JP2691295B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP2691295B2
JP2691295B2 JP63335570A JP33557088A JP2691295B2 JP 2691295 B2 JP2691295 B2 JP 2691295B2 JP 63335570 A JP63335570 A JP 63335570A JP 33557088 A JP33557088 A JP 33557088A JP 2691295 B2 JP2691295 B2 JP 2691295B2
Authority
JP
Japan
Prior art keywords
sintered body
sio
silicon nitride
rare earth
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63335570A
Other languages
Japanese (ja)
Other versions
JPH02180758A (en
Inventor
政宏 佐藤
真 吉田
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63335570A priority Critical patent/JP2691295B2/en
Publication of JPH02180758A publication Critical patent/JPH02180758A/en
Application granted granted Critical
Publication of JP2691295B2 publication Critical patent/JP2691295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化珪素質に関し特に中温域の耐酸化性およ
び強度に優れた焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a silicon nitride material, and more particularly to a sintered body excellent in oxidation resistance and strength in a medium temperature range.

〔従来技術〕(Prior art)

窒素珪素から成る焼結体は原子の結合様式が共有結合
を主体として成り、強度、硬度、熱的化学的安定性にお
いて、優れた特性を有することから、熱機関等のエンジ
ニアセラミックスの応用が進められている。
Sintered bodies made of silicon nitride are mainly composed of covalent bonds, and have excellent properties in strength, hardness, and thermal chemical stability. Therefore, application of engineer ceramics for heat engines is progressing. Has been.

近年、熱機関はその高効率化に伴い、熱機関の作動温
度は1400℃以上になることが考えられ、この条件下で使
用可能な材料が望まれている。
In recent years, it has been considered that the operating temperature of the heat engine becomes 1400 ° C. or higher as the efficiency of the heat engine increases, and a material usable under this condition is desired.

そこで、従来から、高温特性に優れた焼結体を得るた
めに、焼結体の組成又は焼結方法の面から各種の検討が
成されている。
Therefore, various studies have heretofore been made in terms of the composition of the sintered body or the sintering method in order to obtain a sintered body having excellent high temperature characteristics.

組成の点では特に焼結助剤としてY2O3等の希土類元素
酸化物をはじめAl2O3やMgO,CaO等のアルカリ土類元素酸
化物等を用い、これらを含む組成物を常圧焼成、ホット
プレス焼成、ガス加圧焼成、熱間静水圧焼成することに
よって高密度の焼結体を得ることが知られている。
In terms of composition, in particular, rare earth element oxides such as Y 2 O 3 as well as alkaline earth element oxides such as Al 2 O 3 and MgO and CaO are used as sintering aids, and compositions containing these are subjected to atmospheric pressure. It is known to obtain a high density sintered body by firing, hot press firing, gas pressure firing, or hot isostatic firing.

ところが、上記系では室温強度は十分な強度を有する
ものの高温特性は未だ不充分なものであった。
However, in the above system, the room temperature strength has sufficient strength, but the high temperature characteristics are still insufficient.

このように高温特性が劣化する大きな要因として、焼
結体の窒化珪素結晶間に存在する粒界相の低融点化が指
摘されている。そこで、粒界相を形成する焼結助剤のう
ち、Al2O3,MgO,CaO等の低融点酸化物を含まないいわゆ
る窒化珪素(Si3N4)−希土類酸化物(RE2O3)−酸化珪
素(SiO2)からなる系が高温特性に優れた系として注目
されており、この系において粒界を結晶化させる等の改
良が進められている。
It has been pointed out that the melting point of the grain boundary phase existing between the silicon nitride crystals of the sintered body is lowered as a major cause of the deterioration of the high temperature characteristics. Therefore, among the sintering aids that form the grain boundary phase, so-called silicon nitride (Si 3 N 4 ) -rare earth oxide (RE 2 O 3 ) that does not include low-melting point oxides such as Al 2 O 3 , MgO, and CaO. A system consisting of) -silicon oxide (SiO 2 ) is attracting attention as a system excellent in high temperature characteristics, and improvements such as crystallization of grain boundaries in this system are being made.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし乍ら、Si3N4−RE2O3−SiO2系から成る窒化珪素
質焼結体は1200℃以上の高温域での耐酸化性および強度
には優れるものの800〜1200℃における中温域の耐酸化
性が劣化し強度が低くなるという欠点を有している。
However, although the silicon nitride sintered body composed of Si 3 N 4 —RE 2 O 3 —SiO 2 system is excellent in oxidation resistance and strength in the high temperature range of 1200 ° C or higher, the temperature range of 800 to 1200 ° C is high. Has the drawback that its oxidation resistance deteriorates and its strength decreases.

この原因の一つにはRE2O3を多く含む粒界相が高融点
化合物として存在していることによって中温域では焼結
体表面に酸化膜が生じ難いことが挙げられ、さらには堆
積膨張によってクラックが生じるためと考えられてい
る。
One of the reasons for this is that the presence of a grain boundary phase containing a large amount of RE 2 O 3 as a high melting point compound makes it difficult for an oxide film to form on the surface of the sintered body in the middle temperature range. It is thought that this is because cracks occur.

そこで、一つの対策としてAl2O3やSiO2成分を加えて
粒界相の融点を下げることが挙げられるが全体の組成と
してAl2O3やSiO2を多量に加えると焼結体自体の高温強
度が低下し、高温用材料として不向きなものとなってし
まう。
Therefore, one measure is to lower the melting point of the grain boundary phase by adding Al 2 O 3 and SiO 2 components, but if a large amount of Al 2 O 3 and SiO 2 is added as the overall composition, the sintered body itself The high temperature strength decreases, making it unsuitable as a high temperature material.

〔発明の目的〕[Object of the invention]

本発明はSi3N4−RE2O3−SiO2系から成る窒化珪素質焼
結体において特に1000℃付近の中温域における耐酸化
性、強度を改善した窒化珪素質焼結体を提供することを
目的とする。
The present invention provides a silicon nitride sintered body made of Si 3 N 4 —RE 2 O 3 —SiO 2 system, which has improved oxidation resistance and strength, especially in the middle temperature range around 1000 ° C. The purpose is to

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者等は上記目的に対し、研究を重ねた結果、希
土類元素酸化物(RE2O3)としてSc2O3,Er2O3,Yb2O3,Ho2
O3及びDy2O3の少なくとも1種を含有した特定組成のSi3
N4−RE2O3−SiO2系焼結体の表面部に存在する希土類元
素を析出あるいは揮散させて、表面部のみをSiO2が過剰
に存在する組成に変換することによって、中温域におけ
る耐酸化性および強度を向上することができることを知
見した。
The inventors of the present invention have conducted extensive research on the above object, and as a result, as rare earth element oxides (RE 2 O 3 ), Sc 2 O 3 , Er 2 O 3 , Yb 2 O 3 , Ho 2
O 3 and Dy 2 O Si 3 having a specific composition containing at least one 3
By depositing or volatilizing the rare earth elements present on the surface of the N 4 —RE 2 O 3 —SiO 2 -based sintered body and converting only the surface into a composition in which SiO 2 is present in excess, the medium temperature range It has been found that the oxidation resistance and strength can be improved.

本発明の窒化珪素質焼結体は、全体の組成が窒化珪素
(Si3N4)85〜99モル%、特に88〜95モル%と、希土類
元素酸化物(RE2O3)としてSc,Yb,Er,Ho及びDyの群から
選択される少なくとも1種を0.5〜5モル%、特に2〜
4モル%と過剰酸素(SiO2換算)10モル%以下の割合か
ら成る。ここで過剰酸素とは焼結体の全酸素量から希土
類元素酸化物として混入する酸素を差し引いた残りの酸
素量をSiO2換算したものである。
The silicon nitride sintered body of the present invention has a total composition of 85 to 99 mol% silicon nitride (Si 3 N 4 ), particularly 88 to 95 mol%, and Sc as a rare earth element oxide (RE 2 O 3 ). 0.5-5 mol% of at least one selected from the group of Yb, Er, Ho and Dy, especially 2
4 mol% and excess oxygen (converted to SiO 2 ) 10 mol% or less. Here, the excess oxygen is obtained by subtracting the oxygen mixed as the rare earth element oxide from the total oxygen amount of the sintered body and converting the remaining oxygen amount into SiO 2 .

本発明における特徴は上記組成の焼結体の表面部の過
剰酸素/希土類元素酸化物(モル比)(以下、単にSiO2
/RE2O3と称す)が内部の比率よりも大きいことを特徴と
するもので、これによって焼結体表面部の粒界相のみが
低融点化し、中温域にて酸化膜が形成し易く、且つ、体
積膨張等の生じ難い組成となり、中温域における耐酸化
性および強度を向上することができる。
A feature of the present invention is that excess oxygen / rare earth element oxide (molar ratio) on the surface portion of the sintered body having the above composition (hereinafter, simply referred to as SiO 2
/ RE 2 O 3 ) is greater than the internal ratio, which lowers the melting point of only the grain boundary phase on the surface of the sintered body, making it easier to form an oxide film in the middle temperature range. In addition, the composition is less likely to cause volume expansion and the like, and the oxidation resistance and strength in the medium temperature range can be improved.

本発明において焼結体の組成を前述の範囲に限定した
のは、酸化珪素が85モル%未満、あるいは希土類元素酸
化物が5モル%を超える場合、また過剰酸素が10モル%
を超えると強度が低く,、逆に窒化珪素が99モル%を超
えるか、あるいは希土類元素酸化物が0.5モル%未満で
は、緻密な焼結体が得にくい。
In the present invention, the composition of the sintered body is limited to the above range when silicon oxide is less than 85 mol% or rare earth element oxide is more than 5 mol% and excess oxygen is 10 mol%.
If the content exceeds 99 mol%, on the contrary, if the silicon nitride content exceeds 99 mol%, or if the rare earth element oxide content is less than 0.5 mol%, it is difficult to obtain a dense sintered body.

なお、本発明によれば、焼結体の表面部のSiO2/RE2O3
比はその効果上2〜10、内部のSiO2/RE2O3比が0.5〜7
であるのが望ましく、その差は1以上が好ましい。
Incidentally, according to the present invention, SiO 2 / RE 2 O 3 of the surface portion of the sintered body
The ratio is 2-10 due to its effect, and the internal SiO 2 / RE 2 O 3 ratio is 0.5-7.
And the difference is preferably 1 or more.

また、内部のSiO2/RE2O3比より大きいSiO2/RE2O3比を
有する、特にその差が1以上の表面部は厚みが100μm
以下であることが望ましい。
Also has an internal SiO 2 / RE 2 O 3 ratio greater than SiO 2 / RE 2 O 3 ratio, the thickness is particularly the difference is 1 or more surface portions 100μm
It is desirable that:

このような焼結体を得るためには、先ず窒化珪素、希
土類元素および過剰酸素(SiO2)を配合した成形体を常
圧焼成、ホットプレス焼成、雰囲気加圧焼成あるいは熱
間静水圧焼成等によって1600〜2000℃の温度で窒素含有
雰囲気で焼成して得られ、組成が前述した組成範囲から
成る焼結体を得る。
In order to obtain such a sintered body, first, a molded body containing silicon nitride, a rare earth element and excess oxygen (SiO 2 ) is fired under normal pressure, hot press firing, atmospheric pressure firing or hot isostatic pressing. To obtain a sintered body obtained by firing in a nitrogen-containing atmosphere at a temperature of 1600 to 2000 ° C. and having a composition within the above-mentioned composition range.

このような上記の通常の方法で得られる焼結体は内外
共にSiO2/RE2O3比は実質上同一である。本発明によれ
ば、このよう焼結体に対し、所望により表面を研摩した
後、1400〜1600℃の温度で、且つ雰囲気中にCOガスやSi
Oガス等が混入していない純度の高い窒素雰囲気中で2
〜20時間程度熱処理を施すと、焼結体表面部の希土類元
素が凝集析出または揮散することにより焼結体表面部の
希土類元素の含有量が減少し、実質上表面部のSiO2/RE2
O3モル比が内部のSiO2/RE2O3モル比より大きくなる。こ
のような現象は、希土類元素の中でSc,Yb,Er,HoおよびD
y特有の性質と考えられ、この理由としてはY等の希土
類元素に比較してこれらの元素は粒界において拡散性が
高く、熱処理時に軟化した粒界で自由度が高くなるた
め、組成的に過剰な分が表面部に析出するものと考えら
れる。
The SiO 2 / RE 2 O 3 ratio of the inside and outside of the sintered body obtained by the above-mentioned ordinary method is substantially the same. According to the present invention, after polishing the surface of the sintered body as desired, if desired, at a temperature of 1400 to 1600 ° C. and in an atmosphere of CO gas or Si.
2 in a high-purity nitrogen atmosphere containing no O gas, etc.
When subjected to 20 hours of about heat treatment, the rare earth element content of the sintered body surface portion is reduced by the rare earth elements of the sintered body surface portion to aggregate precipitation or volatilization, SiO 2 / RE 2 of substantially surface portion
The O 3 molar ratio becomes larger than the internal SiO 2 / RE 2 O 3 molar ratio. Such a phenomenon is caused by Sc, Yb, Er, Ho and D among rare earth elements.
This is considered to be a property peculiar to y. The reason for this is that these elements have higher diffusivity at the grain boundaries as compared to rare earth elements such as Y, and the degree of freedom at the grain boundaries softened during heat treatment is high, so compositionally It is considered that an excessive amount is deposited on the surface portion.

なお、熱処理時の雰囲気は実質的に酸素あるいは酸化
物のガスを含まないことが好ましく、これらの酸素の存
在によって希土類元素の移動、析出が阻害されるため、
熱処理に際しては焼結体をSiCやBN等の匣鉢内に配置す
ることが望ましい。
Note that the atmosphere during the heat treatment preferably contains substantially no oxygen or oxide gas, and the presence of these oxygens inhibits the movement and precipitation of the rare earth elements.
At the time of heat treatment, it is desirable to place the sintered body in a container made of SiC, BN, or the like.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 窒化珪素、希土類元素、酸化珪素の各粉末を配合した
成形体を1850℃で3時間、N29.3atmの雰囲気で焼成し、
さらに1800℃,2000atmのアルゴン雰囲気で1時間熱間静
水圧焼成し組成の異なる第1表に示す組成の焼結体を得
た。
(Example) A molded body containing powders of silicon nitride, a rare earth element, and silicon oxide was baked at 1850 ° C. for 3 hours in an atmosphere of N 2 9.3 atm,
Further, hot isostatic pressing was performed for 1 hour in an argon atmosphere at 1800 ° C. and 2000 atm to obtain sintered bodies having different compositions shown in Table 1.

得られた、焼結体を炭化珪素製匣鉢内に配置した1400
〜1600℃の温度で1atmの窒素雰囲気中で熱処理を施し
た。
The obtained sintered body was placed in a silicon carbide container 1400.
Heat treatment was performed at a temperature of ~ 1600 ° C in a nitrogen atmosphere of 1 atm.

得られた焼結体に対し、1000℃の酸化雰囲気で100時
間保持し、酸化重量増を、また1000℃におけるJISR1601
に基づく4点曲げ強度を測定した。
The obtained sintered body is kept in an oxidizing atmosphere at 1000 ° C for 100 hours to increase the weight of the oxidized product, and JIS R1601 at 1000 ° C.
The 4-point bending strength based on the above was measured.

また、表面部のSiO2/RE2O3比と内部のSiO2/RE2O3比と
をIPC分析によって求めた。
Further, a SiO 2 / RE 2 O 3 ratio of the surface portion and the interior of the SiO 2 / RE 2 O 3 ratio was determined by IPC analysis.

第1表の結果からも明らかなように、熱処理前の焼結
体No.2は内外共にSiO2/RE2O3比はほぼ同一であり、1000
℃における耐酸化性は悪いが、これに対し、熱処理を加
えたNo.1の試料ではEr2O3の表面部への析出が認めら
れ、SiO2/RE2O3比は表面部の方が大きくなっており、耐
酸化性、強度が大きく向上した。本発明の試料は、いず
れも1000℃酸化重量増0.1mg/cm2以下、強度85Kg/mm2
達成された。
As is clear from the results in Table 1, the sintered body No. 2 before heat treatment had almost the same SiO 2 / RE 2 O 3 ratio both inside and outside.
Although the oxidation resistance at ℃ is poor, in contrast to this, the heat-treated No. 1 sample showed the precipitation of Er 2 O 3 on the surface, and the SiO 2 / RE 2 O 3 ratio was higher on the surface. Is large, and the oxidation resistance and strength are greatly improved. All the samples of the present invention achieved an increase in oxidation weight at 1000 ° C. of 0.1 mg / cm 2 or less and a strength of 85 Kg / mm 2 .

〔発明の効果〕〔The invention's effect〕

以上、詳述した通り、焼結体の表面部の希土類元素を
減少せしめて表面部のみをSiO2の過剰の組成とすること
によって高温特性を劣化させることなく中温域の耐酸化
性および強度を共に向上させることができ、ターボロー
タ、タービン等への応用をさらに進めることができる。
As described above in detail, by reducing the rare earth elements on the surface of the sintered body and making only the surface of the sintered body an excessive composition of SiO 2 , the oxidation resistance and strength in the medium temperature range can be obtained without deteriorating the high temperature characteristics. Both can be improved, and the application to turbo rotors, turbines, etc. can be further advanced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素85〜99モル%とSc,Yb,Er,Hoおよ
びDyの群から選ばれる少なくとも1種の希土類元素酸化
物(RE2O3)0.5〜5モル%と、過剰酸素(SiO2換算)10
モル%以下の割合から成る焼結体であり、該焼結体の表
面部の過剰酸素/希土類元素酸化物(モル比)が内部の
比率より大きいことを特徴とする窒化珪素質焼結体。
1. 85 to 99 mol% of silicon nitride, 0.5 to 5 mol% of at least one rare earth element oxide (RE 2 O 3 ) selected from the group of Sc, Yb, Er, Ho and Dy, and excess oxygen. (SiO 2 conversion) 10
A silicon nitride sintered body which is a sintered body having a ratio of less than or equal to mol%, wherein an excess oxygen / rare earth element oxide (molar ratio) on a surface portion of the sintered body is higher than an internal ratio.
JP63335570A 1988-12-28 1988-12-28 Silicon nitride sintered body Expired - Fee Related JP2691295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335570A JP2691295B2 (en) 1988-12-28 1988-12-28 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335570A JP2691295B2 (en) 1988-12-28 1988-12-28 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH02180758A JPH02180758A (en) 1990-07-13
JP2691295B2 true JP2691295B2 (en) 1997-12-17

Family

ID=18290062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335570A Expired - Fee Related JP2691295B2 (en) 1988-12-28 1988-12-28 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2691295B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948963B2 (en) * 1991-02-26 1999-09-13 京セラ株式会社 Ceramic exothermic element
JP6438909B2 (en) * 2016-04-20 2018-12-19 日本特殊陶業株式会社 Ceramic heater and glow plug

Also Published As

Publication number Publication date
JPH02180758A (en) 1990-07-13

Similar Documents

Publication Publication Date Title
JPH07187845A (en) Ceramic porous body and its production
JPH0699191B2 (en) Method for manufacturing silicon nitride sintered body
JP2691295B2 (en) Silicon nitride sintered body
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JPH0812417A (en) Rare earth element silicate sintered compact and its production
JPH1029868A (en) Silicon nitride composite sintered compact and its production
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2631108B2 (en) Manufacturing method of silicon nitride sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP2694355B2 (en) Method for producing silicon nitride based sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP2732078B2 (en) Silicon nitride sintered body
JP2724768B2 (en) Silicon nitride sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JP2627797B2 (en) Silicon nitride sintered body for cutting tool and method for producing the same
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JPH0772105B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH06102577B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof
JPH0826829A (en) Silicon nitride sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees