JPH0611904B2 - High-strength, high-conductivity copper alloy manufacturing method - Google Patents

High-strength, high-conductivity copper alloy manufacturing method

Info

Publication number
JPH0611904B2
JPH0611904B2 JP61289690A JP28969086A JPH0611904B2 JP H0611904 B2 JPH0611904 B2 JP H0611904B2 JP 61289690 A JP61289690 A JP 61289690A JP 28969086 A JP28969086 A JP 28969086A JP H0611904 B2 JPH0611904 B2 JP H0611904B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
strength
copper alloy
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61289690A
Other languages
Japanese (ja)
Other versions
JPS63143246A (en
Inventor
元久 宮藤
功 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61289690A priority Critical patent/JPH0611904B2/en
Publication of JPS63143246A publication Critical patent/JPS63143246A/en
Publication of JPH0611904B2 publication Critical patent/JPH0611904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本考案は高力、高導電性銅合金の製造方法に関し、さら
に詳しくは、電子部品、特に、半導体リードフレームお
よび端子等の材料に使用することができる引張強さ33
kgf/mm2以上、延び25%以上および導電率65%IA
CSを有する高力、高導電性銅合金の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a high-strength, high-conductivity copper alloy, and more specifically, it is used as a material for electronic parts, particularly semiconductor lead frames and terminals. Tensile strength 33
kgf / mm 2 or more, elongation 25% or more and conductivity 65% IA
The present invention relates to a method for producing a high strength, high conductivity copper alloy having CS.

[従来技術] 従来においても、Fe1.5〜3.0wt%を含有する銅合金を
加工して電子部品等の材料を製造することは、特公昭5
2−020404号公報、特公昭55−014132号
公報、特公昭55−014133号公報および特公昭5
5−014134号公報に記載されている。
[Prior Art] Conventionally, it is disclosed in Japanese Examined Patent Publication No. Sho 5 that a copper alloy containing 1.5 to 3.0 wt% of Fe is processed to produce a material such as an electronic component.
No. 2-020404, Japanese Patent Publication No. 55-014132, Japanese Patent Publication No. 55-014133 and Japanese Patent Publication No. 5
No. 5,014,134.

上記した特公昭55−014134号公報には、Fe1.
5〜3.0wt%を含有し、本質的に残部Cuである銅合金を
800℃〜1020℃の温度で熱間加工し、さらに、3
0%以上の圧下率で冷間加工し、400℃〜550℃の
温度で30分間以上の時効焼鈍を行ない、さらに、20
0℃/1時間以下の冷却速度で冷却する方法が示されて
いる。そして、この方法においては、冷間圧延と時効焼
鈍との組み合わせが一サイクルとする説明はなく、三サ
イクルが最も望ましいとあり、機械的性質や導電率もあ
る程度の値が得られている。
In the above-mentioned Japanese Examined Patent Publication No. 55-014134, Fe1.
A copper alloy containing 5 to 3.0 wt% and essentially Cu as the balance is hot-worked at a temperature of 800 ° C to 1020 ° C.
Cold working is performed at a rolling reduction of 0% or more, and aging annealing is performed at a temperature of 400 ° C. to 550 ° C. for 30 minutes or more.
A method of cooling at a cooling rate of 0 ° C./1 hour or less is shown. In this method, there is no explanation that the combination of cold rolling and aging annealing is one cycle, and it is said that three cycles are most desirable, and mechanical properties and electrical conductivity have some values.

即ち、従来のFe1.5〜3.0wt%を含有する本質的に残部
Cuからなる銅合金の処理工程は、基本的には400℃
〜550℃の温度で30分間以上の焼鈍と30%以上の
圧下率の冷間圧延を二サイクル以上、理想的には三サイ
クル行なうことが必須であり、従って、これらの工程を
考えると焼鈍はコイル状態でベル型炉中で行なわれるの
で、焼鈍前は焼鈍時の密着防止対策さらに焼鈍後は酸化
スケールの除去の工程が2〜3回必要となっている。
That is, the conventional treatment process of a copper alloy containing essentially 1.5% to 3.0% by weight of Fe and the balance being Cu is basically 400 ° C.
It is indispensable to perform annealing at a temperature of up to 550 ° C. for 30 minutes or more and cold rolling with a reduction ratio of 30% or more for two cycles or more, ideally three cycles. Therefore, considering these steps, annealing is required. Since it is carried out in a bell-shaped furnace in a coiled state, it is necessary to perform a step of preventing adhesion during annealing before annealing and a step of removing oxide scale after annealing twice or three times.

[発明が解決しようとする問題点] 本発明は上記に説明した従来法の処理工程が複雑である
という問題点に鑑み、本発明者が鋭意研究を行なった結
果、従来法のように三サイクル工程を行なう必要がな
く、冷間圧延と時効焼鈍の組み合わせが一サイクルで行
なうことにり、従来法と同等の引張強さ(35.2kgf/m
m2)、伸び(27.5%)および導電率(73.5%IACS)
を有する電子部品等に好適な高力、高導電性銅合金の製
造方法を開発したのである。
[Problems to be Solved by the Invention] In the present invention, in view of the problem that the processing steps of the conventional method described above are complicated, as a result of intensive studies by the present inventor, as a result of the conventional method, three cycles were obtained. There is no need to perform the process, and the combination of cold rolling and aging annealing is performed in one cycle, resulting in a tensile strength equivalent to that of the conventional method (35.2 kgf / m
m 2 ), elongation (27.5%) and conductivity (73.5% IACS)
We have developed a method for producing a high-strength, high-conductivity copper alloy suitable for electronic parts and the like.

[問題点を解決するための手段] 本発明に係る高力、高導電性銅合金の製造方法の特徴と
するところは、 Fe1.5〜3.0wt% を含有し、残部Cuよりなる銅基合金の鋳塊を、800
℃〜1050℃の温度で熱間圧延し、その後、トータル
減面率90%以上の冷間圧延を行ない、550℃(但し
550℃を含まず)〜600℃の温度で30分以上2時
間以下の焼鈍後、冷却途中で475℃〜525℃の温度
において30分以上6時間以下の焼鈍を行なうことにあ
る。
[Means for Solving Problems] A feature of the method for producing a high-strength, high-conductivity copper alloy according to the present invention is that the copper-based alloy contains Fe 1.5 to 3.0 wt% and the balance is Cu. 800 ingots
Hot rolling at a temperature of ℃ to 1050 ℃, and then cold rolling at a total surface reduction rate of 90% or more, and at a temperature of 550 ℃ (excluding 550 ℃) to 600 ℃ for 30 minutes or more and 2 hours or less After annealing, the annealing is performed for 30 minutes to 6 hours at a temperature of 475 ° C to 525 ° C during cooling.

本発明に係る高力、高導電性銅合金の製造方法において
は、まず、Feを1.5〜3.0wt%含有する銅基合金の鋳塊
を連続鋳造法等により造塊を行なう。次いで、この銅基
合金を800℃〜1050℃の温度で熱間圧延を行な
う。これは、造塊の凝固過程において生じたFeの晶出
物を銅中に固溶させるためであり、これにより、後の焼
鈍においてFeの微細な晶出物が多くなり、時効よる強
度向上の効果が大きくなる。従って、800℃未満の温
度ではこのような効果は期待できず、また、1050℃
を越えるとこの効果は飽和するのである。
In the method for producing a high-strength, high-conductivity copper alloy according to the present invention, first, an ingot of a copper-based alloy containing 1.5 to 3.0 wt% of Fe is agglomerated by a continuous casting method or the like. Then, this copper-based alloy is hot-rolled at a temperature of 800 ° C to 1050 ° C. This is because the crystallized substance of Fe generated in the solidification process of the ingot is solid-dissolved in copper, which increases the amount of fine crystallized substance of Fe in the subsequent annealing, which improves the strength by aging. Greater effect. Therefore, such effects cannot be expected at temperatures below 800 ° C, and 1050 ° C
This effect becomes saturated when the value exceeds.

この熱間圧延を行った後、冷間圧延をトータル減面率9
0%以上で行うのである。この減面率について説明す
る。
After this hot rolling, the cold rolling was performed to obtain a total area reduction rate of 9
It is performed at 0% or more. This area reduction rate will be described.

即ち、溶解、鋳造後の冷却途中で400℃以上500℃
以下の温度範囲において、冷却速度が遅いとFeは析出
し易くなり、1部のFeが析出する。これらのFeは4
75〜525℃の温度において、30分以上を要した場
合に生じた析出物のうち母相と整合性のない大きい析出
物は強度向上に寄与しない。従って、熱間圧延後の恒温
のFeの固溶域から急冷を行う必要がある。そして、熱
間圧延は鋳塊中に晶出しているFeを母相へ固溶させる
ための加熱と低エネルギーでの薄板化の手段であり、熱
間圧延終了後の温度はFeの析出が生じ難い温度となる
650℃以上の温度で圧延を終了し、650℃以上の温
度から焼入れを行うには、熱間圧延終了の板厚は20mm
以下、望ましくは、15〜18mmとするのがよい。
That is, 400 ℃ or more and 500 ℃ or more during melting and cooling after casting.
When the cooling rate is slow in the temperature range below, Fe tends to precipitate, and a part of Fe precipitates. These Fe are 4
At a temperature of 75 to 525 ° C., among the precipitates generated when it takes 30 minutes or more, large precipitates that are not compatible with the mother phase do not contribute to the strength improvement. Therefore, it is necessary to perform quenching from the constant temperature solid solution region of Fe after hot rolling. The hot rolling is a means for heating the solid solution of Fe crystallized in the ingot into the parent phase and thinning the plate with low energy. At the temperature after the hot rolling, precipitation of Fe occurs. To finish rolling at a temperature of 650 ° C or higher, which is a difficult temperature, and perform quenching at a temperature of 650 ° C or higher, the plate thickness after hot rolling is 20 mm.
Below, it is desirable to set it to 15 to 18 mm.

さらに、熱間圧延後の板材を10〜20mmの厚さにおい
て、1回だけの時効処理を行い、調整するためには90
%以上の減面率となる。
Furthermore, in order to adjust the hot-rolled sheet material with a thickness of 10 to 20 mm by performing only one aging treatment, 90
Area reduction rate of over%.

また、時効前の板材の減面率を大きくし、加工歪の多い
材料はFeの析出の際の生成核が均一化し、内部エネル
ギーが大きくなるので、均一で多量の析出物となり、F
e析出物の大きさが微細となる。従って、減面率(冷間
圧延率)は高い方が好ましく、トータル減面率は90%
以上とする。
In addition, by increasing the area reduction rate of the plate material before aging, and in the case of a material with a large amount of work strain, the nuclei generated during the precipitation of Fe become uniform and the internal energy increases, so a uniform and large amount of precipitate
e The size of the precipitate becomes fine. Therefore, it is preferable that the area reduction rate (cold rolling rate) is high, and the total area reduction rate is 90%.
That is all.

このように、熱間圧延に続いて冷間圧延を行ない、次い
で、銅基合金の焼鈍が行なわれる。従来のように、冷間
圧延と時効焼鈍を繰り返す場合には、時効焼鈍により、
一旦析出したFeの析出物が次の時効焼鈍により凝集粗
大化するが、この粗大化したFeの析出物は銅合金の強
度向上には寄与しないのである。
Thus, the hot rolling is followed by the cold rolling, and then the copper-based alloy is annealed. As in the past, when cold rolling and aging annealing are repeated, by aging annealing,
The Fe precipitates once precipitated are aggregated and coarsened by the subsequent aging annealing, but the coarsened Fe precipitates do not contribute to the strength improvement of the copper alloy.

本発明に係る高力、高導電性銅合金の製造方法において
は、冷間圧延と時効焼鈍を繰り返すことなく、一サイク
ルで行なうので銅合金の強度は向上する。
In the method for producing a high-strength, high-conductivity copper alloy according to the present invention, the strength of the copper alloy is improved because cold rolling and aging annealing are performed in one cycle without repeating.

また、冷間圧延を行なった後の焼鈍は2段焼鈍を行なう
のであり、即ち、まず、冷間圧延された銅基合金を55
0℃を越え〜600℃の温度に加熱して30分以上2時
間以下の焼鈍を行ない、その直後、475℃〜525℃
の温度にまで冷却し、その温度において30分以上6時
間以下の焼鈍を行なう。
Further, the annealing after the cold rolling is a two-stage annealing, that is, first, the cold rolled copper base alloy is
It is heated to a temperature of more than 0 ° C to 600 ° C and annealed for 30 minutes or more and 2 hours or less, and immediately thereafter, 475 ° C to 525 ° C.
It is cooled to the temperature of and is annealed at that temperature for 30 minutes or more and 6 hours or less.

最初の焼鈍は、圧延処理された銅基合金の組織を微細に
再結晶させるためであり、焼鈍温度は550℃未満の温
度においては組織の再結晶化は進行しないため強度が向
上しない。また、600℃を越える温度ではFeの固溶
が進行し、導電率が悪くなるので、焼鈍温度は550℃
を越え〜600℃とする必要がある。また、組織が充分
に再結晶するためには、30分間以上の焼鈍時間を必要
とし、再結晶させて結晶を整粒化させ、また、2時間を
越えるとこのような効果は顕著でなくなる。
The first annealing is for finely recrystallizing the structure of the rolled copper-based alloy, and at the annealing temperature of less than 550 ° C., the recrystallization of the structure does not proceed and the strength is not improved. Further, since the solid solution of Fe progresses at a temperature exceeding 600 ° C and the electrical conductivity deteriorates, the annealing temperature is 550 ° C.
It is necessary to exceed ~ 600 ° C. Further, in order for the structure to be sufficiently recrystallized, an annealing time of 30 minutes or more is required, and recrystallization is performed to adjust the size of the crystal, and if it exceeds 2 hours, such an effect is not remarkable.

そして、2回目の焼鈍は、Feを析出させるために行な
う時効焼鈍であり、これにより導電率が向上する。そし
て、Feを効率よく析出させるためには475℃〜52
5℃の温度において、30分以上6時間以下の焼鈍を行
なう必要がある。この2回目の焼鈍は、30分未満では
Feを効率良く析出させることができず、また、長時間
行う程効果は顕著となるが、6時間を越えると効果は顕
著ではなくなる。
The second annealing is an aging annealing performed to precipitate Fe, which improves the conductivity. And, in order to precipitate Fe efficiently, 475 ° C. to 52 ° C.
It is necessary to anneal at a temperature of 5 ° C. for 30 minutes or more and 6 hours or less. If the second annealing is less than 30 minutes, Fe cannot be efficiently precipitated, and the effect becomes more prominent as the annealing is performed for a longer time, but if it exceeds 6 hours, the effect becomes less prominent.

このように、最初の焼鈍を行った後、引き続きその冷却
途中において、2回目の焼鈍を行うことによって、銅合
金中の再結晶粒の整粒化とFe析出ものによる析出強化
が行われて、強度および導電率に優れた銅合金とするこ
とができる。また、最初の焼鈍と2回目の焼鈍は途切れ
ることがないので、工程が増えることがなく、省エネル
ギーを図ることができる。
As described above, after the first annealing, the second annealing is continuously performed during the cooling, whereby the grain size of the recrystallized grains in the copper alloy and the precipitation strengthening by Fe precipitates are performed. A copper alloy excellent in strength and conductivity can be obtained. Moreover, since the first annealing and the second annealing are not interrupted, it is possible to save energy without increasing the number of steps.

このように、本発明に係る高力、高導電性銅合金の製造
方法は、冷間圧延と時効焼鈍とを繰り返さずに一サイク
ルで行ない、さらに、2段焼鈍を採用することにより、
従来同様の特性を有するCu−1.5〜3.0Fe合金を、簡単
に低コストで製造することができる。
Thus, the high-strength, high-conductivity copper alloy manufacturing method according to the present invention is performed in one cycle without repeating cold rolling and aging annealing, and by adopting two-stage annealing,
A Cu-1.5 to 3.0Fe alloy having the same characteristics as the conventional one can be easily manufactured at low cost.

なお、さらに性質を向上させるために冷間圧延を行な
い、そして、この冷間圧延によって生じた局部歪みを除
去するために、300℃〜400℃(400℃を含ま
ず)の温度で5秒間以上の焼鈍を行なってもよい。
In order to further improve the properties, cold rolling is performed, and in order to remove the local strain caused by the cold rolling, the temperature is 300 ° C to 400 ° C (not including 400 ° C) for 5 seconds or more. May be annealed.

本発明に係る高力、高導電性銅合金の製造方法において
は、550〜600℃の温度での焼鈍は1回であり、焼
鈍前の密着防止対策と焼鈍後の酸化スケールの除去もそ
れぞれ1回で済むので工程の短縮化が図れる。
In the method for producing a high-strength, high-conductivity copper alloy according to the present invention, the annealing at a temperature of 550 to 600 ° C. is performed once, and the adhesion prevention measure before the annealing and the oxide scale removal after the annealing are each 1 The process can be shortened because it can be done only once.

また、本発明に係る高力、高導電性銅合金の製造方法に
おいて、使用する銅合金にはP0.02〜0.1wt%、Zn0.0
1〜0.5wt%の内から選んだ1種または2種を含有して
も、目標とする特性、特に導電率は満足できる。
Further, in the method for producing a high-strength, high-conductivity copper alloy according to the present invention, the copper alloy used is P0.02 to 0.1 wt%, Zn0.0
Even if one or two selected from the range of 1 to 0.5 wt% is contained, the target characteristics, especially the electrical conductivity, can be satisfied.

さらに、Mn、Sn、Al、Ni、TiおよびCrは0.
002〜0.2WT%含有されても、導電率65%IACSを満
足するので許容される。
In addition, Mn, Sn, Al, Ni, Ti and Cr are 0.
Even if the content of 002 to 0.2 WT% is contained, the electrical conductivity of 65% satisfies IACS, so that it is acceptable.

[実施例] 本発明に係る高力、高導電性銅合金の製造方法の実施例
を説明する。
[Example] An example of a method for producing a high-strength, high-conductivity copper alloy according to the present invention will be described.

実施例 小型電気炉で木炭被覆下に、Cu−2.3wt%Fe−0.15w
t%Zn−0.03wt%Pを溶解し、傾注式の鋳鉄性のブッ
クモールドに鋳込み、厚さ60mm、幅60mm、長さ18
0mmの鋳塊を製作した。
Example Cu-2.3 wt% Fe-0.15w under charcoal coating in a small electric furnace
Melt t% Zn-0.03wt% P and cast into a tilting cast iron book mold, thickness 60mm, width 60mm, length 18
A 0 mm ingot was produced.

これらの鋳塊の表面および裏面をそれぞれ2.5mm面削
し、900℃の温度で熱間圧延を開始し、厚さ10mmと
し、700℃の温度から水中に投入して急冷した。この
熱間圧延材の表面の酸化スケールをグライダーにより除
去した。
The front surface and the back surface of each of these ingots were chamfered by 2.5 mm, hot rolling was started at a temperature of 900 ° C. to a thickness of 10 mm, and the steel was put into water from a temperature of 700 ° C. and rapidly cooled. The oxide scale on the surface of this hot rolled material was removed by a glider.

上記熱間圧延材を冷間圧延ロールで厚さ10mmから厚さ
0.635mmまで加工したが、耳割れ等は生じなかった。
The hot rolled material is cold rolled with a thickness of 10 mm to
Although it was processed to 0.635 mm, there was no cracking in the ears.

先ず、この中間圧延材をトリクレンにより脱脂した後、
不活性ガス雰囲気炉中で、530℃、575℃および6
50℃の温度でそれぞれ2時間保持した。引き続き、冷
却途中において425〜550℃の温度において25℃
間隔で2時間の焼鈍を行った。
First, after degreasing this intermediate rolled material with trichlene,
530 ° C, 575 ° C and 6 in an inert gas atmosphere furnace
The temperature was kept at 50 ° C. for 2 hours each. Subsequently, 25 ° C at a temperature of 425 to 550 ° C during cooling
Annealing was performed for 2 hours at intervals.

このようにして得られたの特性を第1表に示す。The characteristics of thus obtained are shown in Table 1.

焼鈍に際しては、トリクレン脱脂後窒素ガス炉中で行な
い、焼鈍後は184g/1の硫酸を含む水溶液で酸化スケ
ールを除去した。
The annealing was performed in a nitrogen gas furnace after degreasing trichlene, and after the annealing, the oxide scale was removed with an aqueous solution containing 184 g / 1 of sulfuric acid.

引張強さの引張り方向は、圧延方向に平行に行ない、試
験片の形状はASTME8とした。
The tensile strength was set parallel to the rolling direction, and the shape of the test piece was ASTM E8.

比較方法は、厚さ10mmの上記熱間圧延材の冷間圧延を
行って厚さ2.54mmとし、この材料を490℃の温度で2
時間の焼鈍を行ない、酸洗後、冷間圧延して厚さ1.27mm
とし、次いで、この材料を440℃の温度で2時間の焼
鈍を行ない、さらに、酸洗後、冷間圧延して厚さ0.635m
mとし、この材料を440℃の温度で2時間の焼鈍を行
ない、第1表NO.19の結果を得た。
As a comparison method, the above hot-rolled material having a thickness of 10 mm was cold-rolled to a thickness of 2.54 mm, and this material was subjected to 2 at a temperature of 490 ° C.
Annealed for an hour, pickled, then cold rolled to a thickness of 1.27mm
Then, this material is annealed at a temperature of 440 ° C. for 2 hours, further pickled, and then cold rolled to a thickness of 0.635 m.
This material was annealed at a temperature of 440 ° C. for 2 hours, and the result of No. 19 in Table 1 was obtained.

第1表から次のことが明らかである。The following are clear from Table 1.

本発明に係る高力、高導電性銅合金の製造方法による銅
基合金NO.9〜NO.11は、比較例のNO.19に示すよう
な3回の焼鈍を行なわなくても、引張強さ33kgf/mm2
以上、伸び25%以上および導電率65%IACS以上
を有しており、比較例NO.7と同等の特性を示してい
る。
The copper-based alloys No. 9 to No. 11 produced by the method for producing a high-strength, high-conductivity copper alloy according to the present invention have tensile strengths that do not have to be annealed three times as shown in Comparative Example No. 19. 33 kgf / mm 2
As described above, it has an elongation of 25% or more and an electrical conductivity of 65% IACS or more, and shows the characteristics equivalent to those of Comparative Example No. 7.

なお、NO.20は、第1回目の焼鈍温度575℃、焼鈍
時間25分、第2回目の焼鈍温度500℃、焼鈍時間1
20分、NO.2には、第1回目の焼鈍温度575℃、焼
鈍時間180分、第2回目の焼鈍温度500℃、焼鈍時
間120分である。
No. 20 is as follows: first annealing temperature 575 ° C, annealing time 25 minutes, second annealing temperature 500 ° C, annealing time 1
For 20 minutes and No. 2, the first annealing temperature is 575 ° C., the annealing time is 180 minutes, the second annealing temperature is 500 ° C., and the annealing time is 120 minutes.

また、2段焼鈍工程中の1回目の焼鈍温度が550℃未
満では引張強さが充分でなく、600℃を越える温度で
は導電率が65%IACSを満たしていない。そして、
2回目の焼鈍温度が475℃未満、或いは、525℃を
越える温度では導電率が65%IACSを満たしていな
い。
Further, when the first annealing temperature in the two-step annealing step is less than 550 ° C, the tensile strength is not sufficient, and at the temperature exceeding 600 ° C, the electrical conductivity does not satisfy 65% IACS. And
If the second annealing temperature is less than 475 ° C. or exceeds 525 ° C., the conductivity does not satisfy 65% IACS.

[発明の効果] 以上説明したように、本発明に係る高力、高導電性銅合
金の製造方法は上記の構成であるから、従来から使用さ
れているFe1.5〜3.0wt%含有し、残部Cuからなる銅
基合金の熱間圧延後の加工工程を簡略化したもので、そ
れにも拘わらず従来工程材料と全く同等の特性を有して
いるものであり、さらに、ロールに占める段取り等を含
めた時間の節約、焼鈍炉に関する段取り等を含めた時間
の節約、酸洗回数の減少、圧延、焼鈍、酸洗を繰り返す
毎に生じる歩留まりの低下の抑制、かつ、コストの低減
等の効果があり、省資源、省エネルギーから工業的に大
きく貢献するものである。
[Effects of the Invention] As described above, the high-strength, high-conductivity copper alloy manufacturing method according to the present invention has the above-described structure, and thus contains conventionally used Fe1.5 to 3.0 wt%. It is a simplified process of hot-rolling a copper-based alloy consisting of the balance Cu, and nevertheless has exactly the same properties as conventional process materials. The effect of saving time, including saving time including setup of the annealing furnace, reducing the number of picklings, suppressing the decrease in yield that occurs each time rolling, annealing, and pickling are repeated, and reducing costs. Therefore, it greatly contributes industrially from resource saving and energy saving.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Fe1.5〜3.0wt% を含有し、残部Cuよりなる銅基合金の鋳塊を、800
℃〜1050℃の温度で熱間圧延し、その後、トータル
減面率90%以上の冷間圧延を行ない、550℃(但し
550℃を含まず)〜600℃の温度で30分以上2時
間以下の焼鈍後、冷却途中で475℃〜525℃の温度
において30分以上6時間以下の焼鈍を行なうことを特
徴とする高力、高導電性銅合金の製造方法。
1. A copper-based alloy ingot containing 1.5 to 3.0 wt% of Fe and the balance of Cu is 800
Hot rolling at a temperature of ℃ to 1050 ℃, and then cold rolling at a total surface reduction rate of 90% or more, and at a temperature of 550 ℃ (excluding 550 ℃) to 600 ℃ for 30 minutes or more and 2 hours or less The method for producing a high-strength, high-conductivity copper alloy, which comprises performing annealing for 30 minutes or more and 6 hours or less at a temperature of 475 ° C. to 525 ° C. during the cooling after annealing.
JP61289690A 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method Expired - Fee Related JPH0611904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61289690A JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61289690A JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Publications (2)

Publication Number Publication Date
JPS63143246A JPS63143246A (en) 1988-06-15
JPH0611904B2 true JPH0611904B2 (en) 1994-02-16

Family

ID=17746484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61289690A Expired - Fee Related JPH0611904B2 (en) 1986-12-04 1986-12-04 High-strength, high-conductivity copper alloy manufacturing method

Country Status (1)

Country Link
JP (1) JPH0611904B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142754B2 (en) * 1995-09-07 2001-03-07 スター精密株式会社 Lead frame for electroacoustic transducer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514132A (en) * 1978-07-13 1980-01-31 Kyoei Seikou Kk Preventing method for oxygen entry of cast ingot in continuous casting and device thereof
DE2924317C2 (en) * 1979-06-15 1984-07-19 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Two-stage extrusion device for thermoplastic molding compounds, especially for powdered plastics

Also Published As

Publication number Publication date
JPS63143246A (en) 1988-06-15

Similar Documents

Publication Publication Date Title
JPH0841612A (en) Copper alloy and its preparation
JPH09104956A (en) Production of high strength and high electric conductivity copper alloy
JPS6229503B2 (en)
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2000104131A (en) High strength and high conductivity copper alloy and its production
JPH06264202A (en) Production of high strength copper alloy
JP3056394B2 (en) Copper alloy excellent in solder adhesion and plating properties and easy to clean, and method for producing the same
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JPH0949038A (en) High strength copper alloy not generating smut in pretreating process before plating
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPH10287939A (en) Copper alloy for electric and electronic equipment, excellent in punchability
JPH0611904B2 (en) High-strength, high-conductivity copper alloy manufacturing method
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
JPS63128158A (en) Manufacture of high strength copper alloy having high electrical conductivity
JPH0424420B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPH0418016B2 (en)
JP2585347B2 (en) Method for producing highly conductive copper alloy with excellent migration resistance
JPH0243811B2 (en) RIIDOFUREEMUYODOGOKINOYOBISONOSEIZOHO
JP2651122B2 (en) Method for producing Cu-Ni-Si alloy for electric / electronic device parts
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0696757B2 (en) Method for producing high-strength, high-conductivity copper alloy with excellent heat resistance and bendability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees