JPS63146471A - Manufacture of mis element - Google Patents

Manufacture of mis element

Info

Publication number
JPS63146471A
JPS63146471A JP29481487A JP29481487A JPS63146471A JP S63146471 A JPS63146471 A JP S63146471A JP 29481487 A JP29481487 A JP 29481487A JP 29481487 A JP29481487 A JP 29481487A JP S63146471 A JPS63146471 A JP S63146471A
Authority
JP
Japan
Prior art keywords
film
silicon nitride
nitride film
silicon
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29481487A
Other languages
Japanese (ja)
Inventor
Yutaka Hayashi
豊 林
Hidekazu Suzuki
英一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP29481487A priority Critical patent/JPS63146471A/en
Publication of JPS63146471A publication Critical patent/JPS63146471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain effectively an element having a large capacitance value, by oxidizing the surface of a silicon nitride film before forming a conductive film on the silicon nitride film. CONSTITUTION:A very thin silicon oxide film 2 is formed on a silicon region 1. The surface of a silicon nitride film 3 is oxidized, before a conductive film or a gate electrode 7 is formed on the silicon nitride film 3. Thereby, the surface of the silicon nitride film 3, and a silicon oxide film 9 are formed. As the surface of the silicon region 1 or the surface of the silicon oxide film 2 is exposed at the part in which a pin hole 8 is formed, the exposed surface is oxidized and the inside of the pin hole 8 is filled with silicon oxide 10 and closed. After that, conductive material such as metal or polysilicon is formed on the poly silicon oxide film 3 in order to form a conductive film 7 such as the gate electrode, and then an element is completed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、導電@(M)−絶縁膜(I)−シリコン(S
)構造、いわゆるMIS構造における製造上の改良に関
し、特に絶縁膜(1)中にシリコン窒化膜を含むMKS
構造において当該シリコン窒化膜成長の際に形成される
ことあるピンホールを、製造完了の後ではなく、当該製
造過程中で既に将来の素子動作上、問題のないように処
理するための改良に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to conductive @(M)-insulating film (I)-silicon (S
) structure, the so-called MIS structure, in particular regarding manufacturing improvements in the
The present invention relates to an improvement for treating pinholes that may be formed during the growth of a silicon nitride film in a structure so as not to cause problems in future device operation during the manufacturing process, rather than after the manufacturing is completed.

〈従来の技術〉 近年、いわゆるMNOS構造素子等に代表されるMIS
メモリや、もっと単純にMISキャパシタ等にあっては
、シリコンと導電膜との間に挟み込む絶縁膜はより一層
、?#膜化の傾向を示している。
<Conventional technology> In recent years, MIS represented by so-called MNOS structure elements, etc.
In the case of memories or, more simply, MIS capacitors, etc., the insulating film sandwiched between silicon and conductive film is even more important. #Shows a tendency to form a film.

こうした場合、当該絶縁膜にはその成長の過程でピンホ
ールが生ずることがある。
In such cases, pinholes may occur in the insulating film during its growth process.

(発明が解決しようとする問題点〉 しかるに従来、絶縁膜中にシリコン窒化膜を含み、この
シリコン窒化膜にその成長の過程で上記のようにピンホ
ールが生じていた場合にも、それは素子の完成後におけ
る素子動作の不完全さで気が付くのみで、いったん、そ
うしたピンホールが生じていると、最早、修復の術がな
かった。
(Problem to be solved by the invention) However, conventionally, when an insulating film includes a silicon nitride film, and pinholes are generated in the silicon nitride film during the growth process as described above, these pinholes can cause damage to the device. They were only noticed by imperfections in the device's operation after completion, and once such pinholes had occurred, there was no way to repair them.

ピンホールはもちろん、素子の収率の低下を来たす重要
な悪因の一つとなる。シリコン窒化膜に形成されてしま
ったピンホールが特にゲート電極等の導電膜下で、素子
動作に重要な領域、すなわち当該導電膜に電圧を印加し
た際等、その電界の影響下にある場合、例えピンホール
を介して導電膜材料が直接にシリコン窒化股下のシリコ
ン酸化膜またはシリコン領域に接触することはなくても
(接触することもある)、電界の集中が起こり、結局は
リークを起こす等するからである。
Pinholes are, of course, one of the important causes of reduction in device yield. If a pinhole formed in a silicon nitride film is under the influence of an electric field, especially under a conductive film such as a gate electrode, in an area important for device operation, i.e. when a voltage is applied to the conductive film, Even if the conductive film material does not come into direct contact with the silicon oxide film or silicon region under the silicon nitride crotch through the pinhole (it may come into contact), electric field concentration will occur, eventually causing leakage, etc. Because it does.

ところが従来、そうしたシリコン窒化膜成長い際し、そ
もそもシリコン窒化膜の成長に関し、そうしたピンホー
ルを生じ難いような条件下での成長に限るとか、あるい
はまた、先のように薄膜化の要請があってもこれはある
程度犠牲にし、ピンホールが生じ難いような十分な厚さ
にまで、シリコン窒化膜を成長させるというような、言
わば受は身の対策しかなく、当該シリコン窒化膜にピン
ホールが生じてしまった場合には、これを簡単には回復
させる手段がなかった。
However, in the past, when growing silicon nitride films, growth was limited to conditions in which such pinholes were unlikely to occur, or, as mentioned earlier, there was a demand for thinner films. However, the only solution is to sacrifice this to some extent and grow the silicon nitride film to a sufficient thickness so that pinholes are unlikely to form. If this happens, there is no easy way to recover from it.

本発明はこうした観点から成されたもので、特にMNO
Sメモリの改良等において認められるように、シリコン
窒化膜を薄膜化せねばならない要求があり、一方でその
ように薄膜化して行くとピンホールの生成をある程度容
認しなければならないような状況下にあっても、当該生
することあるピンホールを一連の製造工程下において回
復ないし修復し得、リークの問題をあらかじめ解決し得
る簡単かつ確実な手法を提供せんとするものである。
The present invention has been made from this point of view, and in particular,
As seen in the improvement of S memory, there is a need to make the silicon nitride film thinner, but on the other hand, as the film becomes thinner, it becomes necessary to accept the formation of pinholes to some extent. Even if such pinholes occur, the present invention aims to provide a simple and reliable method that can recover or repair the pinholes that may occur during a series of manufacturing steps, and that can solve the leakage problem in advance.

〈問題点を解決するための手段〉 本発明は上記目的を達成するため、シリコン酸化膜また
はシリコン領域上に形成したシリコン窒化膜の上に導電
膜を形成する必要のあるMIS構造において、当該導電
膜形成の前にシリコン窒化膜表面をさらに酸化する工程
の賦与を提案する。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides an MIS structure in which a conductive film needs to be formed on a silicon oxide film or a silicon nitride film formed on a silicon region. We propose a step to further oxidize the silicon nitride film surface before film formation.

換言すれば、導電膜はこのようにして形成されたシリコ
ン酸化膜の上に形成するようにする。
In other words, the conductive film is formed on the silicon oxide film thus formed.

〈作用および効果〉 上記のような本発明のMIS構造製造方法によも、当該
シリコン窒化膜の表面を酸化する工程により、もし仮に
そうしたピンホールがあれば、シリコン窒化膜が酸化さ
れる速度より、このピンホールを介して露呈しているシ
リコン領域表面またはシリコン酸化膜表面の酸化速度の
方が通かに早いという理屈により、自動的にこのピンホ
ール内をシリコン酸化物で充填することができる。
<Operations and Effects> In the MIS structure manufacturing method of the present invention as described above, the process of oxidizing the surface of the silicon nitride film will cause the oxidation rate of the silicon nitride film to be faster than the rate at which the silicon nitride film is oxidized if such a pinhole exists. Based on the theory that the oxidation rate of the silicon region surface or silicon oxide film surface exposed through this pinhole is much faster, this pinhole can be automatically filled with silicon oxide. .

したがって従来のように、シリコン窒化膜上にそのまま
導電膜を形成すると、当該導電膜材料がピンホール内に
侵入してシリコン領域との間で短絡を起こすとか、望ま
しくない電界の集中効果を起こすようなおそれは未然に
、しかも素子製造工程の途中で簡単に回避され、もって
素子の収率を高めることができる。
Therefore, if a conductive film is directly formed on a silicon nitride film as in the past, the conductive film material may enter the pinhole and cause a short circuit with the silicon region or cause an undesirable electric field concentration effect. Incidentally, this can be easily avoided before it happens, and moreover, during the device manufacturing process, thereby increasing the yield of devices.

〈実 施 例〉 第1図は本発明の製造方法を適用した結果、得られたM
IS構造例を示していて、ピンホール内にシリコン酸化
物IOが自動的に形成された模様が良く示されているが
、便宜上、この素子の製造工程自体は第2図に即して説
明する。
<Example> Figure 1 shows the M obtained as a result of applying the manufacturing method of the present invention.
An example of the IS structure is shown, and the pattern in which silicon oxide IO is automatically formed within the pinhole is clearly shown, but for convenience, the manufacturing process itself of this device will be explained with reference to Figure 2. .

シリコン領域1は基板でも、あるいはまた基板上の薄膜
であっても良いが、当該シリコン領域1の上には第2図
(A)に示されるように、この実施例の場合、例えばM
NOS構造素子の動作原理に従うに適当なような極めて
薄いシリコン酸化膜2が形成されている。
The silicon region 1 may be a substrate, or alternatively a thin film on a substrate; in this embodiment, for example, M is provided on the silicon region 1, as shown in FIG.
An extremely thin silicon oxide film 2 is formed, which is suitable for following the operating principle of the NOS structure element.

しかるに、この上にさらに電荷のトラップを有するよう
なシリコン窒化膜3を成長させると、一般にそれが最初
は島状に成長する結果、模式的に示されているように、
当該シリコン窒化膜3にはピンホール8が生ずることが
ある。特にこのシリコン窒化膜3自体も薄くしたい場合
にそうなることが多い。
However, when a silicon nitride film 3 having charge traps is grown on top of the silicon nitride film, it generally grows in the form of an island at first, as shown schematically.
Pinholes 8 may occur in the silicon nitride film 3 . This often happens especially when it is desired to make the silicon nitride film 3 itself thin.

こうなると当然、シリコン窒化膜の下のシリコン酸化膜
2は少なくとも露出するし、場合によっては図示されて
いないがシリコン酸化膜2にもピンホールが生じている
ことがあり、したがってたまたま、シリコン窒化膜3に
生成したピンホール8と、このシリコン酸化膜2にでき
たピンホールとが位置的に整合すると、結局、最下層の
シリコン領域1の表面までもが露出することになる。
Naturally, in this case, at least the silicon oxide film 2 under the silicon nitride film will be exposed, and in some cases, although not shown, pinholes may also be formed in the silicon oxide film 2. When the pinhole 8 formed in the silicon oxide film 3 and the pinhole formed in the silicon oxide film 2 are aligned in position, even the surface of the lowermost silicon region 1 is exposed.

しかし、本発明においては、シリコン窒化膜3の上に第
1図示の導電膜ないしゲート電極7を形成する前に、シ
リコン窒化膜3の表面を酸化する工程を導・入する。
However, in the present invention, before forming the conductive film or gate electrode 7 shown in the first figure on the silicon nitride film 3, a step of oxidizing the surface of the silicon nitride film 3 is introduced.

このようにすると、シリコン窒化膜3の表面が酸化され
、シリコン酸化膜9が形成されるのはもとよりであるが
、ピンホール8のできている部位ではシリコン領域1の
表面またはシリコン酸化膜2の表面が露呈しているため
、シリコン窒化膜3の酸化速度よりも一桁以上も早い速
度でそうした露出表面が酸化され、結局、第2図(B)
に示されているように、当該ピンホール8の内部はシリ
コン酸化物lOで埋められてこれが塞がるようになる。
By doing this, the surface of the silicon nitride film 3 is naturally oxidized and the silicon oxide film 9 is formed. Since the surface is exposed, the exposed surface is oxidized at a rate that is more than an order of magnitude faster than the oxidation rate of the silicon nitride film 3, and as a result, as shown in FIG. 2(B).
As shown in FIG. 2, the inside of the pinhole 8 is filled with silicon oxide 1O and becomes closed.

こうしたことから、この後にゲート電極等の導電膜7の
形成のため、シリコン酸化膜3の上に金属、ポリシリコ
ン、その他適当なる導電性物質を形成して第1図示のよ
うに素子を完成しても、薄いシリコン窒化膜3に発生し
易いピンホール8を介してのリークの問題は、上記のよ
うに、あらかじめその素子の製造工程の途中において完
全に解消されていることになる。
For this reason, metal, polysilicon, or other suitable conductive material is then formed on the silicon oxide film 3 to form a conductive film 7 such as a gate electrode, and the device is completed as shown in the first diagram. However, the problem of leakage through the pinholes 8, which is likely to occur in the thin silicon nitride film 3, is completely resolved in advance during the manufacturing process of the device, as described above.

また得るべき素子が不揮発性半導体メモリの場合には、
第1図に併示されているように、ゲート7の下にそれぞ
れ一部重なり、互いには離間したソース5、ドレイン6
を設けて、記憶内容の読出しを容易にした構造とするこ
とができる。
In addition, if the element to be obtained is a nonvolatile semiconductor memory,
As shown in FIG. 1, a source 5 and a drain 6 partially overlap each other under the gate 7 and are spaced apart from each other.
A structure can be provided in which the memory contents can be easily read.

なお、こうした動作に関しては、ピンホール自体は微小
であるため、これを上記のようにして埋めさえすれば、
このような不揮発性半導体メモリにおける記憶情報の書
込みはピンホール8の発生した個所の周りのシリコン窒
化膜中のトラップにて行なわれるので、記憶素子として
の機能自体は何等、損われることがない。
Regarding these operations, the pinhole itself is minute, so if you fill it as described above,
Since the writing of storage information in such a nonvolatile semiconductor memory is carried out in the traps in the silicon nitride film around the location where the pinhole 8 is generated, the function as a storage element itself is not impaired in any way.

また、素子がMISキャパシタのような場合には、シリ
コン窒化膜3の酸化速度は非常に遅いので、本発明によ
り結果として得られる多層膜構造も、ピンホール以外の
部分では極めて薄く形成することが可能であり、したが
って大きな容量値を持つ素子を収率良く得ることができ
る。
Furthermore, when the device is a MIS capacitor, the oxidation rate of the silicon nitride film 3 is very slow, so the multilayer structure obtained as a result of the present invention can also be formed extremely thin in areas other than pinholes. Therefore, elements with large capacitance values can be obtained with good yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用して得られたMIS素子構造の一
例を示す断面図、第2図は第1図示素子の製造工程中の
説明図、である。 図中、1はシリコン領域、2はシリコン酸化膜、3はシ
リコン窒化膜、7は導電膜、8はシリコン窒化膜に生成
し得るピンホール、9はシリコン窒化膜表面を酸化して
形成されるシリコン酸化膜、10はシリコン窒化膜酸化
工程中にピンホール内に成長するシリコン酸化物、であ
る。 才1図
FIG. 1 is a cross-sectional view showing an example of a MIS element structure obtained by applying the present invention, and FIG. 2 is an explanatory view of the manufacturing process of the element shown in FIG. In the figure, 1 is a silicon region, 2 is a silicon oxide film, 3 is a silicon nitride film, 7 is a conductive film, 8 is a pinhole that can be formed in the silicon nitride film, and 9 is formed by oxidizing the surface of the silicon nitride film. The silicon oxide film 10 is silicon oxide that grows inside the pinhole during the silicon nitride film oxidation process. 1 figure

Claims (1)

【特許請求の範囲】[Claims] シリコン領域またはシリコン領域上のシリコン酸化膜上
にシリコン窒化膜を形成し、さらにその上に導電膜を形
成するMIS構造において;上記シリコン窒化膜の形成
後、上記導電膜の形成の前に、該シリコン窒化膜表面を
酸化する工程を含んで成るMIS構造の製造方法。
In an MIS structure in which a silicon nitride film is formed on a silicon region or a silicon oxide film on a silicon region, and a conductive film is further formed on the silicon nitride film; after the formation of the silicon nitride film and before the formation of the conductive film, A method for manufacturing an MIS structure comprising a step of oxidizing the surface of a silicon nitride film.
JP29481487A 1987-11-20 1987-11-20 Manufacture of mis element Pending JPS63146471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29481487A JPS63146471A (en) 1987-11-20 1987-11-20 Manufacture of mis element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29481487A JPS63146471A (en) 1987-11-20 1987-11-20 Manufacture of mis element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56122635A Division JPS5823483A (en) 1981-08-05 1981-08-05 Nonvolatile semiconductor memory

Publications (1)

Publication Number Publication Date
JPS63146471A true JPS63146471A (en) 1988-06-18

Family

ID=17812598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29481487A Pending JPS63146471A (en) 1987-11-20 1987-11-20 Manufacture of mis element

Country Status (1)

Country Link
JP (1) JPS63146471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555587A (en) * 1991-08-22 1993-03-05 Nec Corp Mos device and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231628A (en) * 1975-06-14 1977-03-10 Fujitsu Ltd Semiconductor non-volatile memory unit
JPS538088A (en) * 1976-07-12 1978-01-25 Hitachi Ltd Production of semiconductor device
JPS5587490A (en) * 1978-12-25 1980-07-02 Toshiba Corp Non-voratile semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231628A (en) * 1975-06-14 1977-03-10 Fujitsu Ltd Semiconductor non-volatile memory unit
JPS538088A (en) * 1976-07-12 1978-01-25 Hitachi Ltd Production of semiconductor device
JPS5587490A (en) * 1978-12-25 1980-07-02 Toshiba Corp Non-voratile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555587A (en) * 1991-08-22 1993-03-05 Nec Corp Mos device and its manufacture

Similar Documents

Publication Publication Date Title
US4945068A (en) Manufacturing method of semiconductor nonvolatile memory device
US4808261A (en) Fabrication process for EPROM cells with oxide-nitride-oxide dielectric
US4743953A (en) Random access memory cell with MIS capacitor having insulator of oxide of doped metal
JPH10223850A (en) Method for incorporating non-volatile memory and logic component element into single manufacturing process of 0.3mum or below to obtain non-volatile memory of integral structure
KR920003541A (en) Semiconductor device and manufacturing method thereof
JPS62128556A (en) Semiconductor device
JPS61131488A (en) Manufacture of integrated structural body containing non-volatile memory cell and associated transistor having self-matched silicon layer
WO1996033511A3 (en) Method of manufacturing a progammable semiconductor device in the form of an anti-fuse
JPS63146471A (en) Manufacture of mis element
JPH03257828A (en) Manufacture of semiconductor device
US5689120A (en) MOS field effect transistor in a dynamic random access memory device and method for fabricating the same
JPH02257670A (en) Semiconductor storage device and manufacture thereof
KR910001191B1 (en) A manufacturing method in a semiconductor device
JPH01289171A (en) Manufacture of non-volatile semiconductor storage device
JP2604863B2 (en) Method for manufacturing semiconductor nonvolatile memory device
KR950003225B1 (en) Manufacturing method of insulating film
JPH02114568A (en) Manufacture of nonvolatile storage device
JPH03273684A (en) Semiconductor storage device and manufacture thereof
KR900004253B1 (en) Manufacturing method of capacitor
JPH01152672A (en) Non-volatile semiconductor memory
JPS62221146A (en) Semiconductor device
JPS63224355A (en) Semiconductor storage device
JPS62198153A (en) Semiconductor device
JPS6153869B2 (en)
JPS59124156A (en) Semiconductor device