のように構成された従来の巡回形デイジタルフィル
タについてその動作を離散時間システムを表わす2変換
式を用いて説明する。
The operation of the conventional recursive digital filter configured as described above will be explained using a two-conversion equation representing a discrete time system.

第3図従来例における伝達関数は2変換式を用いれば次
式のH(z)のようになる。
The transfer function in the conventional example shown in FIG. 3 can be expressed as H(z) in the following equation if two conversion equations are used.

Hの=、−4□−・°°°“°°゛°゛°°°°°°(
す(1)式H(2)で表わされるような巡回形ディジタ
ルフィルタにおいて、系の安定性はし1く1で保証され
る。つまシ第3図構成の乗算回路4が信号に乗する定数
aの絶対値が1よシ小さいことで本従来例における巡回
形ディジタルフィルタの安定性が保証される。説明を簡
単にするため定数aを0 (a (1として考える。よ
って本従来例の特性は、O)式H■よシDCゲイン(直
流入力信号に対する出力信号の利得)が1 /1− a
であって、高域成分に対してはその振幅を抑圧す名よう
な高域抑圧形フィルタとなる。また巡回形ディジタルフ
ィルタの場合問題となるのは、信号を伝送する桁数(ビ
ット数)である。出力信号が入力側へフィードバックさ
れるために精度的には大きな桁数を必要とするが、回路
規模の点でディジタル信号処理においては、適当な有効
桁数を設けて信号の桁数を制限しなければならない。第
3図従来例では、加算回路6によって入力端子1から得
られる入力信号に加えられる乗算回路4出力、あるいは
加算回路6出力に対してビット制限する。一般には、四
捨五入、切シ捨てなどの丸め操作によってビット制限さ
れるが、これらふたつの手法は、その操作に要する回路
規模も小さくて有効な方法である。
= of H, −4□−・°°°“°°゛°゛°°°°°°(
In a cyclic digital filter as expressed by equation (1) and equation H(2), the stability of the system is guaranteed to be 1 to 1. The stability of the cyclic digital filter in this conventional example is guaranteed because the absolute value of the constant a by which the multiplier circuit 4 of FIG. 3 multiplies the signal is smaller than 1. To simplify the explanation, the constant a is assumed to be 0 (a (1). Therefore, the characteristics of this conventional example are O) Equation H
This is a well-known high-frequency suppression filter that suppresses the amplitude of high-frequency components. Further, in the case of a cyclic digital filter, the problem is the number of digits (number of bits) to transmit the signal. Since the output signal is fed back to the input side, a large number of digits is required for accuracy, but in terms of circuit scale, in digital signal processing, it is necessary to limit the number of digits of the signal by setting an appropriate number of significant digits. There must be. In the conventional example shown in FIG. 3, bits are limited for the output of the multiplier circuit 4 or the output of the adder circuit 6 which is added to the input signal obtained from the input terminal 1 by the adder circuit 6. Generally, bits are limited by rounding operations such as rounding off and truncating, but these two methods are effective because the circuit size required for the operations is small.

発明が解決しようとする問題点 しi−しながら上記のような構成では、乗算回路4のも
つ定数aがO(a (1の範囲で設定されて系が安定で
あっても、信号のビット数を制限する丸め操作で起こる
丸め誤差のためにリミットサイクルが生じる場合がある
。これは、直流信号が入力された場合出力信号はDCゲ
イン1/1−aの直流信号として収束するが、過去の信
号系列によって遅延回路6のもつ過渡状態の違いによシ
出力信号が収束する直流値が常に一定状態とならないと
いう場合がある。
However, in the above configuration, even if the constant a of the multiplier circuit 4 is set in the range of O(a (1) and the system is stable, the bits of the signal Limit cycles may occur due to rounding errors that occur in the rounding operation that limits the number.This is because when a DC signal is input, the output signal converges as a DC signal with a DC gain of 1/1-a, but the past Due to the difference in the transient state of the delay circuit 6 depending on the signal series, the DC value at which the output signal converges may not always be constant.

例として乗算回路4のもつ定数8が0.76とした場合
で説明する。入力端子1に加えられる入力信号の信号値
が0の直流信号(無人力状態)ならその出力信号もやは
シ信号値0の直流信号とならねばならない。しかし、遅
延回路3が過去の信号列のために過渡状態として信号値
1を出力した時、乗算回路4が加算回路6へ加える値は
0.76である。また、遅延回路3が過渡状態−1を出
力した時には乗算回路4出力は、−0,75となる。こ
れらの場合、加算回路6出力信号のビット数を制限する
ために小数点未満の値を丸める操作が四捨五入、切シ捨
て、切シ上げによる方法では信号値1または−1でリミ
ットサイクルが生起する。このため、丸め操作を絶対値
切シ捨て等による絶対値操作が必要である。よって、第
3図従来例のような巡回形ディジタルフィルタでは、そ
の前段に直流成分を除去して高域成分のみを取シ出す高
域通過形フィルタが構成されていれば絶対値切シ捨てに
よる丸め操作を加えることでリミットサイクルの生起を
防げる。
As an example, a case will be explained in which the constant 8 of the multiplier circuit 4 is 0.76. If the input signal applied to the input terminal 1 is a DC signal with a signal value of 0 (unmanned state), the output signal must also be a DC signal with a signal value of 0. However, when the delay circuit 3 outputs a signal value 1 as a transient state due to the past signal string, the value added by the multiplier circuit 4 to the adder circuit 6 is 0.76. Further, when the delay circuit 3 outputs the transient state -1, the output of the multiplier circuit 4 becomes -0,75. In these cases, if the operation of rounding off the value below the decimal point in order to limit the number of bits of the output signal of the adder circuit 6 involves rounding, rounding down, or rounding up, a limit cycle occurs at a signal value of 1 or -1. Therefore, it is necessary to perform absolute value operations such as rounding off the absolute value and discarding the absolute value. Therefore, in a recursive digital filter like the conventional example shown in Fig. 3, if a high-pass filter that removes the DC component and extracts only the high-frequency component is configured in the preceding stage, the absolute value truncation can be used. Adding rounding operations can prevent limit cycles from occurring.

次に直流成分を含んだ入力信号が入力端子1に加えられ
た場合について説明する。乗算回路4のもつ定数とを0
.75としているのでそのDCゲインは前述したように
171−a=4となる。入力端子1へ信号値1oの直流
信号が入力された場合を例にとる。過渡状態として遅延
回路3が信号値4゜を出力した時、乗算回路4出力は3
0となシ、加算回路6出力は丸め操作を必要とせず、D
Cゲイン4倍の直流出力信号値4oに定まる。しかし、
遅延回路3が過渡状態として信号値39を出力した時1
乗算回路4出力は29.25となるので前述の絶対値切
シ捨てによる丸め操作を行なえば出力信号は信号値39
となる。
Next, a case will be described in which an input signal containing a DC component is applied to input terminal 1. The constant of the multiplier circuit 4 is set to 0.
.. 75, the DC gain is 171-a=4 as described above. Let us take as an example a case where a DC signal with a signal value of 1o is input to input terminal 1. When the delay circuit 3 outputs a signal value of 4° as a transient state, the multiplier circuit 4 outputs 3
0, the adder circuit 6 output does not require rounding operation, and D
The DC output signal value is determined to be 4o, which is 4 times the C gain. but,
1 when delay circuit 3 outputs signal value 39 as a transient state
The output of the multiplier circuit 4 is 29.25, so if you round off the absolute value as described above, the output signal will have a signal value of 39.
becomes.

以上よシ第3図構成のような巡回形ディジタルフィルタ
では、前記の絶対値切シ捨てによる操作を行ってもリミ
ットサイクルが生じてしまう。また、前記遅延回路3の
遅延時間nTにおけるnが2以上の場合には、前記リミ
ットサイクルがn個生じる可能性が61、そのため時分
割的に異った信号値のリミットサイクルとなシ、いわゆ
る発振状態になってしまうという問題点を有していた。
As described above, in the cyclic digital filter as shown in FIG. 3, a limit cycle occurs even if the above-described operation of cutting off the absolute value is performed. Further, when n in the delay time nT of the delay circuit 3 is 2 or more, there is a possibility that n limit cycles will occur, so there will be no limit cycles with different signal values in a time-division manner, so-called This has the problem of causing an oscillation state.

特に、スキャン方式によって信号か構成されている映像
信号に対して本従来のようなフィルタでは。
In particular, this conventional filter is difficult to use for video signals that are constructed using a scanning method.

前記リミットサイクルのために平坦画面における垂直方
向に雑音を生起させ、さらに前記発振のために水平方向
にも雑音を生起させて映像のS/Nを悪化させるために
、非巡回形ディジタルフィルタに比べて回路規模の小さ
い巡回形ディジタルフィルタが使えないという問題点を
有していた。
Compared to an acyclic digital filter, the limit cycle causes noise in the vertical direction on a flat screen, and the oscillation also causes noise in the horizontal direction, worsening the S/N of the image. However, there was a problem in that a cyclic digital filter with a small circuit scale could not be used.

本発明はかかる点に鑑み、過去の信号列または雑音の影
響などによる信号状態の変化にかかわらず、同一信号値
をもつ直流信号に対して常に同一信号値の直流信号を出
力してリミットサイクルまたはリミットサイクルによっ
て生じる発振を生起させないような巡回形ディジタルフ
ィルタを提供することを目的とする。、    ゛ 問題点を解決するための手段 本発明は、出力6号を時間遅延する遅延回路と。
In view of this, the present invention always outputs a DC signal with the same signal value for a DC signal with the same signal value, regardless of changes in the signal state due to the past signal train or the influence of noise, etc. It is an object of the present invention to provide a recursive digital filter that does not cause oscillation caused by limit cycles. , ゛Means for solving the problems The present invention provides a delay circuit for time-delaying output No. 6.

出力信号を遅延した信号と入力信号との差信号を抽出す
る減算回路と、差信号に所定の環数Kt−乗する乗算回
路と、K倍した差信号を前記出力信号を遅延した信号に
加減算して出力信号とする演算回路と、前記に倍した差
信号を前記出力信号を遅延した信号と同じ有効桁に丸め
、かつ前記差信号がゼロでない時にはゼロに丸めないよ
うな丸め手段を備えた巡回形ディジタルフィルタで6.
6゜作  用 本発明は前記した構成によシ、入力信号と出力信号の差
信号を抽出し、その差信号を丸めて出力信号に補正する
という形をとって、丸め操作が直流成分のない高域成分
だけHに加え、さらに入出力信号間に差のある限シ前記
補正が行なわれるので、直流信号が入力されてもリミ7
)サイクルを生起しない。
a subtraction circuit that extracts a difference signal between a delayed output signal and an input signal, a multiplication circuit that multiplies the difference signal by a predetermined ring number Kt, and adds or subtracts the difference signal multiplied by K to the delayed output signal. and a rounding means for rounding the multiplied difference signal to the same significant digits as the delayed signal, and not rounding to zero when the difference signal is not zero. 6. With a cyclic digital filter.
6. Effect The present invention has the above-described configuration, extracts a difference signal between an input signal and an output signal, and rounds the difference signal to correct it to an output signal, so that the rounding operation is performed without DC components. In addition to adding only the high frequency component to H, the above correction is performed as long as there is a difference between the input and output signals, so even if a DC signal is input, the limit 7
) does not cause a cycle.

実施例 第1図は本発明の一実施例における巡回形ディジタルフ
ィルタの1072図を示すものである。
Embodiment FIG. 1 shows a 1072 diagram of a cyclic digital filter in an embodiment of the present invention.

第1図において、6は標本化周期τで標本化されたディ
ジタル信号を入力する入力端子、7は出力端子である。
In FIG. 1, 6 is an input terminal into which a digital signal sampled at the sampling period τ is input, and 7 is an output terminal.

8は信号をnTの期間遅延する遅延回路、Sは遅延回路
8出力を前記入力端子6から得た入力信号から減じて入
力信号と出力信号の差信号を抽出する減算回路、(0は
減算回路eから得られる差信号忙乗数とを乗じる乗算回
路である。
8 is a delay circuit that delays the signal for a period of nT; S is a subtraction circuit that subtracts the output of the delay circuit 8 from the input signal obtained from the input terminal 6 to extract a difference signal between the input signal and the output signal; (0 is a subtraction circuit); This is a multiplication circuit that multiplies the difference signal obtained from e by the busy multiplier.

11は乗算回路1o力\ら得た倍の差信号を絶対値状態
で丸め操作を行なう丸め回路であって、この丸め回路1
1人力の絶対値か前記遅延回路8のもつ最小識別量未満
であれば絶対値状態で最小識別量を出力するつまシ絶対
値切シ上げの操作を行うものである。12は丸め回路1
1から得た差信号を前記遅延回路8からの遅延した出力
信号に補正として加える演算回路であってその出力を前
記出力端子7へ送るとともに前記遅延回路8へ導いてい
る。
Reference numeral 11 denotes a rounding circuit for rounding the double difference signal obtained from the multiplier circuit 1 in an absolute value state;
If the absolute value of one person's power is less than the minimum discrimination amount of the delay circuit 8, an operation of rounding up the absolute value is performed to output the minimum discrimination amount in the absolute value state. 12 is rounding circuit 1
1 is an arithmetic circuit which adds the difference signal obtained from 1 to the delayed output signal from the delay circuit 8 as a correction, and its output is sent to the output terminal 7 and also guided to the delay circuit 8.

以上のように構成された本実施例の巡回形ディジタルフ
ィルタについて、以下その動作を説明する。
The operation of the cyclic digital filter of this embodiment configured as described above will be explained below.

まず伝達関数G■は、2変換式を用いて次式のようにな
る。
First, the transfer function G■ is expressed by the following equation using two conversion equations.

(2)式より系の安定性は1l−Kl(1で保証される
が、説明を簡単化するためにo<1−K<1つ一1ll
OくKく1とする。よって本実施例の特性は、■ゲイン
が1であって、高域成分の振幅を抑圧するような高域抑
圧形フィルタとなる。次に、乗算回路1o出力つまり丸
め回路11を通って演算回路12で出力信号に補正され
る差信号の入力信号に対する伝達関数G′(4は次式の
ようになる。
From equation (2), the stability of the system is guaranteed by 1l-Kl (1, but to simplify the explanation, o<1-K<1-1ll
OKKUKKU1. Therefore, the characteristics of this embodiment are as follows: (1) The gain is 1, and the filter is a high-frequency suppressing filter that suppresses the amplitude of high-frequency components. Next, the transfer function G' (4) for the input signal of the difference signal which is output from the multiplier circuit 1o, that is, passes through the rounding circuit 11 and is corrected to an output signal by the arithmetic circuit 12, is as follows.

この”(Z)は、直流成分を除去する高域通過形フィル
タ(HPFと呼ぶ)の特性をもつ。後段の加算回路12
および遅延回路8とからなるループ構成が積分回路とし
て動作するものであるから、”(Z)で取り出された入
出力間の差信号を後段で積分して入力信号を再現する動
作である。この時の再現性は乗算回路10のもつ乗数K
Kよって決まる。
This "(Z) has the characteristics of a high-pass filter (referred to as HPF) that removes direct current components.The adder circuit 12 in the subsequent stage
Since the loop configuration consisting of the delay circuit 8 and the delay circuit 8 operates as an integrating circuit, the input signal is reproduced by integrating the difference signal between the input and output extracted at "(Z)" in the subsequent stage. The time reproducibility is determined by the multiplier K of the multiplier circuit 10.
Determined by K.

乗数Kが0に近いほど急峻な変化をする高域成分の再現
性が悪いような高域抑圧形フィルタとなカ、逆に乗数K
が1に近いほど高域抑圧する割合が小さくなって、乗数
Kが1とした時には(動式G(Z)より全帯域を通過さ
せるフィルタ特性になる。
The closer the multiplier K is to 0, the steeper the change, and the worse the reproducibility of high-frequency components.
The closer to 1, the smaller the high frequency suppression ratio becomes, and when the multiplier K is set to 1, the filter has a characteristic that allows the entire band to pass through (dynamic G(Z)).

以上のように動作する本実施例におき、次にリミットサ
イクルについて説明する。乗算回路1゜出力が前記(′
4弐G′(z)に示すようにHPF特性をもつので、入
力に直流信号が加えられれば、その信号値によらず乗算
回路1o出力は信号値0に収束する。よって後段の積分
回路で行なわなければならない信号のビット制限のため
には、前記乗算回路1o出力が直流成分をもたないので
絶対値状態で丸めればよい。このため丸め回路11が行
なう丸め操作は絶対値切シ捨てまたは絶対値状態での四
捨五入などによる方法で行なう。
In this embodiment, which operates as described above, the limit cycle will be explained next. The multiplier circuit 1° output is the above ('
Since it has HPF characteristics as shown in 42G'(z), if a DC signal is applied to the input, the output of the multiplier circuit 1o converges to the signal value 0 regardless of the signal value. Therefore, in order to limit the bits of the signal that must be performed by the integrating circuit at the subsequent stage, the output of the multiplication circuit 1o has no DC component, so it is sufficient to round it in an absolute value state. Therefore, the rounding operation performed by the rounding circuit 11 is performed by truncating the absolute value or rounding off the absolute value.

ただし、丸め操作を行う信号桁が加算回路12の一方の
入力である遅延回路日出力の最小有効桁に合わせること
は当然である。しかし、乗算回路10出力の絶対値が前
記遅延回路8出力の有効桁で表わしうる最小識別量未満
の場合には、絶対値状態での切り捨てまたは四捨五入の
丸め操作で丸め回路11出力を0とせず、前記最小識別
量の値を出力する。これKよって、減算回路9で得られ
る差信号が0とならない限り出力信号に対する補正が加
えられるので、入出力信号の値が完全に一致してリミッ
トサイクルは生起しない。
However, it is a matter of course that the signal digit to be rounded matches the least significant digit of the delay circuit output which is one input of the adder circuit 12. However, if the absolute value of the output of the multiplier circuit 10 is less than the minimum discrimination amount that can be represented by the significant digits of the output of the delay circuit 8, the output of the rounding circuit 11 is not set to 0 by rounding or rounding in the absolute value state. , outputs the value of the minimum discrimination amount. Accordingly, as long as the difference signal obtained by the subtraction circuit 9 does not become 0, the output signal is corrected, so that the values of the input and output signals completely match and no limit cycle occurs.

以上のように、本実施例によれば、入力信号と出力信号
の差信号を後段のループ構成へ送ることによって巡回形
のフィルタを構成し、その差信号に対する丸め操作が入
力信号と出力信号とが完全に一致しない限りゼロ値を出
力しないようにして、入力直流信号の値号値、および過
去の信号列による信号の過渡状態にかかわらず、リミッ
トサイクルを生起しないようにできる。
As described above, according to this embodiment, a cyclic filter is configured by sending the difference signal between the input signal and the output signal to the subsequent loop configuration, and the rounding operation for the difference signal is performed on the input signal and the output signal. By not outputting a zero value unless they completely match, it is possible to prevent a limit cycle from occurring regardless of the value of the input DC signal and the transient state of the signal due to the past signal string.

なお、本実施例では丸め回路11を乗算回路と加算回路
12との間に設けているが、丸め操作において算術演算
が必要な時、その演算を後段の演算回路12で行えるこ
と、また、乗算回路1oはビットシフトや加減算回路で
構成できるので、丸め操作に必要な演算を乗算回路1o
の内部に組み込むことができる、 第2図は、本発明の第2の実施例であるが、その特性は
前記第1図実施例の特性((2J弐G(4)と全く同等
である。第1図実施例と異なるのは減算回路13および
演算回路14の入力極性のみであるので、他の構成要素
に対しては第1図実施例と同じ要素番号を付しである。
In this embodiment, the rounding circuit 11 is provided between the multiplication circuit and the addition circuit 12, but when an arithmetic operation is required in the rounding operation, it is possible to perform that operation in the arithmetic circuit 12 at the subsequent stage. Since the circuit 1o can be configured with a bit shift or addition/subtraction circuit, the calculations necessary for rounding operations can be performed using the multiplication circuit 1o.
FIG. 2 shows a second embodiment of the present invention, and its characteristics are exactly the same as the characteristics ((2J2G(4)) of the embodiment in FIG. The only difference from the embodiment in FIG. 1 is the input polarity of the subtraction circuit 13 and the arithmetic circuit 14, so the other components are given the same element numbers as in the embodiment in FIG.

減算回路13が入力信号と遅延した出力信号との差信号
を抽出するのに、遅延した出力信号(遅延回路8出力)
から入力端子1より得た入力信号を減じるようKして。
When the subtraction circuit 13 extracts the difference signal between the input signal and the delayed output signal, the delayed output signal (output of the delay circuit 8) is used.
K to subtract the input signal obtained from input terminal 1 from .

差信号を第1図実施例の場合とは逆極性で抽出している
。このため、演算回路14は、丸められた差信号を出力
信号側に補正として加えるのに、遅延回路8出力から丸
め回路11出力を減じるようにしている。本実施例の構
成は信号の極性を考慮すれば、第1図実施例より容易に
実施できるものである。以下その動作を説明する。
The difference signal is extracted with a polarity opposite to that in the embodiment of FIG. Therefore, the arithmetic circuit 14 subtracts the output of the rounding circuit 11 from the output of the delay circuit 8 in order to add the rounded difference signal to the output signal side as a correction. The configuration of this embodiment can be implemented more easily than the embodiment of FIG. 1 if the polarity of the signal is taken into account. The operation will be explained below.

前述の@)弐G(Z)より本実施例のDCゲインが1で
あるから、入力信号と出力信号のダイナミックレンジは
等しい。そのため出力信号を単に遅延した遅延回路8出
力のダイナミックレンジも等しい。
Since the DC gain of this embodiment is 1 from the above-mentioned @)2G(Z), the dynamic ranges of the input signal and the output signal are equal. Therefore, the dynamic range of the output of the delay circuit 8, which simply delays the output signal, is also equal.

よって遅延回路8出力が入力信号に比べ精度的に増える
桁は、すべて入力信号の有効桁未満の桁である。よって
入力信号と遅延回路8出力の差信号を抽出する時、本実
施例の減算回路9のように遅延回路8出力から入力信号
を減じる入力極性にすれば、遅延回路8出力のうち入力
信号の有効桁未満の桁に対しては演算操作を行なう必要
がなくそのまま次段の乗算回路10へ送ればよい。しか
し後段の丸め回路11については絶対値状態での丸め操
作であり、演算回路14(または第1図演算回路12)
については前述したように遅延回路8出力と丸め回路1
1出力の桁数が等しいので本実施例の減算回路13のよ
うな入力極性にしても、後段の各回路の演算桁数は変わ
らない。よって第1図実施例に比べて第2図本実施例で
は減算回路13の回路規模を小さくできるので有効であ
る。
Therefore, the digits by which the output of the delay circuit 8 increases in accuracy compared to the input signal are all digits less than the effective digits of the input signal. Therefore, when extracting the difference signal between the input signal and the output of the delay circuit 8, if the input polarity is set to subtract the input signal from the output of the delay circuit 8 as in the subtraction circuit 9 of this embodiment, then the difference signal of the input signal out of the output of the delay circuit 8 can be set. There is no need to perform arithmetic operations on digits less than the effective digits, and they can be sent as they are to the multiplication circuit 10 at the next stage. However, the rounding circuit 11 in the latter stage performs rounding in the absolute value state, and the arithmetic circuit 14 (or the arithmetic circuit 12 in FIG. 1)
As mentioned above, the delay circuit 8 output and the rounding circuit 1
Since the number of digits of each output is the same, even if the input polarity is set as in the subtraction circuit 13 of this embodiment, the number of digits operated by each subsequent circuit does not change. Therefore, compared to the embodiment shown in FIG. 1, the present embodiment shown in FIG. 2 is effective because the circuit scale of the subtraction circuit 13 can be made smaller.

また、映像信号のような広帯域の信号を扱う場合には、
標本化周期Tが非常に短くする必要があるので、回路の
演算スピードを考慮すると、上記のように演算桁数を減
らすことは非常に重要で有効なことである。
Also, when handling wideband signals such as video signals,
Since the sampling period T needs to be very short, it is very important and effective to reduce the number of calculation digits as described above, considering the calculation speed of the circuit.

発明の詳細 な説明したように、本発明によれば、過去の信号列また
は雑音の影響などによるフィルタ内の過渡状態の違いに
かかわらず、同一信号値の直流信号に対して常に同一信
号値の直流信号を出力することができ、リミットサイク
ルおよびリミットサイクルによって生じる信号の発振が
生起しないような巡回形ディジタルフィルタを実現でき
るので非常に有効である。特に、映像信号だ対して用い
れば、前記リミットサイクルおよび前記発振によって生
じる垂直方向および水平方向の雑音を生起させないよう
なフィルタを、非巡回形ディジタルフィルタと比べて回
路規模の非常に少ない巡回形ディジタルフィルタで構成
できるのでその実用的効果は大きい。
As described in detail, according to the present invention, regardless of differences in transient states within the filter due to past signal sequences or the influence of noise, DC signals of the same signal value always have the same signal value. This is very effective since it is possible to realize a recursive digital filter that can output a DC signal and that does not cause limit cycles and signal oscillations caused by limit cycles. In particular, when used for video signals, a filter that does not generate vertical and horizontal noise caused by the limit cycle and the oscillation can be created using a cyclic digital filter, which has a much smaller circuit scale than an acyclic digital filter. Since it can be configured with filters, its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例の巡回形ディジタルフ
ィルタのブロック図、第2図は本発明の他の実施例の巡
回形ディジタルフィルタのブロック図、第3図は従来の
巡回形ディジタルフィルタのブロック図である。 8・・・・・・遅延回路、9.13・・・・・・減算回
路、1゜・・・・・・乗算回路、11・・・・・・丸め
回路、12.14・・・・・・演算回路。
FIG. 1 is a block diagram of a cyclic digital filter according to an embodiment of the present invention, FIG. 2 is a block diagram of a cyclic digital filter according to another embodiment of the present invention, and FIG. 3 is a block diagram of a conventional cyclic digital filter. It is a block diagram. 8...Delay circuit, 9.13...Subtraction circuit, 1°...Multiplication circuit, 11...Rounding circuit, 12.14... ...Arithmetic circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)標本化周期Tでディジタル化された信号を入力信
号とし、信号をnT(nは正の整数)の期間遅延する遅
延回路と、前記遅延回路の出力と前記入力信号との差信
号を抽出する減算回路と、前記減算回路の出力に所定の
乗数にを乗じる乗算回路と、前記乗算回路の出力を前記
遅延回路の出力に対して加減算して前記遅延回路へ導く
演算回路と、前記乗算回路の出力を前記遅延回路の出力
と同じ有効桁にする丸め手段を備え、前記丸め手段が前
記差信号がゼロでない時はゼロに丸めないようにしたこ
とを特徴とする巡回形ディジタルフィルタ。
(1) A delay circuit that takes a signal digitized with a sampling period T as an input signal and delays the signal for a period of nT (n is a positive integer), and a difference signal between the output of the delay circuit and the input signal. a subtraction circuit for extracting, a multiplication circuit for multiplying the output of the subtraction circuit by a predetermined multiplier, an arithmetic circuit that adds or subtracts the output of the multiplication circuit to the output of the delay circuit and leads it to the delay circuit, and the multiplication circuit. A cyclic digital filter comprising a rounding means for making the output of the circuit have the same significant digits as the output of the delay circuit, and wherein the rounding means does not round to zero when the difference signal is not zero.
(2)丸め手段が乗算回路の内部で構成することを特徴
とする特許請求の範囲第1項記載の巡回形ディジタルフ
ィルタ。
(2) The cyclic digital filter according to claim 1, wherein the rounding means is configured inside the multiplication circuit.
(3)丸め手段が乗算回路と演算回路との間に構成する
ことを特徴とする特許請求の範囲第1項記載の巡回形デ
ィジタルフィルタ。
(3) The cyclic digital filter according to claim 1, wherein the rounding means is arranged between the multiplication circuit and the arithmetic circuit.
(4)丸め手段が演算回路で構成することを特徴とする
特許請求の範囲第1項記載の巡回形ディジタルフィルタ
(4) The cyclic digital filter according to claim 1, wherein the rounding means is constituted by an arithmetic circuit.
JP31208486A 1986-12-26 1986-12-26 Circuit type digital filter Expired - Lifetime JPH0732348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31208486A JPH0732348B2 (en) 1986-12-26 1986-12-26 Circuit type digital filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31208486A JPH0732348B2 (en) 1986-12-26 1986-12-26 Circuit type digital filter

Publications (2)

Publication Number Publication Date
JPS63164606A true JPS63164606A (en) 1988-07-08
JPH0732348B2 JPH0732348B2 (en) 1995-04-10

Family

ID=18025042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31208486A Expired - Lifetime JPH0732348B2 (en) 1986-12-26 1986-12-26 Circuit type digital filter

Country Status (1)

Country Link
JP (1) JPH0732348B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512385A (en) * 1990-04-03 1993-01-22 Mitsubishi Electric Corp Cad/cam device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0512385A (en) * 1990-04-03 1993-01-22 Mitsubishi Electric Corp Cad/cam device

Also Published As

Publication number Publication date
JPH0732348B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US3949206A (en) Filtering device
US4511922A (en) Digital television system with truncation error correction
JPS63164606A (en) Cyclic type digital filter
JPH0732347B2 (en) Circuit type digital filter
JP2574803B2 (en) Noise reduction circuit for color television signal
JPS63204810A (en) Cyclic digital filter
JP2585762B2 (en) Feedback comb filter
JPS63139492A (en) Acc circuit
KR970004196B1 (en) Noise deleting apparatus of tv
KR950007928B1 (en) Colon signal discriminator for ntsc system
JPS6412733A (en) Clock regeneration circuit
JPS55139601A (en) Delay modulating circuit
SU1061270A2 (en) Signal transmission device
JPH04324765A (en) Edge sharpening circuit
JPS568915A (en) Nonlinear distortion reducing circuit of digital filter
JPS57157372A (en) Operation error correcting method
JPH05276035A (en) D/a converter
SU1363538A1 (en) Apparatus for correcting hf predistortion of secam colour signal
JPH0295017A (en) Non-linear quantizing device
JPS62297934A (en) Digital signal processor
JPH0314364B2 (en)
JPS5680917A (en) Thinning-out filter for sampled value
JPS62132415A (en) Comb-line filter
JPS6367812A (en) Smoothing circuit
JPH06291659A (en) A/d converter