JP2627797B2 - Silicon nitride sintered body for cutting tool and method for producing the same - Google Patents

Silicon nitride sintered body for cutting tool and method for producing the same

Info

Publication number
JP2627797B2
JP2627797B2 JP63325955A JP32595588A JP2627797B2 JP 2627797 B2 JP2627797 B2 JP 2627797B2 JP 63325955 A JP63325955 A JP 63325955A JP 32595588 A JP32595588 A JP 32595588A JP 2627797 B2 JP2627797 B2 JP 2627797B2
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
component
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63325955A
Other languages
Japanese (ja)
Other versions
JPH02172866A (en
Inventor
健司 中西
容 多島
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63325955A priority Critical patent/JP2627797B2/en
Publication of JPH02172866A publication Critical patent/JPH02172866A/en
Application granted granted Critical
Publication of JP2627797B2 publication Critical patent/JP2627797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

〔産業上の利用分野〕 本発明は、切削工具用の窒化ケイ素焼結体及びその製
造方法に関するものである。 〔従来の技術〕 切削工具に好適な窒化ケイ素焼結体に添加される副成
分としては、特公昭60−16388号公報及び特公昭60−203
46号公報において、MgO,ZrO2が知られており、特開昭56
−73670号公報においては、これらのほかにAl2O3,WC,Y2
O3等が知られている。また、切削工具に限らず、機械的
な特性の向上を目的としてマグネシア・アルミナスピネ
ル及び部分安定化ZrO2を添加して焼結する技術が特開昭
60−77174号公報に開示されている。 〔発明が解決しようとする課題〕 しかし副成分としてAl2O3を添加すると焼結体の熱伝
導度が低下し、切削時に局部的に高熱化するおそれがあ
る。かといってMgO,ZrO2のみでは粒界ガラス相が乏し
く、Si3N4粒子同志が強固に結合しない。そして上記従
来の技術はいずれも強度、靭性について改善するもので
あるが、近年これら特性の向上に加えて、切削寿命とな
る摩耗量のなお一層の低減が要請されるようになってき
た。 本発明は、かかる要請に応じ、耐欠損性に優れ、かつ
高耐摩耗性を有する切削工具用の窒化ケイ素焼結体及び
その製造方法を提供することを目的とする。 〔課題を解決するための手段〕 本発明は従来の問題点を解決し、切削工具として優れ
た特性を発揮する窒化ケイ素焼結体及びその製造方法に
関し、具体的には以下のとおりである。 請求項1の発明は、窒化ケイ素焼結体全体に対する重
量基準で、MgO換算で1〜10%のMg成分と、ZrO2換算で
1〜10%のZr成分と、SiO2換算で0.5〜3%のSi成分
と、残部Si3N4とを含み、10atm以上、1500〜1800℃でガ
ス圧焼結されてなることを特徴とする切削工具用窒化ケ
イ素焼結体。 請求項2の発明は窒化ケイ素焼結体全体に対する重量
基準で、MgO換算で1〜10%のMg成分含有化合物の粉末
と、ZrO2換算で1〜10%のZr成分含有化合物の粉末と、
SiO2換算で0.5〜3%のSi成分含有化合物の粉末と、残
部の窒化ケイ素粉末とを混合し、成形後、窒素雰囲気下
もしくは不活性ガス雰囲気下で、10atm以上の加圧下
で、1500〜1800℃で焼成することを特徴とする切削工具
用窒化ケイ素焼結体の製造方法。 請求項3の発明は窒化ケイ素粉末の表面を酸化させて
SiO2を析出させ、このSiO2を含んだ窒化ケイ素粉末と、
Mg成分含有化合物の粉末と、Zr成分含有化合物の粉末と
を、前記請求項2記載の配合及び焼成条件で焼成するこ
とを特徴とする切削工具用窒化ケイ素焼結体の製造方
法。 〔作 用〕 本発明を構成する各成分について詳述すると、副成分
として添加するMgO,ZrO2及びSiO2などの各化合物中のM
g,Zr及びSiは窒化ケイ素中のSi,N及びOと相まって、焼
成過程でSi3N4粒子間に液相を生成して緻密化に寄与す
るとともに、降温過程でガラス化してSi3N4粒子を結合
させる。このガラス化した粒界相はSi3N4粒子間の結合
力を強固にし、摩擦時のSi3N4粒子の脱落を防止する。
なお、Zrは粒界ガラス相に含まれるほか、C−ZrO2(立
方晶ジルコニア)結晶相やZr−O−N−C系固溶体とし
ても存在している。 本発明において、Mg及びZrの含有量をそれぞれMgO換
算及びZrO2換算で1〜10%に限定したのは、いずれの一
種でも1%に満たないと緻密化しないし、他方10%を超
えると粒界相が過剰となり、高靭性及び高強度が得られ
なくなるからである。 またSiをSiO2換算で0.5〜3%に限定したのは、0.5%
に満たないと粒界相とSi3N4粒子間の密着強度が不足し
て摩擦時のSi3N4粒子の脱落を招来し、耐摩耗性が低下
するし、他方3%を超えると粒界ガラス相が過剰とな
り、焼結体の強度、靭性がこの粒界相に支配され、却っ
てこれらの特性が低下するからである。 なお本発明では特に、かかる組成のものを10atm以
上、1500〜1800℃でガス圧焼結することが肝要で、かか
る焼結体にして初めて摩耗性が少なく欠損し難い切削特
性に優れた切削工具用焼結体を提供することができる。 そして、その製造方法についてはあらかじめ所定の組
成基準の粉末を混合し成形後に窒素雰囲気もしくは不活
性ガス雰囲気下で10atm以上で1500〜1800℃で焼成する
かもしくは、窒化ケイ素粉末の表面を酸化させてSiO2
析出させ、このSiO2を含んでMg成分含有化合物の粉末
と、Zr成分含有化合物の粉末とを前記と同じ条件で焼成
することにより切削工具として特性の優れたものを得る
ことができる。 〔実施例〕 本発明の切削工具用窒化ケイ素焼結体は、例えば個々
に単独焼成すれば酸化物となりうるMg化合物、Zr化合物
並びにSi化合物を酸化物換算でそれぞれ1〜10%、1〜
10%および0.5〜3%と、残部Si3N4粉末とを混合し、成
形後、窒素雰囲気または不活性ガス雰囲気の10atm以上
の加圧下で、1500〜1800℃で焼成することによって得ら
れる。また、製造方法としては直接所定の配合のものを
所定の加圧成形をしてもよいが、窒化ケイ素粉末の表面
を意図的に酸化させてSiO2を生成せしめ、該SiO2量との
兼合いでMgOおよびZrO2粉末を所定量だけ添加して成形
後、焼結を行うことにより高強度の焼結体を得る方法も
ある。 かくして、MgO,ZrO2およびSiO2が共存する場合、窒化
ケイ素の液相焼結が行われ、MgOとZiO2とは、焼結時にS
iO2と反応してMgO−SiO2系とZrO2−SiO2系液相を生成す
るため焼結は促進される。 以下に本発明の実施例について説明する。 実施例1 平均粒径0.7μmの窒化ケイ素原料粉末(BET比表面積
10m2/g)と、平均粒径0.4μmのMgCO3粉末(BET比表面
積20m2/g)と、平均粒径0.2μmのZiO2粉末(BET比表面
積14m2/g)および平均粒径0.2μmのSiO2粉末(BET比表
面積28m2/g)を第1表に示す割合で調合し、Si3N4ポッ
ト、球石を用いて16時間混合し、乾燥後250μmの粒径
に造粒した。 次にこの粉末を1500kg/cm2の圧力でプレス成形し、得
られた圧粉体を第1表に示す条件で焼結することによっ
て本発明のセラミックス焼結体No.1〜5および比較例N
o.6〜9を製造した。 得られた焼結体No.1〜9について機械的特性として室
温強度(JIS R 1601)と破壊靭性値(IM法)を測定し、
切削特性として第1表に示すような条件で摩耗量と欠損
性を調べた。第1表に示すように本発明のセラミックス
焼結体は欠けやチッピングに対する抵抗性を保持したま
ま、耐摩耗性を大幅に改善することができている。 すなわち、実施例No.1〜5はMgO、ZrO2およびSiO2
適当量の添加により、窒化ケイ素本来の強度、靭性を損
なうことなく、摩耗量を減らすことができている。一
方、比較例6はSiO2分がないため、摩耗量は大きく、ま
た比較例7はSiO2量が過剰のため、粒界相が過剰で窒化
ケイ素本来の強度、靭性が失われ、耐欠損性は著しく低
下している。また比較例8および9はMgO量またはZrO2
量が不足していて緻密化しなかった。 実施例2 市販されている純度98%の窒化ケイ素粉末(平均粒径
1μm)を、一定時間、高温下で空気中に放置して粉末
粒子の表面を酸化させ、0.5〜3重量%のSiO2を生成さ
せた。 該表面酸化した窒化ケイ素粉末98〜80重量%に対し
て、高純度のMgOとZrO2をそれぞれ1〜10重量%、1〜1
0重量%の割合で配合し、混合した後、該混合粉末を150
0kg/cm2の圧力でプレス成形し、得られた圧粉体を10atm
の窒素ガス雰囲気中で温度1600〜1800℃、2〜3時間保
持して焼結体を得た。その結果は、第1表と同程度の強
度および靭性及び切削特性のものであった。
[Industrial Application Field] The present invention relates to a silicon nitride sintered body for a cutting tool and a method for producing the same. [Prior Art] As sub-components added to a silicon nitride sintered body suitable for a cutting tool, Japanese Patent Publication No. 60-16388 and Japanese Patent Publication No. 60-203
No. 46, there is known MgO, ZrO 2 and
In addition to these, Al 2 O 3 , WC, Y 2
O 3 and the like are known. In addition to cutting tools, a technique of adding and sintering magnesia-alumina spinel and partially stabilized ZrO 2 for the purpose of improving mechanical properties is disclosed in
No. 60-77174. [Problems to be Solved by the Invention] However, when Al 2 O 3 is added as an auxiliary component, the thermal conductivity of the sintered body is reduced, and there is a possibility that the temperature of the sintered body is locally increased during cutting. However, only MgO and ZrO 2 have a poor grain boundary glass phase, and Si 3 N 4 particles do not bond strongly. All of the above-mentioned conventional techniques improve the strength and toughness, but in recent years, in addition to the improvement of these properties, further reduction of the wear amount which is the cutting life has been demanded. An object of the present invention is to provide a silicon nitride sintered body for a cutting tool having excellent fracture resistance and high wear resistance, and a method for producing the same, in response to such a request. Means for Solving the Problems The present invention solves the conventional problems, and relates to a silicon nitride sintered body exhibiting excellent characteristics as a cutting tool and a method for producing the same, and is specifically as follows. The invention of claim 1 is based on the weight of the entire silicon nitride sintered body, wherein the Mg component is 1 to 10% in terms of MgO, the Zr component is 1 to 10% in terms of ZrO 2 , and 0.5 to 3 in terms of SiO 2. % Silicon component and the balance Si 3 N 4, and sintered at a pressure of not less than 10 atm and 1500-1800 ° C. by gas pressure. The invention according to claim 2 is a powder of a Mg component-containing compound in an amount of 1 to 10% in terms of MgO, a powder of a Zr component-containing compound in an amount of 1 to 10% in terms of ZrO 2 , based on the weight of the entire silicon nitride sintered body,
After mixing 0.5 to 3% of a Si component-containing compound powder in terms of SiO 2 and the remaining silicon nitride powder, after molding, under a nitrogen atmosphere or an inert gas atmosphere, under a pressure of 10 atm or more, 1500 to A method for producing a silicon nitride sintered body for a cutting tool, characterized by firing at 1800 ° C. The invention according to claim 3 oxidizes the surface of the silicon nitride powder.
Precipitating SiO 2, a silicon nitride powder containing the SiO 2,
A method for producing a silicon nitride sintered body for a cutting tool, comprising: sintering a powder of a Mg component-containing compound and a powder of a Zr component-containing compound under the blending and firing conditions according to claim 2. [Operation] The components constituting the present invention will be described in detail. In the compounds, such as MgO, ZrO 2 and SiO 2, which are added as subcomponents,
g, Zr and Si are combined with Si, N and O in the silicon nitride to form a liquid phase between the Si 3 N 4 particles in the firing process and contribute to densification, and to vitrify in the temperature lowering process to form Si 3 N 4 Join the particles. The vitrified grain boundary phase to strengthen the bonding force between the Si 3 N 4 particles, to prevent falling off the Si 3 N 4 particles during friction.
Note that Zr is included in the grain boundary glass phase, and also exists as a C-ZrO 2 (cubic zirconia) crystal phase and a Zr—O—N—C-based solid solution. In the present invention, the reason for limiting the content of Mg and Zr each 1-10% in terms of MgO and ZrO 2 in terms of the do not densified if less than 1% in any kind, than the other 10% the particle This is because the interphase becomes excessive and high toughness and high strength cannot be obtained. Also with limited Si to 0.5% to 3% in terms of SiO 2 is 0.5%
If it is less than 3%, the adhesion strength between the grain boundary phase and the Si 3 N 4 particles will be insufficient, which will cause the Si 3 N 4 particles to fall off during friction, resulting in reduced wear resistance. This is because the boundary glass phase becomes excessive, and the strength and toughness of the sintered body are controlled by the grain boundary phase, and these characteristics are rather deteriorated. In the present invention, in particular, it is important that the composition having such a composition is at least 10 atm and gas pressure sintering at 1500 to 1800 ° C., and a cutting tool having a low abrasion resistance and excellent cutting characteristics that is hardly chipped for the first time in such a sintered body. A sintered body for use can be provided. And, about the manufacturing method, the powder of a predetermined composition standard is mixed in advance and then fired at 1500 to 1800 ° C. at 10 atm or more under a nitrogen atmosphere or an inert gas atmosphere after molding, or by oxidizing the surface of the silicon nitride powder. By precipitating SiO 2 , a powder of the Mg component-containing compound containing the SiO 2 and a powder of the Zr component-containing compound are fired under the same conditions as described above to obtain a cutting tool having excellent characteristics. . [Examples] The silicon nitride sintered body for a cutting tool of the present invention is, for example, Mg compound, Zr compound and Si compound which can be turned into oxides when individually fired individually are 1 to 10% and 1 to 10%, respectively, in terms of oxide.
It is obtained by mixing 10% and 0.5 to 3% with the remainder of Si 3 N 4 powder, molding, and then firing at 1500 to 1800 ° C. under a pressure of 10 atm or more in a nitrogen atmosphere or an inert gas atmosphere. In addition, as a manufacturing method, a material having a predetermined composition may be directly subjected to a predetermined pressure molding, but the surface of the silicon nitride powder is intentionally oxidized to generate SiO 2 , and the amount of the SiO 2 is combined with the amount of the SiO 2. There is also a method of obtaining a high-strength sintered body by adding a predetermined amount of MgO and ZrO 2 powder in combination and performing sintering after molding. Thus, when MgO, ZrO 2 and SiO 2 coexist, liquid phase sintering of silicon nitride is performed, and MgO and ZiO 2
Sintering is promoted because it reacts with iO 2 to form a MgO—SiO 2 system and a ZrO 2 —SiO 2 system liquid phase. Hereinafter, examples of the present invention will be described. Example 1 Raw material powder of silicon nitride having an average particle size of 0.7 μm (BET specific surface area)
10 m 2 / g), MgCO 3 powder with an average particle size of 0.4 μm (BET specific surface area 20 m 2 / g), ZiO 2 powder with an average particle size of 0.2 μm (BET specific surface area 14 m 2 / g) and average particle size 0.2 μm SiO 2 powder (BET specific surface area 28 m 2 / g) was prepared at the ratios shown in Table 1, mixed using a Si 3 N 4 pot and cobblestone for 16 hours, dried and granulated to a particle size of 250 μm. did. Next, this powder was press-molded at a pressure of 1500 kg / cm 2 , and the obtained green compact was sintered under the conditions shown in Table 1 to obtain ceramic sintered bodies Nos. 1 to 5 of the present invention and Comparative Examples. N
o.6-9 were produced. Room temperature strength (JIS R 1601) and fracture toughness (IM method) were measured as mechanical properties of the obtained sintered bodies No. 1 to 9,
As the cutting characteristics, the wear amount and the chipping property were examined under the conditions shown in Table 1. As shown in Table 1, the ceramics sintered body of the present invention has significantly improved abrasion resistance while maintaining resistance to chipping and chipping. That is, in Examples Nos. 1 to 5, the wear amount can be reduced without impairing the original strength and toughness of silicon nitride by adding appropriate amounts of MgO, ZrO 2 and SiO 2 . On the other hand, in Comparative Example 6, since there was no SiO 2 component, the amount of wear was large. In Comparative Example 7, since the amount of SiO 2 was excessive, the grain boundary phase was excessive and the original strength and toughness of silicon nitride were lost, and the fracture resistance was high. Sex is significantly reduced. In Comparative Examples 8 and 9, MgO content or ZrO 2
Insufficient quantity did not elaborate. Example 2 A commercially available silicon nitride powder having a purity of 98% (average particle size: 1 μm) was left in air at a high temperature for a certain period of time to oxidize the surface of the powder particles, and 0.5 to 3% by weight of SiO 2 Was generated. High-purity MgO and ZrO 2 are respectively 1 to 10% by weight and 1 to 1% by weight to 98 to 80% by weight of the surface-oxidized silicon nitride powder.
After mixing and mixing at a ratio of 0% by weight,
Press molding at a pressure of 0 kg / cm 2
The temperature was maintained at 1600 to 1800 ° C. in a nitrogen gas atmosphere for 2 to 3 hours to obtain a sintered body. The results were similar in strength, toughness and cutting characteristics to those in Table 1.

【発明の効果】【The invention's effect】

本発明によって得られた切削工具用窒化ケイ素焼結体
は、窒化ケイ素本来の有する耐熱衝撃性、機械的強度、
化学的安定性に加えて、上記のような優れた耐欠損性、
耐摩耗性を有しているため、切削工具としての性能を向
上した焼結体を提供することができ、かかる切削工具用
窒化ケイ素焼結体は所定の組成のものと所定雰囲気のガ
ス圧焼結であって、特に10atm以上で1500〜1800℃の高
温高圧焼結により耐摩耗性がよく、耐欠損性もよい、切
削工具を提供することができる。
The silicon nitride sintered body for a cutting tool obtained by the present invention has a thermal shock resistance inherent to silicon nitride, mechanical strength,
In addition to chemical stability, excellent fracture resistance as described above,
Since it has abrasion resistance, it is possible to provide a sintered body having improved performance as a cutting tool, and the silicon nitride sintered body for the cutting tool has a predetermined composition and a gas pressure firing in a predetermined atmosphere. As a result, it is possible to provide a cutting tool having good wear resistance and good chipping resistance, particularly by high-temperature and high-pressure sintering at 1500 to 1800 ° C. at 10 atm or more.

フロントページの続き (72)発明者 渡辺 正一 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 昭61−266358(JP,A) 特開 昭63−151681(JP,A)Continuation of front page (72) Inventor Shoichi Watanabe 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Japan Special Ceramics Co., Ltd. (56) References JP-A-61-266358 (JP, A) JP-A-63 −151681 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化ケイ素焼結体全体に対する重量基準
で、MgO換算で1〜10%のMg成分と、ZrO2換算で1〜10
%のZr成分と、SiO2換算で0.5〜3%のSi成分と、残部S
i3N4とを含み、10atm以上、1500〜1800℃でガス圧焼結
されてなることを特徴とする切削工具用窒化ケイ素焼結
体。
An Mg component of 1 to 10% in terms of MgO and 1 to 10% in terms of ZrO 2 based on the weight of the entire silicon nitride sintered body.
% Zr component, 0.5-3% Si component in terms of SiO 2 , and the balance S
A silicon nitride sintered body for cutting tools, comprising i 3 N 4 and being gas-pressure sintered at 1500 to 1800 ° C. at 10 atm or more.
【請求項2】窒化ケイ素焼結体全体に対する重量基準
で、MgO換算で1〜10%のMg成分含有化合物の粉末と、Z
rO2換算で1〜10%のZr成分含有化合物の粉末と、SiO2
換算で0.5〜3%のSi成分含有化合物の粉末と、残部の
窒化ケイ素粉末とを混合し、成形後、窒素雰囲気下もし
くは不活性ガス雰囲気下で、10atm以上の加圧下で、150
0〜1800℃で焼結することを特徴とする切削工具用窒化
ケイ素焼結体の製造方法。
2. A powder of a Mg component-containing compound in an amount of 1 to 10% in terms of MgO, based on the weight of the entire silicon nitride sintered body, and Z
1 to 10% of a Zr component-containing compound powder in terms of rO 2 and SiO 2
The powder of the Si component-containing compound in a conversion of 0.5 to 3% and the rest of the silicon nitride powder are mixed, and after molding, under a nitrogen atmosphere or an inert gas atmosphere, under a pressure of 10 atm or more, a pressure of 150 atm.
A method for producing a silicon nitride sintered body for a cutting tool, comprising sintering at 0 to 1800 ° C.
【請求項3】窒化ケイ素粉末の表面を酸化させてSiO2
析出させ、このSiO2を含んだ窒化ケイ素粉末と、Mg成分
含有化合物の粉末と、Zr成分含有化合物の粉末とを、前
記請求項2記載の配合及び焼成条件で焼成することを特
徴とする切削工具用窒化ケイ素焼結体の製造方法。
Wherein the surface of the silicon nitride powder is oxidized by precipitating SiO 2, a silicon nitride powder containing the SiO 2, a powder of Mg component-containing compound, and a powder of Zr component-containing compounds, the claimed Item 3. A method for producing a silicon nitride sintered body for a cutting tool, comprising firing under the blending and firing conditions according to Item 2.
JP63325955A 1988-12-26 1988-12-26 Silicon nitride sintered body for cutting tool and method for producing the same Expired - Lifetime JP2627797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325955A JP2627797B2 (en) 1988-12-26 1988-12-26 Silicon nitride sintered body for cutting tool and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325955A JP2627797B2 (en) 1988-12-26 1988-12-26 Silicon nitride sintered body for cutting tool and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02172866A JPH02172866A (en) 1990-07-04
JP2627797B2 true JP2627797B2 (en) 1997-07-09

Family

ID=18182473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325955A Expired - Lifetime JP2627797B2 (en) 1988-12-26 1988-12-26 Silicon nitride sintered body for cutting tool and method for producing the same

Country Status (1)

Country Link
JP (1) JP2627797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6294343B2 (en) * 2012-12-05 2018-03-14 ダウ グローバル テクノロジーズ エルエルシー Porous mullite body with improved thermal stability

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266358A (en) * 1985-05-17 1986-11-26 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPH075387B2 (en) * 1986-12-16 1995-01-25 電気化学工業株式会社 Method for manufacturing silicon nitride sintered body

Also Published As

Publication number Publication date
JPH02172866A (en) 1990-07-04

Similar Documents

Publication Publication Date Title
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
EP0244226B1 (en) Silicon nitride sintered body and method for producing same
JP2627797B2 (en) Silicon nitride sintered body for cutting tool and method for producing the same
JPS6256110B2 (en)
JPH0832584B2 (en) Alumina-based ceramic cutting tool with high toughness
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JPH0274564A (en) Silicon nitride calcined compact
JP2691295B2 (en) Silicon nitride sintered body
JP2627922B2 (en) Silicon nitride sintered body
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH10279360A (en) Silicon nitride structural parts and its production
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH06321641A (en) Composite ceramics
JPH0687650A (en) Alumina-based sintered compact and its production
JP3142022B2 (en) Cutting tool made of silicon nitride sintered body
JPS644990B2 (en)
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor
JP3082432B2 (en) Manufacturing method of aluminum oxide based ceramic cutting tool with excellent toughness
JPH05238829A (en) Sintered silicone nitride ceramic
JPS6246513B2 (en)
JPH0566903B2 (en)
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JPH01157466A (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12