JPS59217676A - Silicon nitride-base sintering material for cutting tool - Google Patents

Silicon nitride-base sintering material for cutting tool

Info

Publication number
JPS59217676A
JPS59217676A JP59090739A JP9073984A JPS59217676A JP S59217676 A JPS59217676 A JP S59217676A JP 59090739 A JP59090739 A JP 59090739A JP 9073984 A JP9073984 A JP 9073984A JP S59217676 A JPS59217676 A JP S59217676A
Authority
JP
Japan
Prior art keywords
cutting
si3n4
silicon nitride
cutting tool
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59090739A
Other languages
Japanese (ja)
Other versions
JPS6253475B2 (en
Inventor
照義 棚瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59090739A priority Critical patent/JPS59217676A/en
Publication of JPS59217676A publication Critical patent/JPS59217676A/en
Publication of JPS6253475B2 publication Critical patent/JPS6253475B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、すぐれた耐熱衝撃性および耐摩耗性を有し
、特に鋼および鋳鉄の高速切削に使用するのに適した窒
化けい緊塞焼結材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a silicon nitride cemented sintered material having excellent thermal shock resistance and wear resistance, and particularly suitable for use in high-speed cutting of steel and cast iron. This relates to binding materials.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、鋼および鋳鉄の高速切削を可能とすべく種々の研
究開発が試みられ、工作機械の箭剛性化と切削工具用材
料の改善の両面から、これらの鋼および鋳鉄の高速切削
への移行は一般的趨勢にあり、現時点では300m、/
mの切削速度での安定した切削が1つの目標とされてい
る。
In recent years, various research and development efforts have been made to enable high-speed cutting of steel and cast iron. It is a general trend, and at the moment it is 300m, /
One goal is stable cutting at a cutting speed of m.

この切削速度は、高速切削時に発生する熱に対してすぐ
れたill化性を示すと共に、鉄との化学的反応性が低
く、かつ摩擦係数も小さい酸化アルミニウム(以下Al
2O3で示す)を主成分として含有するAノ203基焼
結材料を切削工具として使用するという前提で、高速切
削を可能とすべ(工作機械に改良を加えることによって
達成できるとして定められたものである。
At this cutting speed, aluminum oxide (hereinafter referred to as Al
It has been established that high-speed cutting can be achieved by making improvements to machine tools, based on the premise that an A-203 sintered material containing 2O3 as a main component is used as a cutting tool. be.

しかし、上記A7203基焼結材料を、例えば鋼の冒速
連続切削に切削工具として使用した場合には、すぐれた
耐摩耗性を発揮するものの、これを例えば鋳鉄のフライ
ス切削に使用した場合には、耐熱衝撃性および高温にお
ける機械的特性が不十分であるために、機械的および熱
的衝馴によって切刃にチッピングを起しやすく、したが
ってAl2O3基焼結材料製切削工具によって、300
 m、 / mの切削速度で安定して鋼および鋳鉄の両
方を切削することはきわめて困難であるのが現状である
However, when the above-mentioned A7203-based sintered material is used as a cutting tool for rapid continuous cutting of steel, for example, it exhibits excellent wear resistance, but when used for milling of cast iron, for example, , due to insufficient thermal shock resistance and mechanical properties at high temperatures, the cutting edge is prone to chipping due to mechanical and thermal wear-in, and therefore cutting tools made of Al2O3-based sintered materials
At present, it is extremely difficult to stably cut both steel and cast iron at a cutting speed of m,/m.

そこで、熱膨張係数が小さく、すなわち耐熱衝撃性にす
ぐれ、かつ扁温における硬さおよび機械的強度にもすぐ
れた窒化けい素C以下Si3N4で示す)が注目され、
この813N4を主JJy分として含有するSi3N4
基焼結材料を鋼および鋳鉄の茜速切削に切削工具として
使用する試みもなされたが、前記Si3N4は鉄との反
応性が高いために斤耗が激しく、高速切削には適さず、
汎用性のきわめて低いものであった。
Therefore, attention has been focused on silicon nitride (hereinafter referred to as Si3N4), which has a small coefficient of thermal expansion, that is, excellent thermal shock resistance, and has excellent hardness and mechanical strength at subtemperatures.
Si3N4 containing this 813N4 as the main JJy component
Attempts have been made to use the base sintered material as a cutting tool for deep-speed cutting of steel and cast iron, but the Si3N4 has high reactivity with iron and therefore suffers from severe wear, making it unsuitable for high-speed cutting.
It had extremely low versatility.

〔研究の目的および研究に基く知見事項〕本発明者等は
、上述のような観点から、耐熱衝゛2    球性、高
温硬さ、および高温強度にすぐれたSi3N4基焼結材
料に、すぐれた耐摩耗性を付与すべく研究を行なった結
果、焼結性のあまり良好でないSi3N4に、型化アル
ミニウム(以下AANで示す)、酸化アルミニウム(以
下Al2O3で示す)、および酸化イツ) IJウム(
以下Y2O3で示す)の3成分を含有させると著しい焼
結向上効果が得られ、さらに、これにTiの炭化物、窒
化物、および炭窒化物(以下、それぞれTiC,TiN
、 TiCNで示す)力5ちの1種または2種以上を分
散相形成成分として含有させるとSi3N4のもつすぐ
れた特性が、損なわれることなく、耐摩耗性が著しく改
善されるようになり、しかもこの結果得られたSi3N
4基焼結材料を300m/順以上の高速での鋼および鋳
鉄の切削に切削工具として使用すると、いずれの場合で
も著しくすぐれた切削性能を発揮するという知見を得た
のである。
[Purpose of the research and findings based on the research] From the above-mentioned viewpoints, the present inventors have developed an excellent Si3N4-based sintered material with excellent heat shock resistance, sphericity, high-temperature hardness, and high-temperature strength. As a result of research aimed at imparting wear resistance, it was found that molded aluminum (hereinafter referred to as AAN), aluminum oxide (hereinafter referred to as Al2O3), and IJium (hereinafter referred to as Al2O3) were added to Si3N4, which does not have very good sinterability.
A remarkable sintering improvement effect can be obtained by including the three components of Ti carbide, nitride, and carbonitride (hereinafter referred to as TiC and TiN, respectively).
, TiCN) is included as a dispersed phase forming component, the wear resistance is significantly improved without impairing the excellent properties of Si3N4. The resulting Si3N
It has been found that when the 4-unit sintered material is used as a cutting tool for cutting steel and cast iron at high speeds of 300 m/s or more, it exhibits extremely excellent cutting performance in all cases.

〔発明の構成要件〕[Components of the invention]

したがって、この発明は、上記知見に基いてなされたも
ので、重量%で(以下チは重量%を示す)、分散相形成
成分としてのTic 、 TiN 、およびTi CN
のうちの1種または2種以上:6〜40チ、AIN、A
l2O3,およびY2O3の3成分を必須成分として含
有し、含量で5〜10%、 Si3N4および不可避不純物:洩り、からなる組成を
有する切削工具用Si3N4基焼結材料に特徴を有する
ものである。
Therefore, this invention was made based on the above knowledge, and in weight% (hereinafter, "ch" indicates weight%), Tic, TiN, and TiCN as dispersed phase forming components.
One or more of the following: 6 to 40 chi, AIN, A
It is characterized by a Si3N4-based sintered material for cutting tools, which contains the three components 12O3 and Y2O3 as essential components, with a content of 5 to 10%, Si3N4, and inevitable impurities: leakage.

〔h″i、分組成範囲の限定理由〕[h″i, reason for limiting the composition range]

つぎに、この発明の5131tJ4基焼結材料において
、成分組成を上記の通りに限定した理由を説明する。
Next, the reason why the component composition of the 5131tJ four-group sintered material of the present invention is limited as described above will be explained.

fal  TiC、TiN 、およびT1CNこれらの
成せには、累増゛中に分散して513N4が高温下でF
eと反応するのを抑制し、もって材料の耐摩耗性を向上
させる作用があるが、その含有量が6多未満では前記作
用に所望の効果が得られず、一方40チを越えて含有さ
せると、Si3N4の含有量が相対的に減少し、Si3
N4のもつすぐれた特性を十分に発4軍することができ
なくなることから、その含有−団を6〜40チと定めた
fal TiC, TiN, and T1CN These products contain 513N4, which is dispersed during accumulative growth and is oxidized at high temperatures.
It has the effect of suppressing the reaction with E and thereby improving the wear resistance of the material, but if the content is less than 6, the desired effect cannot be obtained, whereas if it is contained in excess of 40. , the content of Si3N4 decreases relatively, and Si3N4 content decreases relatively.
Since it would not be possible to sufficiently exhibit the excellent characteristics of N4, the content was determined to be between 6 and 40.

(b)AlN十八1へ03+¥203 これらの3 IN分は、共に固溶し合い、ガラス相を形
成して焼結性のあまり良好でない513N4と反応して
材料の焼結性を著しく改善し、もって材料を緻密化して
強度を向上させる作用があるが、その含有量が5%未満
では前記作用に所望の効果が得られず、一方10チを越
えて含有させると、粒界部分に析出するガラス相の析出
が多くなり過ぎて、Si3N4のもつすぐれた特性、す
なわち耐熱衝撃性、高温硬さ、および高温強度が損なわ
れるようになることから、そゐ含有量を5〜10チを定
めた。
(b) AlN 181 to 03 + ¥203 These 3 IN components form a solid solution together, form a glass phase, and react with 513N4, which does not have very good sinterability, significantly improving the sinterability of the material. This has the effect of densifying the material and improving its strength, but if its content is less than 5%, the desired effect cannot be obtained, while if it is contained in excess of 10%, it will cause problems at the grain boundaries. If the glass phase precipitates too much, the excellent properties of Si3N4, namely thermal shock resistance, high-temperature hardness, and high-temperature strength, will be impaired. Established.

なお、この発明のSi3N4基焼結材料は、通常の粉末
冶金法によって製造することができるが、Si3N4は
焼結性があまり良好でないので、ホットプレスによる焼
結を適用したり、あるいは普通焼結後に熱間静水圧プレ
スを適用したりすることによって、緻密な焼結材料を得
るようにするのが好ましい。
The Si3N4-based sintered material of the present invention can be produced by a normal powder metallurgy method, but since Si3N4 does not have very good sintering properties, sintering by hot pressing or ordinary sintering may be used. Preferably, a dense sintered material is obtained by subsequently applying hot isostatic pressing.

〔実施例〕〔Example〕

つぎに、この発明のSi3N4基焼結材料を実施例によ
り説明する。
Next, the Si3N4-based sintered material of the present invention will be explained using examples.

原料粉末として、平均粒径:2μmのSi3N4粉末、
同1.271 mのTic粉末、同1.2μ+nの’l
”iN粉末、同1.3μrnのTi CN粉末、同1゜
0μmのA7N粉末、同0、5 p mのAl2O3粉
末、および同0.8pmのY2O3粉末を用意し、これ
ら原料粉末を第1表に示される配合組成に配合し、湿式
ボールミルにて混合し、乾燥した後、同じく第1表に示
される榮件で普通焼結またはホットプレス(普通焼結の
場合は混合粉末を圧粉体に成形し、またホットプレスの
場合は黒鉛モールドを使用し、さらに必要に応じて、普
通焼結の場合には熱間静水圧プレス(以下HIPという
)を施すことによって本発明Si3N4基焼結材料1〜
12をそれぞれ製造した。
As raw material powder, Si3N4 powder with an average particle size of 2 μm,
1.271 m of Tic powder, 1.2μ+n'l
"iN powder, 1.3 μrn TiCN powder, 1°0 μm A7N powder, 0.5 pm Al2O3 powder, and 0.8 pm Y2O3 powder were prepared, and these raw material powders were summarized in Table 1. After mixing in a wet ball mill and drying, the mixture is sintered or hot pressed under the conditions shown in Table 1 (in the case of normal sintering, the mixed powder is made into a compact). The Si3N4-based sintered material 1 of the present invention is formed by molding, using a graphite mold in the case of hot pressing, and, if necessary, applying hot isostatic pressing (hereinafter referred to as HIP) in the case of normal sintering. ~
12 were produced respectively.

つぎに、この結果得られた本発明Si3N4基焼結材料
1〜12と、@販のへ4□03基焼結材料より超硬工具
協会規格(CIS)會SNG’N432に則した切削チ
ップを切り出し、 被削材: J I S @SNCM−8、切刃: 0.
1m X −25°のチャンファホーニング、切削速度
:300m/IIII++1 切込み:2濶、 送り:0,2膿/rev、、 の条件でのm局速連続切削試験、並びに、被削材:FC
−25、 破削材寸法:幅120+IO++X長さ320叫、切削
速II : 500 m’/ =1切込み:2咽、 1刃当りの送り二0.2謔/刃、 カッター径=160關グ、 切刃: 0.1mm X −25°チヤンフアホーニン
グ、の条件でのυj銑鉄速フライス切削試験を行ない、
切刃の逃げ面摩耗幅が0.2+Mlに至るまでの切削時
間を測定した。これらの測定結果を第2表に示した。さ
らに第2表には室温および1000℃におけろビッカー
ス硬さと抗折力を示した。
Next, a cutting tip in accordance with the Cemented Carbide Tool Society Standard (CIS) SNG'N432 was made from the Si3N4-based sintered materials 1 to 12 of the present invention obtained as a result and the 4□03-based sintered material from @Sales. Cutting, work material: JIS @SNCM-8, cutting edge: 0.
Chamfer honing of 1m x -25°, cutting speed: 300m/III++1, depth of cut: 2mm, feed: 0.2mm/rev, m local speed continuous cutting test under the following conditions, and work material: FC
-25, Dimensions of cut material: Width 120 + IO++ x Length 320 mm, Cutting speed II: 500 m'/ = 1 depth of cut: 2 mm, Feed per tooth 2 0.2 mm/tooth, Cutter diameter = 160 mm, A υj pig iron speed milling test was conducted under the following conditions: cutting edge: 0.1mm
The cutting time until the flank wear width of the cutting edge reached 0.2+Ml was measured. The results of these measurements are shown in Table 2. Furthermore, Table 2 shows the Vickers hardness and transverse rupture strength at room temperature and 1000°C.

第2表に示される結果から、本発明Si3N4基焼結材
料1〜12は、いずれも室温および高温において高硬度
および高強度を有し、鋼および銑鉄のいずれの高速切削
でもすぐれた耐摩耗性を示し、きわめて長い使用寿命を
示すことが明らかである。
From the results shown in Table 2, the Si3N4-based sintered materials 1 to 12 of the present invention all have high hardness and high strength at room temperature and high temperature, and have excellent wear resistance in high-speed cutting of both steel and pig iron. It is clear that the material has an extremely long service life.

一方、市販のA6203基焼結材料は、室温および高温
における硬さが高いので、鋼の連続高速切削では本発明
Si3N4基焼結材料と同等のすぐれた耐摩耗性を示す
ものの、高温強度および耐熱衝撃性が劣るために、鋳鉄
の高速フライス切削では切削〔総括的効果〕 上述のように、この発明の5i3N4基焼結材料は、S
i3N4のもつすぐれた耐熱衝撃性および品温における
機械的強度を具備した状態で、すぐれた耐摩れ性を有す
るので、特に鋼および鋳鉄の高速切削に切削工具として
使用した場合にきわめてすぐれた切削性能を発揮するの
である。
On the other hand, the commercially available A6203-based sintered material has high hardness at room temperature and high temperature, so it exhibits excellent wear resistance equivalent to the Si3N4-based sintered material of the present invention in continuous high-speed cutting of steel. Due to poor impact resistance, high-speed milling of cast iron results in cutting [overall effect].As mentioned above, the 5i3N4-based sintered material of the present invention
It has the excellent thermal shock resistance and mechanical strength at material temperature of i3N4, and has excellent wear resistance, so it has extremely excellent cutting performance, especially when used as a cutting tool for high-speed cutting of steel and cast iron. It demonstrates this.

出願人  三菱金属株式会社 代理人  富 1)和 夫 外1名Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person

Claims (1)

【特許請求の範囲】 分散相形成成分としてのチタンの炭化物、窒化物、およ
び炭窒化物のうちの1種または2種以上二6〜40重量
%、 窒化アルミニウム、酸化アルミニウム、および酸化イツ
トリウムの3成分を含量で5〜10%、窒化けい素およ
び不可避不純物:残り、からなろ組成を有することを特
徴とする切削工具用窒化けい緊塞焼結材料。
[Scope of Claims] 26 to 40% by weight of one or more of titanium carbides, nitrides, and carbonitrides as dispersed phase forming components; 3 of aluminum nitride, aluminum oxide, and yttrium oxide; 1. A silicon nitride tight sintered material for a cutting tool, characterized in that it has a composition of 5 to 10% of components, and the remainder consists of silicon nitride and unavoidable impurities.
JP59090739A 1984-05-07 1984-05-07 Silicon nitride-base sintering material for cutting tool Granted JPS59217676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090739A JPS59217676A (en) 1984-05-07 1984-05-07 Silicon nitride-base sintering material for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090739A JPS59217676A (en) 1984-05-07 1984-05-07 Silicon nitride-base sintering material for cutting tool

Publications (2)

Publication Number Publication Date
JPS59217676A true JPS59217676A (en) 1984-12-07
JPS6253475B2 JPS6253475B2 (en) 1987-11-10

Family

ID=14006947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090739A Granted JPS59217676A (en) 1984-05-07 1984-05-07 Silicon nitride-base sintering material for cutting tool

Country Status (1)

Country Link
JP (1) JPS59217676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278158A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Electroconductive silicon nitride sintered body
WO2002042027A1 (en) * 2000-11-22 2002-05-30 Sandvik Ab; (Publ) Method of milling engine blocks
EP1770075A1 (en) * 2005-10-03 2007-04-04 Oertli Werkzeuge AG Ceramic matrix composite cutting blade for wood machining and the method of manufacturing the cutting blade

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895662A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Silicon nitride-titanium nitride composite sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895662A (en) * 1981-11-30 1983-06-07 京セラ株式会社 Silicon nitride-titanium nitride composite sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278158A (en) * 1985-09-30 1987-04-10 京セラ株式会社 Electroconductive silicon nitride sintered body
WO2002042027A1 (en) * 2000-11-22 2002-05-30 Sandvik Ab; (Publ) Method of milling engine blocks
US6896452B2 (en) 2000-11-22 2005-05-24 Sandvik Ab Method of milling engine blocks
EP1770075A1 (en) * 2005-10-03 2007-04-04 Oertli Werkzeuge AG Ceramic matrix composite cutting blade for wood machining and the method of manufacturing the cutting blade

Also Published As

Publication number Publication date
JPS6253475B2 (en) 1987-11-10

Similar Documents

Publication Publication Date Title
JPS6011288A (en) Surface coated sialon-base ceramic tool member
JPS59199579A (en) Abrasion resistant sialon base ceramics
EP0262654B2 (en) Silicon nitride sintered material for cutting tools and process for making the same
JPS623795B2 (en)
US5326731A (en) Ceramic compositions for wear resistant applications
JPS59102865A (en) Manufacture of ceramic cutting tool
JP2576867B2 (en) High toughness cubic boron nitride based sintered body
US6133182A (en) Alumina base ceramic sintered body and its manufacturing method
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPS6256106B2 (en)
JPS6152102B2 (en)
JPS5895662A (en) Silicon nitride-titanium nitride composite sintered body
JPS5874585A (en) Surface clad silicon nitride base sintered member for high speed cutting
JPS6222951B2 (en)
JPS62187173A (en) Bite chip for machining iron material
JPS59232971A (en) Abrasion resistant sialon base ceramics
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPS593073A (en) Sialon base sintered material for cutting tool and antiabrasive tool
JPS6241193B2 (en)
JPS62235260A (en) Si3n4 base composite material
JPS6389459A (en) Manufacture of silicon nitride sintered body
JPH03126659A (en) Superhard ceramics
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof
JPS6257598B2 (en)
JPH0411503B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term