JPH01289171A - Manufacture of non-volatile semiconductor storage device - Google Patents

Manufacture of non-volatile semiconductor storage device

Info

Publication number
JPH01289171A
JPH01289171A JP12033588A JP12033588A JPH01289171A JP H01289171 A JPH01289171 A JP H01289171A JP 12033588 A JP12033588 A JP 12033588A JP 12033588 A JP12033588 A JP 12033588A JP H01289171 A JPH01289171 A JP H01289171A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon oxide
silicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12033588A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishihara
博 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12033588A priority Critical patent/JPH01289171A/en
Publication of JPH01289171A publication Critical patent/JPH01289171A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the manufacturing processes of a non-volatile semiconductor storage device by a method wherein an insulating film of a floating gate and an insulating film of a control gate are simultaneously formed of three layers of silicon oxide film, an Si nitride film and an silicon oxide film. CONSTITUTION:A field oxide film 2 is formed on a siliocn substrate 1 to isolate element regions and after an ion implanted layer 3 is formed under the element region, a gate oxide film 4 of a prescribed thickness and a control gate 5 consisting of a pohsphorus-doped first poly silicon film are respectively formed at the element region and on the film 2. Then, an aperture is formed in part of the film 4 and a lower silicon oxide film 6 constituting a tunnel insulating film is formed by performing a thermal oxidation. At this time, a silicon oxide film 7 due to thermal oxidation is formed on the gate 5 as well. This film 7 is formed on the phosphorus-doped poly silicon film and after that, silicon nitride film 8 is formed in a prescribed thickness by an LPCVD method, an upper silicon oxide film 9 is formed thereon and moreover, a second poly silicon film 10 is formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体基板上に絶縁膜を介してフローティン
グゲートを設ける不揮発性半導体記憶装置であって、上
記フローティングゲート下の上記絶縁膜は、シリコン酸
化膜−シリコン窒化膜−シリコン酸化膜の3層で構成さ
れてなる不揮発性半導体記憶装置の製造方法に関するも
のである。
Detailed Description of the Invention <Industrial Application Field> The present invention provides a nonvolatile semiconductor memory device in which a floating gate is provided on a semiconductor substrate via an insulating film, the insulating film under the floating gate comprising: The present invention relates to a method of manufacturing a nonvolatile semiconductor memory device composed of three layers: silicon oxide film, silicon nitride film, and silicon oxide film.

〈従来の技術〉 フローティングゲートに電荷を注入するトンネル絶縁膜
として、シリコン酸化膜−シリコン窒化膜−シリコン酸
化膜の3層の絶縁膜を使用することは先行技術とし存在
しく特願昭62−311252)、また、フローティン
グゲート、コントロールケート間の絶縁膜として、シリ
コン酸化膜、シリコン窒化膜等よV成る多層膜を用いる
ことは公知である(%公昭62−6348)。
<Prior art> The use of a three-layer insulating film of silicon oxide film-silicon nitride film-silicon oxide film as a tunnel insulating film for injecting charges into a floating gate is known as prior art and is disclosed in Japanese Patent Application No. 311252/1986. ), It is also known to use a multilayer film made of V such as a silicon oxide film, a silicon nitride film, etc. as an insulating film between a floating gate and a control gate (% Publication No. 62-6348).

〈発明が解決しようとする課題〉 トンネル絶縁膜及びフローティングゲート、コントロー
ルゲート間の絶縁膜ともに同様のシリコン酸化膜−シリ
コン窒化膜−シリコン酸化膜の構造となるが、通常の構
造(第2図)では、トンネル絶縁膜がフローティングゲ
ート下にあるため同時に形成することができない。
<Problems to be Solved by the Invention> The tunnel insulating film, the floating gate, and the insulating film between the control gates have the same silicon oxide film-silicon nitride film-silicon oxide film structure, but they have a normal structure (Figure 2). In this case, since the tunnel insulating film is under the floating gate, it cannot be formed at the same time.

く課題を解決するための手段〉 フローティングゲートとコントロールゲートとは電気的
に容量結合していれば十分であり、必ずしもフローティ
ングゲート上にコントロールゲートがある必要はない。
Means for Solving the Problems> It is sufficient that the floating gate and the control gate are electrically capacitively coupled, and the control gate does not necessarily need to be provided on the floating gate.

そこで、1層目のポリシリコンでコントロールゲートを
作成し、次に、シリコン酸化膜−シリコン窒化膜−シリ
コン酸化膜よV成る絶縁膜を、一部はフローティングゲ
ート、コントロールゲート間の絶縁膜として、一部はト
ンネル絶縁膜として同時に形成することで工程を略する
ことが可能となる0 〈実施例〉 以下、本発明の実施例を図面に基づいて説明するO 第1図(a)〜(d)は本発明の一実施例を示す概略工
程断面図である。
Therefore, a control gate was created using the first layer of polysilicon, and then an insulating film consisting of silicon oxide film, silicon nitride film, silicon oxide film, and V was used as a floating gate and an insulating film between the control gates. It is possible to omit the process by forming a part of the tunnel insulating film at the same time.Example: Examples of the present invention will be described below based on the drawings. ) is a schematic process sectional view showing an embodiment of the present invention.

fJSI図(a)―於いて、シリコン基板l上にフィー
ルド酸化膜2を形成して素子領域を分離し、素子領域に
イオン注入層3を形成した後、該素子領域に約30OA
の厚さのゲート酸化膜4、フィールド酸化膜2上に、リ
ンをドープした%1多結晶シリコン膜から成るコントロ
ールゲート5を形成する0 次に、gI21図(b)に示すように、ゲート酸化膜4
の一部を開孔し、トンネル絶縁膜の下層シリコン酸化膜
6を熱酸化により40〜80A形成する。
fJSI diagram (a) - After forming a field oxide film 2 on a silicon substrate l to isolate the element region, and forming an ion implantation layer 3 in the element region, approximately 30 OA is applied to the element region.
A control gate 5 made of %1 polycrystalline silicon film doped with phosphorus is formed on the gate oxide film 4 and field oxide film 2 with a thickness of 0. Next, as shown in FIG. membrane 4
A hole is opened in a part of the hole, and a lower silicon oxide film 6 of the tunnel insulating film is formed by thermal oxidation to a thickness of 40 to 80 Å.

このとき、コントロールゲート5上にも熱酸化によるシ
リコン酸化膜7が形成される。この酸化膜7は、リンを
ドープした多結晶シリコン上に形成されるため、増速酸
化のため120〜240A程度生成される0 その後、第1図(c)に示すように、シリコン窒化膜8
をLPCVDにより60〜80χ形収し、その上に、ウ
ェット雰、囲気中で上層シリコン酸化膜9を15〜50
A程度形成し、更に、リンをドープした第2多結晶シリ
コン膜10を気相成長させる0 次に、第1図(d)に示すように、第2多結晶シリコン
膜、3層絶縁膜を、フォトレジスト、マスク全使用し、
エツチングを行ない、フローティングゲート10’ と
する。
At this time, a silicon oxide film 7 is also formed on the control gate 5 by thermal oxidation. Since this oxide film 7 is formed on polycrystalline silicon doped with phosphorus, the oxidation rate is about 120 to 240 A. Thereafter, as shown in FIG. 1(c), a silicon nitride film 8
A 60 to 80 χ shape is collected by LPCVD, and an upper silicon oxide film 9 of 15 to 50 χ is formed on top of it in a wet atmosphere.
A second polycrystalline silicon film 10 doped with phosphorus is formed by vapor phase growth.Next, as shown in FIG. 1(d), a second polycrystalline silicon film and a three-layer insulating film are formed. , using all photoresists and masks.
Etching is performed to form a floating gate 10'.

その後、従来のEEFROMと同様に、ソース。Then, like conventional EEFROM, the source.

ドレイン領域の生成、メタル電極生成等により最終形状
を得る。
The final shape is obtained by forming the drain region, metal electrode, etc.

〈発明の効果〉 以上詳細に説明したように、本発明によれば、トンネル
絶縁膜及びフローティングゲート、コントロールゲート
間の絶縁膜を、シリコン酸化膜−シリコン窒化膜−シリ
コン酸化膜の3層で同時に形成することが可能となり、
工程を減少させることが可能となるものである。
<Effects of the Invention> As described above in detail, according to the present invention, the tunnel insulating film and the insulating film between the floating gate and the control gate are simultaneously formed of three layers: silicon oxide film, silicon nitride film, and silicon oxide film. It becomes possible to form
This makes it possible to reduce the number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(d)は本発明の一実施例を示す概略
工程断面図、第2図は通常のEEPROMの構造を示す
断面図である。 符号の説明 l:シリコン基板、2:フィールド酸化膜、3:イオン
注入層、4:ゲート酸化膜、5:コントロールゲート、
6:トンネル絶縁膜を構成する下層シリコン酸化膜、7
:フローティングゲート、コントロールゲート間の絶縁
膜を構成する下層シリコン酸化膜、8:絶縁膜を構成す
るシリコン窒化膜、9:絶縁膜全構成する上層シリコン
酸化膜、10:第2多結晶シリコン膜、lO′ :フロ
ーティングゲート。
FIGS. 1(a) to 1(d) are schematic process cross-sectional views showing one embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of an ordinary EEPROM. Explanation of symbols 1: silicon substrate, 2: field oxide film, 3: ion implantation layer, 4: gate oxide film, 5: control gate,
6: Lower silicon oxide film constituting the tunnel insulating film, 7
: lower layer silicon oxide film forming the insulating film between the floating gate and control gate, 8: silicon nitride film forming the insulating film, 9: upper silicon oxide film forming the entire insulating film, 10: second polycrystalline silicon film, lO': Floating gate.

Claims (1)

【特許請求の範囲】 1、半導体基板上に絶縁膜を介してフローティングゲー
トを設ける不揮発性半導体記憶装置であって、上記フロ
ーティングゲート下の上記絶縁膜は、シリコン酸化膜−
シリコン窒化膜−シリコン酸化膜の3層で構成されてな
る不揮発性半導体記憶装置の製造方法に於いて、 所定領域にコントロールゲートを形成する工程と、 基板上及び上記コントロールゲート上に上記シリコン酸
化膜−シリコン窒化膜−シリコン酸化膜の3層で構成さ
れる絶縁膜を形成する工程と、 上記絶縁膜上にフローティングゲートを形成する工程と
を 有することを特徴とする、不揮発性半導体記憶装置の製
造方法。
[Claims] 1. A nonvolatile semiconductor memory device in which a floating gate is provided on a semiconductor substrate via an insulating film, wherein the insulating film under the floating gate is a silicon oxide film.
A method for manufacturing a nonvolatile semiconductor memory device composed of three layers of silicon nitride film and silicon oxide film, which includes the steps of: forming a control gate in a predetermined region; and depositing the silicon oxide film on the substrate and on the control gate. - Manufacturing a nonvolatile semiconductor memory device characterized by comprising a step of forming an insulating film composed of three layers: a silicon nitride film and a silicon oxide film, and a step of forming a floating gate on the insulating film. Method.
JP12033588A 1988-05-16 1988-05-16 Manufacture of non-volatile semiconductor storage device Pending JPH01289171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12033588A JPH01289171A (en) 1988-05-16 1988-05-16 Manufacture of non-volatile semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12033588A JPH01289171A (en) 1988-05-16 1988-05-16 Manufacture of non-volatile semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH01289171A true JPH01289171A (en) 1989-11-21

Family

ID=14783715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12033588A Pending JPH01289171A (en) 1988-05-16 1988-05-16 Manufacture of non-volatile semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH01289171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181178A (en) * 1989-12-11 1991-08-07 Toshiba Corp Nonvolatile semiconductor memory device and its manufacture
JPH0465169A (en) * 1990-07-05 1992-03-02 Toshiba Corp E2prom device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171160A (en) * 1992-12-08 1994-06-21 Seiko Epson Corp Printing information processor
JPH0937062A (en) * 1995-07-14 1997-02-07 Canon Inc Device and method for processing image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171160A (en) * 1992-12-08 1994-06-21 Seiko Epson Corp Printing information processor
JPH0937062A (en) * 1995-07-14 1997-02-07 Canon Inc Device and method for processing image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181178A (en) * 1989-12-11 1991-08-07 Toshiba Corp Nonvolatile semiconductor memory device and its manufacture
JPH0465169A (en) * 1990-07-05 1992-03-02 Toshiba Corp E2prom device

Similar Documents

Publication Publication Date Title
JP3312102B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2005520318A (en) Integration of two memory types on the same integrated circuit
JP2904533B2 (en) Method for manufacturing semiconductor device
JP2525144B2 (en) Method of manufacturing integrated structure including non-volatile memory cell and related transistor
JP3093096B2 (en) Manufacturing method of nonvolatile memory
JPH09116032A (en) Manufacture of nonvoltatile semiconductor storage device
US6171927B1 (en) Device with differential field isolation thicknesses and related methods
JPH03283570A (en) Semiconductor device and its production
KR100231962B1 (en) Stacked gate eprom split cell with bit line reach-through and interruption immunity
US6235585B1 (en) Method for fabricating flash memory device and peripheral area
GB2310080A (en) Flash EEPROM method of manufacture
US5744391A (en) Method to improve isolation between EEPROM devices via a field oxide anneal
JPH01289171A (en) Manufacture of non-volatile semiconductor storage device
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
JP3907100B2 (en) MFMOS / MFMS nonvolatile memory transistor and manufacturing method thereof
JPS6329979A (en) Semiconductor memory device
JPH02257670A (en) Semiconductor storage device and manufacture thereof
JPH0485883A (en) Nonvolatile semiconductor memory device and manufacture thereof
US6303960B1 (en) Low voltage flash memory cell
JPH03283468A (en) Manufacture of nonvolatile memory device
JPS6050964A (en) Semiconductor device
JPH0487374A (en) Manufacture of nonvolatile memory element
JPH10189922A (en) Manufacture of flash memory element
JPH0774272A (en) Nonvolatile memory cell and fabrication thereof
JPH08204031A (en) Manufacture of nonvolatile semiconductor memory element