JPS63143246A - Production of high tension high conductivity copper alloy - Google Patents

Production of high tension high conductivity copper alloy

Info

Publication number
JPS63143246A
JPS63143246A JP28969086A JP28969086A JPS63143246A JP S63143246 A JPS63143246 A JP S63143246A JP 28969086 A JP28969086 A JP 28969086A JP 28969086 A JP28969086 A JP 28969086A JP S63143246 A JPS63143246 A JP S63143246A
Authority
JP
Japan
Prior art keywords
annealing
copper alloy
temperature
copper
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28969086A
Other languages
Japanese (ja)
Other versions
JPH0611904B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Isao Hosokawa
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61289690A priority Critical patent/JPH0611904B2/en
Publication of JPS63143246A publication Critical patent/JPS63143246A/en
Publication of JPH0611904B2 publication Critical patent/JPH0611904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce a copper alloy having excellent tensile strength and electrical conductivity with the conserved energy by subjecting an ingot of a copper- base alloy contg. a specific ratio of Fe to hot rolling and cold rolling then to two stages of age annealing under specific conditions. CONSTITUTION:The ingot of the copper-base alloy contg. 1.5-3.0wt% Fe is subjected to hot rolling at 800-1,050 deg.C then to cold rolling at >=90% total reduction rate of area. After the alloy is subjected to 30min of annealing at 550 deg.C (not inclusive of 550 deg.C)-600 deg.C in succession thereof, the alloy is subjected to the 2nd annealing for >=30min at 450-525 deg.C. The high tension high conductivity copper alloy having about >=33kgf/mm<2> tensile strength, about >=25% elongation and about >=65% IACS electrical conductivity is obtd. by this method. This copper alloy is usable as a material for electronic parts, more particularly, semiconductor lead frames and terminals.

Description

【発明の詳細な説明】 1産業上の利用分野コ 本発明は高力、高導電性銅合金の製造方法に関し、さら
に詳しくは、電子部品、特に、半導体リードフレームお
よび端子等の材料に使用することができる引張強さ33
 i<gf/mm’以上、伸び25%以上および導電率
65%I AC3を有する高力、高導電性銅合金の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for manufacturing a high-strength, high-conductivity copper alloy, more specifically for use in materials for electronic components, particularly semiconductor lead frames and terminals. Tensile strength 33
The present invention relates to a method for manufacturing a high-strength, highly conductive copper alloy having i<gf/mm' or more, elongation of 25% or more, and electrical conductivity of 65% I AC3.

[従来技術] 従来においても、Fe 1.5〜3.0wt%を含有す
る銅合金を加工して電子部品等の材料を製造することは
、特公昭52−020404号公報、特公昭55−01
4132号公報、特公昭55−014133号公報およ
び特公昭55−01413.4号公報に記載されている
[Prior Art] Conventionally, manufacturing materials such as electronic parts by processing copper alloys containing 1.5 to 3.0 wt% Fe has been disclosed in Japanese Patent Publications No. 52-020404 and Japanese Patent Publication No. 55-01.
It is described in Japanese Patent Publication No. 4132, Japanese Patent Publication No. 55-014133, and Japanese Patent Publication No. 55-01413.4.

しかして、電子部品材料も製法が簡単で、省エネルギー
、省工程の製造法が開発され、採用されてきている。
Therefore, manufacturing methods for electronic component materials that are simple, energy-saving, and process-saving have been developed and are being adopted.

即ち、上記した特公昭55−014134号公報には、
P’e 1.5〜3.ht%を含有し、本質的に残部C
uである銅合金を800〜1020℃の温度で熱間加工
し、さらに、30%以上の圧下率で冷間加工し、400
〜550℃の温度で30分1’if1以上の時効焼鈍を
行ない、さらに、200℃/1時間以下の冷却速度で冷
却する方法が示されている。
That is, in the above-mentioned Japanese Patent Publication No. 55-014134,
P'e 1.5-3. ht% with essentially the remainder C
The copper alloy that is
A method is disclosed in which age annealing is performed at a temperature of 1'if1 or more for 30 minutes at a temperature of ~550°C, and further cooling is performed at a cooling rate of 200°C/1 hour or less.

そして、この方法においては、冷間圧延と時効焼鈍との
組み合わせが−サイクルとする説明はなく、三サイクル
が最も望ましいとあり、機械的性質や導電率もある程度
の値が得られている。
In this method, there is no explanation that the combination of cold rolling and age annealing is a -cycle, but it is stated that a three-cycle is the most desirable, and a certain level of mechanical properties and electrical conductivity can be obtained.

[発明が解決しようとする問題点] 本発明は上記に説明した従来法の処理工程か複雑である
という問題点に鑑み、本発明者が鋭意研究を行なった結
果、従来法のように三サイクル工程を行なう必要がなく
、冷間圧延と時効焼鈍の組み合わけが−サイクルで行な
うことにより、従来法と同等の引張強さく35 、2 
kgf/m+nり、伸び(27,5%)および導電率(
73,5%1AC9)を有する電子部品等に好適な高力
、高導電性鋼合金の製造方法を開発したのである。
[Problems to be Solved by the Invention] In view of the problem that the processing steps of the conventional method explained above are complicated, the present inventor has conducted intensive research, and as a result, it has been found that There is no need to carry out additional processes, and the combination of cold rolling and age annealing is carried out in a cycle, resulting in the same tensile strength as the conventional method.35,2
kgf/m+n, elongation (27.5%) and conductivity (
They have developed a method for manufacturing a high-strength, high-conductivity steel alloy suitable for electronic parts, etc., which has a 73.5% 1AC9).

[問題点を解決するための手段] 本発明に係る高力、高導電性銅合金の製造方法の特徴と
するところは、 Fe 1.5〜3.0wt% を含有し、残部Cuよりなる銅基合金の鋳塊を、800
〜1050℃り温度で熱間圧延し、その後、トータル減
面率90%以上の冷間圧延を行ない、550℃(但し5
50℃を含まず)〜600℃の、盆度で30分以上の焼
鈍後、冷却途中で・150℃〜525℃の温度において
30分間以上の焼鈍を行なうことにある。
[Means for Solving the Problems] The method for producing a high-strength, high-conductivity copper alloy according to the present invention is characterized by a copper alloy containing 1.5 to 3.0 wt% of Fe and the balance consisting of Cu. The base alloy ingot is 800
Hot rolling is carried out at a temperature of ~1050°C, followed by cold rolling with a total area reduction of 90% or more.
After annealing at a temperature of 30 minutes or more at a temperature of 50°C to 600°C, annealing is performed at a temperature of 150°C to 525°C for 30 minutes or more during cooling.

本発明に係る高力、高導電性銅合金の製造方法について
以下詳細に説明する。
The method for producing a high-strength, high-conductivity copper alloy according to the present invention will be described in detail below.

本発明に係る高力、高導電性銅合金の製造方法において
は、通常の銅合金の連続鋳造法により造塊し、少なくと
ら800℃の温度で、トータル減面率80%以上で熱間
圧延を行ない、熱間圧延終了温度は650℃であり、二
の650℃の温度の材料をシャワー水による冷却装置に
より冷却し、その後、トータル減面率90%の冷間圧延
を行ない、550℃(550℃を含まず)〜600℃の
温度て30分間の焼鈍後、冷却途中て450〜525℃
の温度に達した時に30分間以上保持するという、所謂
、2段時効焼鈍によって、引張強さ33 kgf/ m
m”、伸び25%以上および導電率60%(AC5以上
を有する高力、高導電性銅合金を製造する方法である。
In the method for producing a high-strength, high-conductivity copper alloy according to the present invention, ingots are formed by a conventional continuous casting method for copper alloys, and hot-rolled at a temperature of at least 800°C with a total area reduction of 80% or more. The finishing temperature of hot rolling was 650°C. Second, the material at a temperature of 650°C was cooled by a cooling device using shower water, and then cold rolling was performed with a total area reduction of 90% to 550°C ( After annealing at a temperature of 550℃ to 600℃ for 30 minutes, 450 to 525℃ during cooling.
A tensile strength of 33 kgf/m is achieved by so-called two-stage aging annealing, which is held for 30 minutes or more when the temperature reaches
m'', elongation of 25% or more, and electrical conductivity of 60% (AC5 or more).

なお、さらに性質を向上さ仕るために冷間圧延を行ない
、そして、この冷間圧延によって生じた局部歪みを除去
するために、300〜・100℃(400℃を含まず)
の温度で5秒間以上の焼鈍を行なってもよい。
In addition, in order to further improve the properties, cold rolling is performed, and in order to remove the local distortion caused by this cold rolling, the temperature is 300 to 100°C (not including 400°C).
Annealing may be performed at a temperature of 5 seconds or more.

しかして、従来のFe1.5〜3.0wt%を含有する
本質的に残部Cuからなる銅合金の処理工程は、基本的
には400〜550℃の温度で30分間以上の焼鈍と3
0%以上の圧下率の冷間圧延をニサイクル以上、理想的
には三すイクル行なうことがノ須であり、従って、これ
らの工程を考えると焼鈍はコイル状態でベル型炉中で行
なわれるので、焼鈍前は焼鈍時の密着防止対策さらに焼
鈍後は酸化スケールの除去の工程か2〜3回必要となっ
ている。
Therefore, the conventional treatment process for copper alloys containing 1.5 to 3.0 wt% of Fe and the balance essentially consists of annealing at a temperature of 400 to 550°C for 30 minutes or more and 3.
It is essential to perform cold rolling with a rolling reduction of 0% or more for two or more cycles, ideally three cycles. Therefore, considering these processes, annealing is performed in a coiled state in a bell-shaped furnace. Before annealing, it is necessary to take measures to prevent adhesion during annealing, and after annealing, it is necessary to remove oxide scale two to three times.

本発明に係る高力、高導電性銅合金の製造方法において
は、550〜600℃の温度での焼鈍は1回であり、焼
鈍前の密着防止対策と焼鈍後の酸化スケールの除去はそ
れぞれ1回で済むので工程の短縮化が図れる。
In the method for producing a high-strength, high-conductivity copper alloy according to the present invention, annealing at a temperature of 550 to 600°C is performed once, and adhesion prevention measures before annealing and removal of oxide scale after annealing are performed once each. The process can be shortened since it only takes a few times.

また、本発明に係る高力、高導電性銅合金の製造方法に
おいて、使用する銅合金にはP O,02〜0.1vt
%、Zn 0.01〜0.5wt%の内から選んだta
または2種を含有しても、目標とする特性、特に導電率
は満足てきる。
In addition, in the method for producing a high-strength, high-conductivity copper alloy according to the present invention, the copper alloy used includes P O, 02 to 0.1 vt.
%, Zn ta selected from 0.01-0.5wt%
Or, even if two types are contained, the target properties, especially the electrical conductivity, can be satisfied.

さらに、Mn、 Sn、 、へ1.N+STlおよびC
rは0.002〜0.2wt%含有されても、導電率6
5%lAC3を満足するので許容される。
Furthermore, Mn, Sn, , 1. N+STl and C
Even if r is contained at 0.002 to 0.2 wt%, the conductivity is 6
It is acceptable because it satisfies 5% lAC3.

[実 施 例j 本発明に係る高力、高導電性銅合金の製造方法の実施例
を説明する。
[Example j An example of the method for manufacturing a high-strength, high-conductivity copper alloy according to the present invention will be described.

実施例 小型電気炉で木炭被覆下に、Cu−2,3wt%Fe−
G、15wt%Zn−0,Q3wt%Pを溶解し、傾注
式の鋳鉄製のブックモール1ζに鋳込み、厚さ60mm
、幅60mm、長さ180mmの鋳塊を製作した。
Example: Cu-2,3wt%Fe- was coated with charcoal in a small electric furnace.
G, 15 wt% Zn-0, Q3 wt% P was melted and cast into a tilting cast iron book molding 1ζ, with a thickness of 60 mm.
An ingot with a width of 60 mm and a length of 180 mm was produced.

これろの鋳塊の表面および裏面をそれぞれ2 、5 m
m面開削、900℃の温度で熱間圧延を開始し、厚さ1
0mmとし、700℃の温度かろ水中に投入して急冷し
た。ごの熱間圧延材の表面の酸化スケールをグラインダ
ーにより除去してから、4分割した。
The front and back sides of this ingot are 2 and 5 m long, respectively.
Hot rolling was started at a temperature of 900℃, and the thickness was 1.
0 mm, and was rapidly cooled by putting it into filtered water at a temperature of 700°C. After removing the oxidized scale on the surface of the hot-rolled material using a grinder, it was divided into four pieces.

そのうちの一つは、本発明に係る高力、高導電性鋼合金
の製造方法を適用し、残りの三個は比較方法を適用した
For one of them, the method for producing a high strength, high conductivity steel alloy according to the present invention was applied, and for the remaining three, a comparative method was applied.

本発明に係る高力、高導電性銅合金の製造方法により製
造されたものは、冷間圧延ロールで厚さ10mmから厚
さ 0.635mmまで加工したが、耳割れ等は生じな
かった。
The high-strength, high-conductivity copper alloy manufactured by the method for manufacturing a high-strength, high-conductivity copper alloy according to the present invention was processed with cold rolling rolls from a thickness of 10 mm to a thickness of 0.635 mm, but no edge cracking or the like occurred.

この材料を、トリクレンで脱脂後、窒素ガス炉中で57
5℃の温度で2時間焼鈍後、冷却の途中で500℃に達
した時、さらに、4時間の焼鈍を行なって冷却し、第1
表の結果を得た。    ゛比較方法は、厚さ10mm
の板材を冷間圧延して厚さ2.54mmとし、この材料
を490℃の温度で2時間の焼鈍を行ない、酸洗後、冷
間圧延して厚さ1.27mmとし、次いで、この材料を
440℃の温度で2時間の焼鈍を行ない、さらに、酸洗
後、冷間圧延して厚さ0.635mmとし、この材料を
440℃の温度で2時間の焼鈍を行ない、第1表の結果
を得た。
After degreasing this material with trichlene, it was heated to 57°C in a nitrogen gas furnace.
After annealing at a temperature of 5°C for 2 hours, when the temperature reached 500°C during cooling, annealing was further performed for 4 hours, and the first
Obtained the results in the table.゛Comparison method is 10mm thickness
The plate material was cold rolled to a thickness of 2.54 mm, this material was annealed at a temperature of 490°C for 2 hours, and after pickling, cold rolled to a thickness of 1.27 mm. The material was annealed at a temperature of 440°C for 2 hours, and then, after pickling, it was cold rolled to a thickness of 0.635 mm. This material was annealed at a temperature of 440°C for 2 hours. Got the results.

焼鈍に際しては、トリクレン脱脂後窒素ガス炉中て行な
い、焼鈍後は184g/lの硫酸を含む水溶液で酸化ス
ケールを除去した。
Annealing was carried out in a nitrogen gas furnace after degreasing with trichlene, and after annealing, oxidized scale was removed with an aqueous solution containing 184 g/l of sulfuric acid.

引張強さの引張り方向は、圧延方向に平行に行ない、試
験片の形状はASTME8とした。
The tensile strength was determined in a direction parallel to the rolling direction, and the shape of the test piece was ASTM8.

第1表から次のことが明らかである。From Table 1, the following is clear.

本発明に係る高力、高導電性銅合金の製造方法による銅
基合金は、比較例のNo、7に示すような3回の焼鈍を
行なわなくてら、引張強さ33kgf/rnm’以上、
伸び25%以上および導電率65%I ACS以上を有
しており、N014と同等の特性を示している。
The copper-based alloy manufactured by the method for producing a high-strength, high-conductivity copper alloy according to the present invention has a tensile strength of 33 kgf/rnm' or more without annealing three times as shown in Comparative Example No. 7.
It has an elongation of 25% or more and an electrical conductivity of 65% IACS or more, showing properties equivalent to N014.

また、No、8およびN099に示すように、2次時効
焼鈍の2回目の焼鈍温度が525℃を越える場合或いは
450℃未満の場合は、導電率か65%[ACSを満足
していないことを示している。
In addition, as shown in No. 8 and No. 099, if the second annealing temperature of the secondary aging annealing exceeds 525°C or is less than 450°C, the electrical conductivity may be 65% [not satisfying ACS]. It shows.

この焼鈍の後、性質調整のための適正な冷間加工と圧延
によって生じる局部歪みを除去するための300〜40
0’C(400℃を含まず)の温度で5秒以上の焼鈍を
行なうことらできろ。
After this annealing, appropriate cold working to adjust the properties and 300~400°C to remove local distortion caused by rolling.
It can be done by annealing at a temperature of 0'C (not including 400C) for 5 seconds or more.

[発明の効果] 以上説明したように、本発明に係る高力、高導電性銅合
金の製造方法は上記の構成であるから、従来から使用さ
れているFe 1.5〜3.0wt%含有し、残部Cu
からなる銅基合金の熱間圧延後の加工工程を簡略化した
もので、それにも拘わらず従来工程材料と全く同等の特
性を有しているしのであり、さらに、ロールに占めろ段
取り等を含めた時間の節約、焼鈍炉に関する段取り等を
含めた時間の節約、酸洗回数の減少、圧延、焼鈍、酸洗
を繰り返す毎に生じる歩留まりの低下の抑制、かつ、コ
ストの低減等の効果があり、省資源、省エネルギーから
工業的に大きく貢献するものである。
[Effects of the Invention] As explained above, since the method for producing a high-strength, high-conductivity copper alloy according to the present invention has the above-mentioned configuration, it contains 1.5 to 3.0 wt% of Fe, which is conventionally used. and the remainder Cu
It is a simplified processing process after hot rolling of a copper-based alloy made of copper-based alloys, and despite this, it has exactly the same properties as conventional process materials. This has the effect of saving time including setting up the annealing furnace, reducing the number of times of pickling, suppressing the decline in yield that occurs each time rolling, annealing, and pickling are repeated, and reducing costs. This makes a significant contribution to industry through resource and energy conservation.

Claims (1)

【特許請求の範囲】 Fe1.5〜3.0wt% を含有し、残部Cuよりなる銅基合金の鋳塊を、800
〜1050℃り温度で熱間圧延し、その後、トータル減
面率90%以上の冷間圧延を行ない、550℃(但し5
50℃を含まず)〜600℃の温度で30分以上の焼鈍
後、冷却途中で450℃〜525℃の温度において30
分間以上の焼鈍を行なうことを特徴とする高力、高導電
性銅合金の製造方法。
[Claims] An ingot of a copper-based alloy containing 1.5 to 3.0 wt% of Fe and the balance being Cu is
Hot rolling is carried out at a temperature of ~1050°C, followed by cold rolling with a total area reduction of 90% or more.
After annealing at a temperature of 50℃ to 600℃ for 30 minutes or more, annealing at a temperature of 450℃ to 525℃ during cooling for 30 minutes or more.
A method for producing a high-strength, high-conductivity copper alloy, characterized by annealing for more than 1 minute.
JP61289690A 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method Expired - Fee Related JPH0611904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289690A JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289690A JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Publications (2)

Publication Number Publication Date
JPS63143246A true JPS63143246A (en) 1988-06-15
JPH0611904B2 JPH0611904B2 (en) 1994-02-16

Family

ID=17746484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289690A Expired - Fee Related JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Country Status (1)

Country Link
JP (1) JPH0611904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762800A2 (en) * 1995-09-07 1997-03-12 Star Micronics Co., Ltd. Lead frame for electroacoustic transducer and electroacoustic transducer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514132A (en) * 1978-07-13 1980-01-31 Kyoei Seikou Kk Preventing method for oxygen entry of cast ingot in continuous casting and device thereof
JPS562150A (en) * 1979-06-15 1981-01-10 Berstorff Gmbh Masch Hermann Double stage press

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514132A (en) * 1978-07-13 1980-01-31 Kyoei Seikou Kk Preventing method for oxygen entry of cast ingot in continuous casting and device thereof
JPS562150A (en) * 1979-06-15 1981-01-10 Berstorff Gmbh Masch Hermann Double stage press

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762800A2 (en) * 1995-09-07 1997-03-12 Star Micronics Co., Ltd. Lead frame for electroacoustic transducer and electroacoustic transducer
EP0762800A3 (en) * 1995-09-07 1997-04-23 Star Mfg Co

Also Published As

Publication number Publication date
JPH0611904B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
JPS63266049A (en) Production of high tensile copper based alloy
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
EP0157711B1 (en) Process for the manufacture of objects from al-li-mg-cu alloys with high ductibility and isotropy properties
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
WO1986002102A1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP4396874B2 (en) Manufacturing method of copper base alloy strip for terminal
JPH06207233A (en) Copper alloy for electronic and electrical equipment and its production
JPS5893860A (en) Manufacture of high strength copper alloy with high electric conductivity
JPS63143246A (en) Production of high tension high conductivity copper alloy
JPS63266053A (en) Production of high tensile copper based alloy
JP2004232049A (en) Cu PLATING TITANIUM COPPER
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JPS6389649A (en) Manufacture of al-mg-zn alloy material having superior formability
JPS6299430A (en) Copper alloy for terminal or connector and its manufacture
JPS63266054A (en) Manufacture of high-strength copper-base alloy
JPH0424420B2 (en)
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS6356302B2 (en)
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPS61288036A (en) Copper alloy for lead frame and its production
JPS63266050A (en) Production of high tensile copper based alloy
JPS62227052A (en) Copper-base alloy for terminal and connector and its production
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH02270946A (en) Production of high-strength and high-conductivity copper alloy excellent in heat resistance and bendability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees