JPS6246513B2 - - Google Patents

Info

Publication number
JPS6246513B2
JPS6246513B2 JP57183553A JP18355382A JPS6246513B2 JP S6246513 B2 JPS6246513 B2 JP S6246513B2 JP 57183553 A JP57183553 A JP 57183553A JP 18355382 A JP18355382 A JP 18355382A JP S6246513 B2 JPS6246513 B2 JP S6246513B2
Authority
JP
Japan
Prior art keywords
sialon
cutting
powder
ceramic material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57183553A
Other languages
Japanese (ja)
Other versions
JPS5973472A (en
Inventor
Taijiro Sugisawa
Teruyoshi Tanase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57183553A priority Critical patent/JPS5973472A/en
Publication of JPS5973472A publication Critical patent/JPS5973472A/en
Publication of JPS6246513B2 publication Critical patent/JPS6246513B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐摩耗性、耐熱衝撃性、
および高温強度を有し、特にこれらの特性が要求
される鋼および鋳鉄の高速切削に切削工具として
使用した場合にすぐれた切削性能を発揮するサイ
アロン系セラミツク材料に関するものである。 近年、鋼および鋳鉄の高速切削を可能とすべく
種々の研究開発が試みられ、なかでも工作機械の
高剛性化と切削工具材料の改善の両面から、これ
ら被削材の高速切削への移行は着々と達成されつ
つあり、現時点では300〜600m/minの高い切削
速度での安定した切削が1つの目標とされてい
る。 なお、上記の300〜600m/minの高い切削速度
は、高速切削時に発生する熱に対してすぐれた耐
酸化性を示すと共に、Feとの化学的反応性が低
く、かつ摩擦係数の小さな酸化アルミニウム(以
下Al2O3で示す)を主成分として含有するAl2O3
系セラミツク材料を切削工具として使用するとい
う前提で、高速切削を可能とすべく工作機械に改
良を加えることによつて達成できるとして定めら
れたものである。 しかしながら、上記のAl2O3系セラミツク材料
は、十分な耐熱衝撃性および高温における機械的
強度を備えていないために、これを切削工具とし
て、特に鋼の切削に300〜600m/minの高い切削
速度で使用した場合、工作機械の改良も未だ不十
分であることと相まつて、安定した切削性能を発
揮し得ないのが現状である。 また、一方、熱膨張係数が小さく、したがつて
耐熱衝撃性にすぐれ、かつ高温における機械的強
度にもすぐれ、Si3N4格子のSiをAlで、NをOで
置換した化合物、すなわち組成式:
Si6-ZAlZOZN8-Z(ただしO<z≦4.3)で表わさ
れるサイアロン(βまたはβ′サイアロンとも云
われる)からなるセラミツク材料、さらに前記サ
イアロンに、それぞれ酸化イツトリウム(以下
Y2O3で示す)、酸化マグネシウム(以下MgOで示
す)、酸化けい素(以下SiO2で示す)、窒化アル
ミニウム(以下AlNで示す)、酸化チタン(以下
TiO2で示す)、酸化ジルコニウム(以下ZrO2で示
す)、および酸化ハフニウム(以下HfO2で示す)
のうちの1種または2種以上を1〜30重量%程度
含有させたものからなるサイアロン系セラミツク
材料を、鋼および鋳鉄の高速切削に切削工具とし
て使用する試みもなされているが、これらサイア
ロン系セラミツク材料はFeとの反応性が高いた
めに、特に鋼の高速切削に際して摩耗が激しく、
切削工具としては汎用性のきわめて低いものであ
る。 そこで、本発明者等は、上述のような観点か
ら、すぐれた耐熱衝撃性および高温強度を有する
が、特に鋼の高速切削に切削工具として使用した
場合、摩耗が激しく、実用に供し得ない上記従来
サイアロン系セラミツク材料に着目し、これにす
ぐれた耐摩耗性を付与すべく研究を行なつた結
果、上記のサイアロン系セラミツク材料に、Ti
とWの複合炭窒化物固溶体(以下、(Ti,W)CN
で示す)を含有させると、サイアロンによつても
たらされるすぐれた耐熱衝撃性と高温強度を保持
した状態で、すぐれた耐摩耗性および靭性を具備
するようになり、したがつてこの結果のサイアロ
ン系セラミツク材料を切削工具として用いた場合
には、鋳鉄は勿論のこと、鋼の高速切削において
もすぐれた切削性能を長期に亘つて発揮するとい
う知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、重量%で、 (Ti,W)CN:10〜70%、 を含有し、さらに必要に応じて、 Y2O3,MgO,SiO2,AlN,TiO2,ZrO2,およ
びHfO2(AlN成分を含むが、他成分が金属の酸
化物からなるので、以下、これらを総称して金属
酸化物という)のうちの1種または2種以上:1
〜30%、 を含有し、 残りがサイアロンと不可避不純物、 からなる組成を有する耐摩耗性、耐熱衝撃性、高
温強度、および靭性にすぐれ、特にこれらの特性
が要求される鋼および鋳鉄の高速切削に切削工具
として用いた場合に長期に亘つてすぐれた切削性
能を発揮するサイアロン系セラミツク材料に特徴
を有するものである。 つぎに、この発明のサイアロン系セラミツク材
料において、成分組成範囲を上記の通りに限定し
た理由を説明する。 (a) (Ti,W)CN この成分は、セラミツク材料中で、不連続相あ
るいは連続相を形成した状態で存在し、セラミツ
ク材料にすぐれた耐摩耗性と靭性を付与する作用
をもつが、その含有量が10%未満では所望の耐摩
耗性および靭性を確保することができず、一方70
%を越えて含有させるとセラミツク材料の耐熱衝
撃性が劣化するようになることから、その含有量
を10〜70%と定めた。 なお、この(Ti,W)CN成分は、Wに比して
Tiの割合が多い炭窒化物相と、Wを主成分とす
る金属相との2相域組織をもつものであり、組成
式:(Tix,W1-x)Cyzで表わした場合、それ
ぞれ0.2≦x≦0.7,0.05≦y≦0.70,0.15≦z≦
0.70,0.3≦x+y≦0.85を満足するものが望まし
い。すなわち、xの値が0.2未満ではTiを主成分
とする炭窒化物相の量が少なくなりすぎて所望の
すぐれた耐摩耗性を確保することができず、一方
0.7を越えたx値になると、逆に前記Wを主成分
とする金属相の量が少なくなりすぎて、靭性が低
下するようになることから、x値を0.3〜0.7とす
る。また、yの値が0.05未満では炭窒化物相の形
成が少なく、窒化物相が表われて耐摩耗性を劣化
させるようになり、一方y値が0.7を越えると炭
化物相が形成されるようになつて靭性劣化の原因
となることから、y値を0.05〜0.70とした。zの
値については、窒素には炭窒化物相の粒径を細か
くすると共に、被削材との反応を抑制して耐摩耗
性を向上させる作用があるので、その値が0.15未
満では炭窒化物相の粒度が粗くなり、かつ炭化物
相も形成されるようになつて靭性が低下し、一方
z値が0.70を越えることは、x値の上限が0.70で
あることから、あり得ず、かかる点から0.15〜
0.70とする。さらにx+yの値が0.3未満では炭
窒化物相の量が少なすぎて所望の耐摩耗性を確保
することができず、一方x+y値が0.85を越える
と、逆に金属相が少なくなりすぎて所望の靭性を
確保することができないことから、x+y値を
0.30〜0.85とするのである。 (b) 金属酸化物 これらの成分には、焼結性を改善し、普通焼結
法によつても緻密なセラミツク材料の製造を可能
とし、もつて靭性および強度を一段と向上させる
作用があるので、これらの特性が要求される場合
に必要に応じて含有されるが、その含有量が1%
未満では前記作用に所望の効果が得られず、一方
30%を越えて含有させると、耐摩耗性が劣化する
ようになることから、その含有量を1〜30%と定
めた。 (c) 不可避不純物 不可避不純物として、Fe,Ca,Na,Co,Ni,
Mn,およびCrなどのうちの1種または2種以上
を含有するが、これらの不可避不純物は総量で5
%を越えない限り、セラミツク材料の特性に何ら
悪影響を及ぼすものではない。 また、この発明のセラミツク材料は、原料粉末
として、Si3N4粉末、Al2O3粉末、およびAlN粉末
を固溶化調製して形成した組成式:
Si6-zAlzOzN8-z(ただしO<z≦4.3)で表わさ
れるサイアロン粉末、焼結時にサイアロンを形成
する目的で、サイアロンの構成粉末であるSi3N4
粉末、Al2O3粉末、およびAlN粉末、さらに種々
の組成(組成式:Tix,W1-x)Cyzのx,y、
およびzの値が異つたもの)を有する(Ti,
W)CN粉末、各種の金属酸化物粉末をそれぞれ
用意し、これら原料粉末を所定の配合組成に配合
し、ボールミルや振動ミルなどを用いて十分に混
合した後、静水圧プレスや機械的プレスを用いて
圧粉体に成形し、ついで、この圧粉体を、真空中
または雰囲気ガス中で普通焼結するか、あるいは
ホツトプレスし、さらに必要に応じて焼結後、よ
り確実に緻密化する目的で熱間静水圧プレス
(HIP)処理を施すことによつて製造することが
できる。 つぎに、この発明のセラミツク材料を実施例に
より具体的に説明する。 実施例 まず、いずれも市販の平均粒径:1.5μmを有
するTiC粉末、同1.5μmのTiN粉末、および同
1.0μmのW粉末を用意し、これら粉末を所定の
配合組成に配合し、乾式で混合した後、圧力:
5.0mmHgの窒素雰囲気中、温度:1500℃に加熱
保持して固溶化し、冷却後粗砕し、引続いてボー
ルミルにて粉砕することによつて、それぞれ第1
表に示される組成、並びにいずれも平均粒径:
1.0μmをもつた7種類の(Ti,W)CN粉末を調
製した。 また、同様に、いずれも市販の平均粒径:1.3
μmを有するSi3N4粉末、同0.7μmのAl2O3
末、および同1.5μmのAlN粉末を用意し、これ
ら粉末を所定の配合組成に配合し、乾式で混合し
た後、圧力:760mmHgの窒素雰囲気中、温度:
1550℃に加熱保持して固溶化し、冷却後粗砕し、
引続いて粉砕することによつて、組成式:
Si3Al3O3N5を有する平均粒径:1.0μmのサイア
ロン粉末を調製した。 ついで、上記の各種の(Ti,W)CN粉末およ
びサイアロン粉末を、別途用意したいずれも平均
粒径:0.8μmを有するY2O3粉末、MgO粉末、
SiO2粉末、AlN粉末、TiO2粉末、ZrO2粉末、お
よびHfO2粉末とともに原料粉末として用い、こ
れら原料粉末を、それぞれ第1表に示される配合
組成に配合し、Al2O3製ボールミルにて48時間湿
式混合し、乾燥した後、黒鉛モールドを用い、温
度:1550℃に20分間保持の条件でホツトプレスす
ることによつて、実質的に配合組成と同一の成分
組成をもつた本発明セラミツク材料1〜10および
(Ti,W)CNを含有しない比較セラミツク材料1
をそれぞれ製造した。 また、上記のホツトプレス法に代つて、混合粉
末を、機械的プレスを用いて、1ton/cm2の圧力で
圧粉体に成形し、この圧粉体を窒素雰囲気中、温
度:1600〜1750℃に2時間保持の条件で焼結する
ことからなる普通焼結法を適用する以外は、同一
の製造条件で本発明セラミツク材料
This invention has excellent abrasion resistance, thermal shock resistance,
The present invention relates to a sialon-based ceramic material that has high-temperature strength and exhibits excellent cutting performance when used as a cutting tool for high-speed cutting of steel and cast iron, which especially require these properties. In recent years, various research and development efforts have been made to enable high-speed cutting of steel and cast iron, and in particular, the transition to high-speed cutting of these work materials has been attempted from the standpoint of both increasing the rigidity of machine tools and improving cutting tool materials. This goal is steadily being achieved, and one of the current goals is stable cutting at high cutting speeds of 300 to 600 m/min. The above-mentioned high cutting speed of 300 to 600 m/min is achieved by using aluminum oxide, which exhibits excellent oxidation resistance against the heat generated during high-speed cutting, has low chemical reactivity with Fe, and has a small coefficient of friction. Al 2 O 3 containing (hereinafter referred to as Al 2 O 3 ) as the main component
This was established on the premise that ceramic materials would be used as cutting tools, and that this could be achieved by improving machine tools to enable high-speed cutting. However, since the Al 2 O 3 ceramic materials mentioned above do not have sufficient thermal shock resistance and mechanical strength at high temperatures, they are used as cutting tools, especially when cutting steel at high speeds of 300 to 600 m/min. At present, when used at high speeds, stable cutting performance cannot be achieved due to the fact that machine tools have not yet been sufficiently improved. On the other hand, it has a small coefficient of thermal expansion, has excellent thermal shock resistance, and has excellent mechanical strength at high temperatures, and has a composition in which Si is replaced with Al and N is replaced with O in the Si 3 N 4 lattice. formula:
A ceramic material consisting of sialon (also referred to as β or β' sialon) represented by Si 6-Z Al Z O Z N 8-Z (where O
Y2O3 ), magnesium oxide (hereinafter referred to as MgO), silicon oxide (hereinafter referred to as SiO2 ), aluminum nitride (hereinafter referred to as AlN), titanium oxide (hereinafter referred to as
TiO2 ), zirconium oxide (hereinafter referred to as ZrO2 ), and hafnium oxide (hereinafter referred to as HfO2 )
Attempts have also been made to use sialon-based ceramic materials containing 1 to 30% by weight of one or more of the above as cutting tools for high-speed cutting of steel and cast iron. Ceramic materials have high reactivity with Fe, which causes severe wear, especially during high-speed cutting of steel.
As a cutting tool, it has extremely low versatility. Therefore, from the above-mentioned viewpoints, the present inventors have discovered that although the tool has excellent thermal shock resistance and high-temperature strength, when used as a cutting tool especially for high-speed cutting of steel, it suffers from severe wear and cannot be put to practical use. As a result of focusing on conventional sialon ceramic materials and conducting research to impart excellent wear resistance to them, we found that Ti
and W composite carbonitride solid solution (hereinafter referred to as (Ti,W)CN
), the Sialon type has excellent wear resistance and toughness while retaining the excellent thermal shock resistance and high temperature strength provided by Sialon. They have found that when ceramic materials are used as cutting tools, they exhibit excellent cutting performance over a long period of time, not only in cast iron but also in high-speed cutting of steel. Therefore, this invention was made based on the above knowledge, and contains (Ti, W)CN: 10 to 70% by weight, and further contains Y 2 O 3 as necessary. , MgO, SiO 2 , AlN, TiO 2 , ZrO 2 , and HfO 2 (including AlN component, but other components are metal oxides, so these are collectively referred to as metal oxides hereafter). 1 type or 2 or more types: 1
~30%, with the remainder consisting of Sialon and unavoidable impurities.It has excellent wear resistance, thermal shock resistance, high temperature strength, and toughness, especially for high-speed cutting of steel and cast iron where these properties are required. The sialon ceramic material is characterized by its excellent cutting performance over a long period of time when used as a cutting tool. Next, the reason for limiting the component composition range as described above in the sialon ceramic material of the present invention will be explained. (a) (Ti, W)CN This component exists in a ceramic material in the form of a discontinuous phase or a continuous phase, and has the effect of imparting excellent wear resistance and toughness to the ceramic material. If its content is less than 10%, the desired wear resistance and toughness cannot be achieved;
Since the thermal shock resistance of the ceramic material deteriorates if the content exceeds 10% to 70%. Note that this (Ti, W)CN component is
It has a two-phase structure consisting of a carbonitride phase with a high proportion of Ti and a metal phase whose main component is W, and is expressed by the composition formula: (Ti x , W 1-x )C y N z If 0.2≦x≦0.7, 0.05≦y≦0.70, 0.15≦z≦, respectively
0.70, 0.3≦x+y≦0.85 is desirable. In other words, if the value of x is less than 0.2, the amount of carbonitride phase whose main component is Ti is too small to ensure the desired excellent wear resistance.
If the x value exceeds 0.7, the amount of the metal phase containing W as a main component will be too small, resulting in a decrease in toughness, so the x value is set to 0.3 to 0.7. Furthermore, when the y value is less than 0.05, the formation of carbonitride phase is small and the nitride phase appears, deteriorating the wear resistance. On the other hand, when the y value exceeds 0.7, the carbide phase tends to be formed. The y value was set to 0.05 to 0.70 since this may cause toughness deterioration. Regarding the value of z, nitrogen has the effect of reducing the particle size of the carbonitride phase and suppressing the reaction with the workpiece material to improve wear resistance, so if the value is less than 0.15, carbonitriding will occur. The particle size of the physical phase becomes coarser and a carbide phase is also formed, resulting in a decrease in toughness.On the other hand, it is impossible for the z value to exceed 0.70, since the upper limit of the x value is 0.70. 0.15~ from point
Set to 0.70. Furthermore, if the value of x+y is less than 0.3, the amount of carbonitride phase is too small to ensure the desired wear resistance, while if the value of x+y exceeds 0.85, conversely, the amount of metal phase is too small to achieve the desired wear resistance. Since it is not possible to ensure the toughness of
It should be between 0.30 and 0.85. (b) Metal oxides These components have the effect of improving sinterability, making it possible to produce dense ceramic materials even by ordinary sintering methods, and thereby further improving toughness and strength. , is included as necessary when these characteristics are required, but the content is 1%
If it is less than the desired effect, the desired effect cannot be obtained;
If the content exceeds 30%, wear resistance deteriorates, so the content was set at 1 to 30%. (c) Unavoidable impurities Unavoidable impurities include Fe, Ca, Na, Co, Ni,
Contains one or more of Mn, Cr, etc., but the total amount of these unavoidable impurities is 5.
%, it will not have any adverse effect on the properties of the ceramic material. Furthermore, the ceramic material of the present invention has a composition formula formed by solid solution preparation of Si 3 N 4 powder, Al 2 O 3 powder, and AlN powder as raw material powders:
Si 6-z Al z O z N 8-z (however, O<z≦4.3) SiAlON powder, for the purpose of forming SiAlON during sintering, Si 3 N 4 which is the constituent powder of SiAlON
powder, Al 2 O 3 powder, and AlN powder, as well as various compositions (compositional formula: Ti x , W 1-x )C y N z x, y,
and different values of z) with (Ti,
W) Prepare CN powder and various metal oxide powders, mix these raw material powders to a predetermined composition, mix thoroughly using a ball mill or vibration mill, and then press using a hydrostatic press or mechanical press. The purpose is to form the green compact into a green compact, then to sinter the green compact in vacuum or in an atmospheric gas, or to hot press it, and if necessary, to more reliably densify it after sintering. It can be manufactured by applying hot isostatic pressing (HIP) treatment. Next, the ceramic material of the present invention will be specifically explained using examples. Example First, TiC powder with an average particle size of 1.5 μm, TiN powder with an average particle size of 1.5 μm, and TiN powder with an average particle size of 1.5 μm are all commercially available.
Prepare 1.0 μm W powder, mix these powders into a predetermined composition, dry mix them, and then apply pressure:
In a nitrogen atmosphere of 5.0 mmHg, heat and hold at a temperature of 1500°C to solidify, coarsely crush after cooling, and then crush in a ball mill, each of the first
Composition shown in the table and average particle size for each:
Seven types of (Ti, W)CN powders with a diameter of 1.0 μm were prepared. Similarly, both commercially available average particle size: 1.3
Si 3 N 4 powder with a diameter of 0.7 μm, Al 2 O 3 powder with a diameter of 1.5 μm, and AlN powder with a diameter of 1.5 μm were prepared, these powders were blended into a predetermined composition, and after dry mixing, the pressure was 760 mmHg. In a nitrogen atmosphere, temperature:
It is heated and maintained at 1550℃ to form a solid solution, and after cooling, it is coarsely crushed.
By subsequent grinding, the composition formula:
A SiAlON powder having an average particle size of 1.0 μm and having Si 3 Al 3 O 3 N 5 was prepared. Next, the above-mentioned various (Ti, W) CN powders and Sialon powders were mixed with separately prepared Y 2 O 3 powder, MgO powder, and MgO powder each having an average particle size of 0.8 μm.
It was used as a raw material powder together with SiO 2 powder, AlN powder, TiO 2 powder, ZrO 2 powder, and HfO 2 powder, and these raw material powders were blended into the composition shown in Table 1 and placed in an Al 2 O 3 ball mill. After wet mixing for 48 hours, drying, and hot-pressing using a graphite mold at a temperature of 1550°C for 20 minutes, the ceramic of the present invention having substantially the same composition as the blended composition was obtained. Materials 1 to 10 and comparative ceramic material 1 not containing (Ti, W)CN
were manufactured respectively. In addition, instead of the above-mentioned hot press method, the mixed powder is molded into a green compact using a mechanical press at a pressure of 1 ton/ cm2 , and the green compact is heated in a nitrogen atmosphere at a temperature of 1600 to 1750°C. The ceramic material of the present invention was produced under the same manufacturing conditions except that a normal sintering method consisting of sintering under conditions of holding for 2 hours was applied.

【表】 11〜21および同じく(Ti,W)CNを含有しない
比較セラミツク材料2をそれぞれ製造した。 つぎに、この結果得られた本発明セラミツク材
料1〜21および比較セラミツク材料1,2につい
て、ビツカース硬さおよび抗折力を測定すると共
に、これよりCIS規格のSNGN432型の切削チツプ
を成形し、被削材:SNCM―8(硬さ:HB
220)、切削速度:300m/min、切込み:2mm、
送り:0.45mm/rev.の条件での鋼高速連続切削試
験、および被削材:FC―25(硬さ:HB180)、切
削速度:400m/min、切込み:2mm、送り:
0.45mm/rev.の条件での鋳鉄高速連続切削試験を
行ない、それぞれ切刃の逃げ面摩耗幅:0.4mm基
準での寿命時間を測定した。これらの測定結果を
第1表に合せて示した。 第1表に示される結果から、本発明セラミツク
材料1〜21は、いずれもすぐれた耐摩耗性、耐熱
衝撃性、および高温強度をもつことから、鋼およ
び鋳鉄の高速切削において長い切削寿命を示すこ
とが明らかである。これに対して、(Ti,W)CN
成分を含有しない、すなわち従来サイアロン系セ
ラミツク材料に相当する比較セラミツク材料1,
2は、いずれも耐熱衝撃性および高温強度を有す
るものの耐摩耗性に劣るものであるため、その切
削寿命はきわめて短かいものとなつている。 上述のように、この発明のサイアロン系セラミ
ツク材料は、すぐれた耐摩耗性、耐熱衝撃性、お
よび高温強度を兼ね備えているので、特にこれら
の特性が要求される鋼の高速切削は勿論のこと、
鋳鉄の高速切削に切削工具として用いた場合に、
著しく長期に亘つてすぐれた切削性能を発揮する
のである。
[Table] Comparative ceramic materials 11 to 21 and Comparative Ceramic Material 2, which also does not contain (Ti, W)CN, were manufactured. Next, the Vickers hardness and transverse rupture strength of the resulting ceramic materials 1 to 21 of the present invention and comparative ceramic materials 1 and 2 were measured, and a cutting chip of the SNGN432 type according to the CIS standard was formed from the results. Work material: SNCM-8 (hardness: H B
220), Cutting speed: 300m/min, Depth of cut: 2mm,
Steel high-speed continuous cutting test under the conditions of feed: 0.45 mm/rev., work material: FC-25 (hardness: H B 180), cutting speed: 400 m/min, depth of cut: 2 mm, feed:
A cast iron high-speed continuous cutting test was conducted under the condition of 0.45 mm/rev., and the life time was measured based on the flank wear width of the cutting edge: 0.4 mm. These measurement results are also shown in Table 1. From the results shown in Table 1, ceramic materials 1 to 21 of the present invention all have excellent wear resistance, thermal shock resistance, and high temperature strength, and therefore exhibit long cutting life in high-speed cutting of steel and cast iron. That is clear. On the other hand, (Ti,W)CN
Comparative ceramic material 1, which does not contain components, that is, corresponds to conventional sialon ceramic materials,
Although No. 2 has thermal shock resistance and high-temperature strength, it has poor wear resistance, so its cutting life is extremely short. As mentioned above, the sialon ceramic material of the present invention has excellent wear resistance, thermal shock resistance, and high-temperature strength, so it can be used not only for high-speed cutting of steel, which especially requires these properties.
When used as a cutting tool for high-speed cutting of cast iron,
It exhibits excellent cutting performance over an extremely long period of time.

Claims (1)

【特許請求の範囲】 1 TiとWの複合炭窒化物固溶体:10〜70重量
%を含有し、残りがサイアロンと不可避不純物か
らなる組成を有することを特徴とする切削工具用
サイアロン系セラミツク材料。 2 TiとWの複合炭窒化物固溶体:10〜70重量
%を含有し、さらに酸化イツトリウム、酸化マグ
ネシウム、酸化けい素、窒化アルミニウム、酸化
チタン、酸化ジルコニウム、および酸化ハフニウ
ムのうちの1種または2種以上:1〜30重量%を
含有し、残りがサイアロンと不可避不純物からな
る組成を有することを特徴とする切削工具用サイ
アロン系セラミツク材料。
[Claims] 1. A sialon-based ceramic material for a cutting tool, characterized in that it contains 10 to 70% by weight of a composite carbonitride solid solution of Ti and W, with the remainder consisting of sialon and unavoidable impurities. 2 Composite carbonitride solid solution of Ti and W: Contains 10 to 70% by weight, and further contains one or two of yttrium oxide, magnesium oxide, silicon oxide, aluminum nitride, titanium oxide, zirconium oxide, and hafnium oxide. A sialon-based ceramic material for a cutting tool, characterized in that it contains 1 to 30% by weight of sialon or more, with the remainder consisting of sialon and unavoidable impurities.
JP57183553A 1982-10-19 1982-10-19 Cutting tool ceramic material Granted JPS5973472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183553A JPS5973472A (en) 1982-10-19 1982-10-19 Cutting tool ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183553A JPS5973472A (en) 1982-10-19 1982-10-19 Cutting tool ceramic material

Publications (2)

Publication Number Publication Date
JPS5973472A JPS5973472A (en) 1984-04-25
JPS6246513B2 true JPS6246513B2 (en) 1987-10-02

Family

ID=16137814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183553A Granted JPS5973472A (en) 1982-10-19 1982-10-19 Cutting tool ceramic material

Country Status (1)

Country Link
JP (1) JPS5973472A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881950A (en) * 1986-05-30 1989-11-21 Gte Valenite Corporation Silicon nitride cutting tool
US5034022A (en) * 1987-10-05 1991-07-23 Gte Valenite Corporation Silicon nitride cutting tool

Also Published As

Publication number Publication date
JPS5973472A (en) 1984-04-25

Similar Documents

Publication Publication Date Title
JPS623795B2 (en)
JPS6246513B2 (en)
JPS5874585A (en) Surface clad silicon nitride base sintered member for high speed cutting
JPS6152102B2 (en)
JPS6257597B2 (en)
JPS6256106B2 (en)
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH0832584B2 (en) Alumina-based ceramic cutting tool with high toughness
US5023211A (en) Super-hard ceramics
JPH07267738A (en) Wear resistant silicon nitride sintered compact and its production
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPS6337075B2 (en)
JPS6257598B2 (en)
JPH05208304A (en) Alumina-nitrocarbonate titanium system ceramic cutting tool
JPS6241193B2 (en)
JPS6257596B2 (en)
JPH01119558A (en) Alumina-based sintered compact for cutting tool and its production
JPS6241194B2 (en)
JPS59232968A (en) Carbonitride ceramic for cutting tool and manufacture
JPS62235260A (en) Si3n4 base composite material
JPS6360164A (en) Silicon nitride sintered body for cutting tool and manufacture
JPS6050746B2 (en) Method for producing aluminum oxide-based ceramic with high toughness and hardness
JPH0411503B2 (en)