JPS63139057A - Manufacture of silicon nitride base ceramics - Google Patents

Manufacture of silicon nitride base ceramics

Info

Publication number
JPS63139057A
JPS63139057A JP61285689A JP28568986A JPS63139057A JP S63139057 A JPS63139057 A JP S63139057A JP 61285689 A JP61285689 A JP 61285689A JP 28568986 A JP28568986 A JP 28568986A JP S63139057 A JPS63139057 A JP S63139057A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
weight
oxidizing atmosphere
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61285689A
Other languages
Japanese (ja)
Other versions
JPH0513104B2 (en
Inventor
晃 山川
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61285689A priority Critical patent/JPS63139057A/en
Publication of JPS63139057A publication Critical patent/JPS63139057A/en
Publication of JPH0513104B2 publication Critical patent/JPH0513104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、常温から高温まで浸れた機械的強度を有する
窒化ケイ素質セラミックスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing silicon nitride ceramics having mechanical strength that can withstand temperatures from room temperature to high temperatures.

〔従来の技術〕[Conventional technology]

窒化ケイ素質セラミックスは機械的強度が侵れており、
耐酸化性及び耐摩耗性にも優れているため、新しい構造
部材として期待されている。
The mechanical strength of silicon nitride ceramics has deteriorated,
Because it has excellent oxidation resistance and wear resistance, it is expected to be used as a new structural member.

しかし、窒化ケイ素質セラミックスは高温において機械
的強度が著しく低下する欠点があるため、高温部材等の
用途には応用できなかった。
However, silicon nitride ceramics have the disadvantage that their mechanical strength significantly decreases at high temperatures, so they cannot be applied to high-temperature components.

そこで、窒化ケイ素質セラミックスの高温強度を改善す
る各種の試みがなされている。例えば、焼結助剤として
At203を用い最終焼結体中でこれを5i5N4に固
溶させることにより、粒界ガラス相を残さない方法、あ
るいは粒界ガラス層を熱処理により結晶化する方法等が
提案されている。
Therefore, various attempts have been made to improve the high temperature strength of silicon nitride ceramics. For example, a method has been proposed in which At203 is used as a sintering aid and dissolved in 5i5N4 in the final sintered body so that no grain boundary glass phase remains, or a method in which the grain boundary glass layer is crystallized by heat treatment. has been done.

しかるに、このような従来の高温強度改善方法では、粒
界ガラス相の減少に伴なって逆に常温強度が低下する欠
点があり、常温から高温まで優れた強度を安定して維持
し得る窒化ケイ素質セラミックスを提供することは困難
であった。
However, such conventional high-temperature strength improvement methods have the disadvantage that the room-temperature strength decreases as the grain boundary glass phase decreases. It has been difficult to provide high-quality ceramics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、かかる従来の事情に鑑み、常温から高温まで
優れた強度を安定して維持し得る窒化ケイ素質セラミッ
クスの製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the conventional circumstances, an object of the present invention is to provide a method for producing silicon nitride ceramics that can stably maintain excellent strength from room temperature to high temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の窒化ケイ素質セラミックスの製造方法は、80
重量%以上の窒化ケイ素粉末と、0.1〜10重量%の
IIIa族元素の酸化物粉末と、合計量力0.1〜10
重量%で互いのモル比が0.5〜2.0の範囲内のアル
ミナ粉末及び窒化アルミニウム粉末とを混合し、この混
合粉末を非酸化性雰囲気中において1600〜1850
℃で焼結し、焼結体を非酸化性雰囲気中において160
0〜2000℃で熱間静水圧プレスして緻密化し、その
後非酸化性雰囲気中において1200〜1600℃で熱
処理することを特徴とする。
The method for producing silicon nitride ceramics of the present invention comprises
At least 0.1% by weight of silicon nitride powder, 0.1 to 10% by weight of group IIIa element oxide powder, and a total strength of 0.1 to 10% by weight
Alumina powder and aluminum nitride powder having a molar ratio of 0.5 to 2.0 by weight are mixed, and this mixed powder is heated to 1600 to 1850 molar ratio in a non-oxidizing atmosphere.
The sintered body was sintered at 160 °C in a non-oxidizing atmosphere.
It is characterized in that it is densified by hot isostatic pressing at 0 to 2000°C, and then heat treated at 1200 to 1600°C in a non-oxidizing atmosphere.

〔作 用〕[For production]

本発明の窒化ケイ素質セラミックスの製造方法において
、窒化ケイ素粉末を80重量%以上とする理由は、80
重量%未満では耐酸化性及び耐熱性の低下により窒化ケ
イ素セラミックスとしての特性が維持できないからであ
る。
In the method for producing silicon nitride ceramics of the present invention, the reason why the silicon nitride powder is 80% by weight or more is that 80% by weight or more is used.
This is because if it is less than % by weight, the properties of silicon nitride ceramics cannot be maintained due to a decrease in oxidation resistance and heat resistance.

IIIa族元素の酸化物としては、Y2O5、CeO2
等を使用できるが、その添加量が0.1重量%未満では
焼結助剤としての効果がなく、10重量%を超ると耐酸
化性並びに高温強度の低下が著しい。
As oxides of group IIIa elements, Y2O5, CeO2
However, if the amount added is less than 0.1% by weight, it will not be effective as a sintering aid, and if it exceeds 10% by weight, the oxidation resistance and high temperature strength will be significantly reduced.

アルミナ粉末及び窒化アルミニウム粉末は、合計量が0
.1重量%未満では高温強度の改善効果がなく、10重
量%を超えると高温強度が著しく低下する。また、アル
ミナ粉末と窒化アルミニウム粉末とは等モル数で用いる
のが望ましいが、互いのモル比が0.5〜2.0の範囲
内であれば良好な特性の窒化ケイ素質セラミックスが得
られる。更に、窒化アルミニウムとして酸化ケイ素を含
有したポリタイプを用いることも組成を安定させて、好
ましい結果が得られる。
The total amount of alumina powder and aluminum nitride powder is 0.
.. If it is less than 1% by weight, there is no effect of improving high-temperature strength, and if it exceeds 10% by weight, high-temperature strength is significantly reduced. Further, it is desirable to use the alumina powder and the aluminum nitride powder in equal molar numbers, but if the molar ratio is within the range of 0.5 to 2.0, silicon nitride ceramics with good characteristics can be obtained. Furthermore, using a polytype containing silicon oxide as aluminum nitride also stabilizes the composition and yields favorable results.

本発明の方法では、上記した各粉末を混合した混合粉末
を窒化ケイ素の酸化を防ぐために真空、窒素ガス又はア
ルゴンガスなどの非酸化性雰囲気中において通常のごと
< 1600〜1850℃で30分以上、好ましくは1
20分以上焼結する。得られた焼結体は非酸化性雰囲気
で1600〜2000℃で熱間静水圧プレスして緻密化
する。熱間静水圧プレスは、好ましくは100気圧以上
の窒素含有ガスで30分以上行なう。最後に、緻密質焼
結体を非酸化性雰囲気中において1200〜1600℃
で好ましくは60分以上の熱処理をすることKより、結
晶化の遅れた粒界相が結晶化される。
In the method of the present invention, a mixed powder obtained by mixing each of the above-mentioned powders is heated in a non-oxidizing atmosphere such as vacuum, nitrogen gas or argon gas for 30 minutes or more at <1600 to 1850°C as usual to prevent oxidation of silicon nitride. , preferably 1
Sinter for 20 minutes or more. The obtained sintered body is densified by hot isostatic pressing at 1600 to 2000°C in a non-oxidizing atmosphere. The hot isostatic pressing is preferably carried out using a nitrogen-containing gas at 100 atmospheres or more for 30 minutes or more. Finally, the dense sintered body is heated to 1200 to 1600°C in a non-oxidizing atmosphere.
By performing heat treatment preferably for 60 minutes or more, grain boundary phases whose crystallization has been delayed are crystallized.

かくして製造された窒化ケイ素質セラミックスは空孔率
が2%以下であって、常温での抗折強度が80 kg/
+m2以上及び高温(1200℃)での抗折強度が70
 kg/m2以上と優れた特性を示す。
The silicon nitride ceramic thus produced has a porosity of 2% or less and a bending strength of 80 kg/cm at room temperature.
+m2 or more and bending strength at high temperature (1200℃) is 70
kg/m2 or more, showing excellent properties.

〔実施例〕〔Example〕

実施例1 α型Si3N4粉末(平均粒径0゜5μm)に、Ila
族酸化物としてY2O3、CeO2又はGd2O3粉末
(純度99.9%、平均粒径0.5μm)、α型At2
05粉末(平均粒径0.5μm)及びAtN粉末(純度
99チ、平均粒径1.0μm)を第1表に示す配合で添
加し、ボールミルで3日間混合した。
Example 1 Ila was added to α-type Si3N4 powder (average particle size 0°5 μm).
Group oxides include Y2O3, CeO2 or Gd2O3 powder (purity 99.9%, average particle size 0.5 μm), α-type At2
05 powder (average particle size: 0.5 μm) and AtN powder (purity: 99%, average particle size: 1.0 μm) were added in the proportions shown in Table 1, and mixed in a ball mill for 3 days.

混合粉末を4気圧の窒素ガス中で1800℃で2時間焼
結した。得られた焼結体を更に1000気圧の窒素ガス
中で1800℃で1時間の熱間静水圧プレスを行ない、
次に窒素ガス中において1400℃で10時間熱処理し
た。
The mixed powder was sintered at 1800° C. for 2 hours in nitrogen gas at 4 atmospheres. The obtained sintered body was further subjected to hot isostatic pressing at 1800°C for 1 hour in nitrogen gas at 1000 atmospheres,
Next, heat treatment was performed at 1400° C. for 10 hours in nitrogen gas.

得られたSi3N4質セラミックスの密度(%)、室温
及び高温(1200℃)での曲げ強度(klil/++
m2)  を測定し、結果を第1表に示した。
Density (%) and bending strength at room temperature and high temperature (1200°C) (klil/++) of the obtained Si3N4 ceramics
m2) was measured and the results are shown in Table 1.

第1表 (注)*印は比較例である。Table 1 (Note) *marks are comparative examples.

実施例2 実施例1の第1表阻1の試料を、第2表に示す条件で各
々焼結、熱間静水圧プレス(HIP)及び熱処理した。
Example 2 The samples in Table 1, Table 1 of Example 1 were sintered, hot isostatically pressed (HIP) and heat treated under the conditions shown in Table 2.

熱処理後の各焼結体の特性を実施例1同様に測定して第
2表に合せて表示した。
The properties of each sintered body after heat treatment were measured in the same manner as in Example 1 and are shown in Table 2.

第2表 〔発明の効果〕 本発明によれば、常温から高温まで優れた強度を安定し
て維持し得る窒化ケイ素質セラミックスを提供すること
ができる。
Table 2 [Effects of the Invention] According to the present invention, it is possible to provide a silicon nitride ceramic that can stably maintain excellent strength from room temperature to high temperature.

手続補正書 昭和62年8月24日 1、事件の表示 昭和61年 特 許 願第285689号λ 発明の名
称 窒化ケイ素質セラミックスの製造法3、 補正をす
る者 事件との関係  特許出願人 住 所  大阪市東区北浜5丁目15番地氏 名(名称
)(213)住友電気工業株式会社4、代理人 5、 補正命令の日付 6、 補正により増加する発明の数 明細書の第5頁第4行目の 「30分以上行なう。」の次に下記の文を追加する。
Procedural amendment dated August 24, 1988 1, Indication of the case 1985 Patent Application No. 285689λ Title of the invention Method for manufacturing silicon nitride ceramics 3, Relationship to the case by the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (213) Sumitomo Electric Industries, Ltd. 4, Agent 5, Date of amendment order 6, Number of inventions increased by amendment Page 5, line 4 of the specification Add the following sentence next to "Do this for 30 minutes or more."

「熱間静水圧プレスを経なければ本組成での緻密化は困
難であり、熱間静水圧プレスは本願発明の不可欠の要件
である。」
"It is difficult to densify this composition without hot isostatic pressing, and hot isostatic pressing is an essential requirement of the present invention."

Claims (1)

【特許請求の範囲】[Claims] (1)80重量%以上の窒化ケイ素粉末と、0.1〜1
0重量%のIIIa族元素の酸化物粉末と、合計量が0
.1〜10重量%で互いのモル比が0.5〜2.0の範
囲内のアルミナ粉末及び窒化アルミニウム粉末とを混合
し、この混合粉末を非酸化性雰囲気中において1600
〜1850℃で焼結し、焼結体を非酸化性雰囲気中にお
いて1600〜2000℃で熱間静水圧プレスして緻密
化し、その後非酸化性雰囲気中において1200〜16
00℃で熱処理することを特徴とする窒化ケイ素質セラ
ミックスの製造方法。
(1) 80% by weight or more of silicon nitride powder and 0.1 to 1
0% by weight of group IIIa element oxide powder and a total amount of 0
.. Alumina powder and aluminum nitride powder having a mutual molar ratio of 1 to 10% by weight are mixed in the range of 0.5 to 2.0, and this mixed powder is heated to 1600% by weight in a non-oxidizing atmosphere.
sintered at ~1850°C, the sintered body was densified by hot isostatic pressing at 1600-2000°C in a non-oxidizing atmosphere, and then densified at 1200-16°C in a non-oxidizing atmosphere.
1. A method for producing silicon nitride ceramics, characterized by heat treatment at 00°C.
JP61285689A 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics Granted JPS63139057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61285689A JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61285689A JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Publications (2)

Publication Number Publication Date
JPS63139057A true JPS63139057A (en) 1988-06-10
JPH0513104B2 JPH0513104B2 (en) 1993-02-19

Family

ID=17694769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285689A Granted JPS63139057A (en) 1986-11-28 1986-11-28 Manufacture of silicon nitride base ceramics

Country Status (1)

Country Link
JP (1) JPS63139057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106635A (en) * 1991-04-10 1993-04-27 Sumitomo Electric Ind Ltd Compound bearing construction
JPH05105517A (en) * 1991-10-21 1993-04-27 Sumitomo Electric Ind Ltd Silicon nitride-based sintered compact
JPH05148028A (en) * 1991-11-28 1993-06-15 Sumitomo Electric Ind Ltd Production of sintered silicon nitride
JPH05155663A (en) * 1991-12-05 1993-06-22 Sumitomo Electric Ind Ltd Silicon nitride sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106635A (en) * 1991-04-10 1993-04-27 Sumitomo Electric Ind Ltd Compound bearing construction
JPH05105517A (en) * 1991-10-21 1993-04-27 Sumitomo Electric Ind Ltd Silicon nitride-based sintered compact
JPH05148028A (en) * 1991-11-28 1993-06-15 Sumitomo Electric Ind Ltd Production of sintered silicon nitride
JPH05155663A (en) * 1991-12-05 1993-06-22 Sumitomo Electric Ind Ltd Silicon nitride sintered body

Also Published As

Publication number Publication date
JPH0513104B2 (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JPS63139057A (en) Manufacture of silicon nitride base ceramics
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JPS61158866A (en) Ceramic sintered body and manufacture
JPS59232971A (en) Abrasion resistant sialon base ceramics
JPS62153170A (en) Silicon nitride ceramic sintered body and manufacture
JP3140122B2 (en) Silicon nitride sintered body
JP2691295B2 (en) Silicon nitride sintered body
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS61270260A (en) Manufacture of silicon nitride base ceramic
JP2801455B2 (en) Silicon nitride sintered body
JP2746759B2 (en) Silicon nitride sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production
JPH0535107B2 (en)
JP2783702B2 (en) Silicon nitride sintered body
JPS6126569A (en) Manufacture of silicon nitride sintered body
JPH04219374A (en) Silicon nitride-based sintered compact and its production
JPS6335463A (en) Manufacture of alumina-silica base ceramics
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material