JPS6241193B2 - - Google Patents

Info

Publication number
JPS6241193B2
JPS6241193B2 JP57093752A JP9375282A JPS6241193B2 JP S6241193 B2 JPS6241193 B2 JP S6241193B2 JP 57093752 A JP57093752 A JP 57093752A JP 9375282 A JP9375282 A JP 9375282A JP S6241193 B2 JPS6241193 B2 JP S6241193B2
Authority
JP
Japan
Prior art keywords
sialon
powder
cutting
wear
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57093752A
Other languages
Japanese (ja)
Other versions
JPS58213678A (en
Inventor
Kenichi Nishigaki
Katsuaki Anzai
Teruyoshi Tanase
Taijiro Sugisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57093752A priority Critical patent/JPS58213678A/en
Publication of JPS58213678A publication Critical patent/JPS58213678A/en
Publication of JPS6241193B2 publication Critical patent/JPS6241193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特に切削工具および耐摩耗工具と
して使用した場合にすぐれた耐摩耗性を示すサイ
アロン基焼結材料に関するものである。 窒化けい素と酸化アルミニウムと窒化アルミニ
ウムの固溶体からなるサイアロン{組成式:
Si6-ZAlZOZN8-Z(ただしZ:0.2〜4.2)、で表わ
されるβ―サイアロン(β′―サイアロンとも呼
ばれる)を云う}を主成分とし、これに焼結促進
成分として酸化イツトリウム(以下Y2O3で示
す)を0.2〜10%添加含有させた組成を有するサ
イアロン基焼結材料は、高温領域まで熱的安定性
を有し、かつすぐれた耐酸化性および耐熱衝撃性
を有することから、近年、この材料を切削工具や
耐摩耗工具などとして用いる試みがなされてい
る。 しかし、上記従来サイアロン基焼結材料におい
ては、これを、例えば切削工具として鋳鉄の切削
に用いた場合には、刃先に加わる熱および負荷が
鋼切削の場合に比して少ないことから、比較的良
好な耐摩耗性を示すが、被削材が鋼である場合に
は、熱発生の原因となる切削抵抗が大きくなるば
かりでなく、これの構成成分であるSiと被削材中
のFeとの化学的親和力が強いことと相まつて、
切刃に溶着や剥離が生じることから、摩耗の著し
いものとなり、実用に供し得ないのが現状であ
る。 本発明者等は、上述のような観点から、高温領
域まで熱的に安定し、かつすぐれた耐酸化性およ
び耐熱衝撃性をもつが、例えば鋼の切削に切削工
具として使用した場合、摩耗が著しく、実用に供
〓〓〓〓〓
し得ない上記従来サイアロン基焼結材料に着目
し、これにすぐれた耐摩耗性を付与すべく研究を
行なつた結果、前記従来サイアロン基焼結材料
に、Tiの炭化物、窒化物、および炭窒化物(以
下、TiC、TiN、およびTiCNで示す)のうちの
1種または2種以上を添加含有させると、サイア
ロン基焼結材料自体における粒子同志の結合力が
一段と向上するようになると共に、粒成長が抑制
されるようになり、かつこれの構成成分であるSi
のFeに対する化学的親和力が著しく弱められる
ようになり、この結果耐摩耗性が著しく向上した
ものになり、さらにこれにZrおよびHfの炭化
物、窒化物、および炭窒化物(以下、それぞれ
ZrC、ZrN、ZrCN、HfC、HfN、およびHfCNで
示し、かつこれらを総称してZrおよびHfの炭・
窒化物という)のうちの1種または2種以上を含
有させると、一段と粒成長が抑制され、むしろ微
細化するようになつて耐摩耗性が一層向上するよ
うになるという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、Y2O3:0.2〜10%、TiC、TiN、お
よびTiCNのうちの1種または2種以上:10〜40
%を含有し、さらに必要に応じてZrおよびHfの
炭・窒化物のうちの1種または2種以上:0.1〜
12%を含有し、残りがサイアロンと不可避不純物
からなる組成(以上重量%)を有し、特に鋳鉄は
勿論のこと、鋼の切削に切削工具として、さらに
耐摩耗工具として用いた場合に、すぐれた耐摩耗
性を示すサイアロン基焼結材料に特徴を有するも
のである。 つぎに、この発明の焼結材料において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) Y2O3 Y2O3成分には、焼結時にイツトリウムけい酸
塩質の液相を生成して焼結体の緻密化を促進する
という焼結助剤としての作用と、1850℃以上の高
融点を有するメリライト型化合物(Si3N4
Y2O3)の結晶相を粒界に析出させて焼結材料の高
温強度を向上させる作用があるが、その含有量が
0.2%未満では前記作用に所望の効果が得られ
ず、一方10%を越えて含有させると、サイアロン
によつてもたらされる特性を十分に発揮すること
ができなくなることから、その含有量を0.2〜10
%と定めた。 (b) TiC、TiNおよびTiCN これらの成分は、上記の通り、サイアロン粒子
の粒間に独立粒子として存在して、サイアロン粒
子の粒成長を抑制し、もつて耐摩耗性を向上させ
る作用をもつほか、これらの粒子とサイアロン粒
子とは、その結合強度がきわめて強固であること
から、靭性も著しく向上させる作用をもち、した
がつて、例えばこの結果の焼結材料を切削工具と
して鋼の切削に用いた場合には、剥離摩耗、並び
に被削材の構成成分であるFeとSiとの溶着に原
因する拡散摩耗が著しく抑制されるようになる
が、その含有量が10%未満では前記作用に所望の
効果が得られず、一方40%を越えて含有させる
と、これらの成分の粒子同志の接触割合が多くな
りすぎて、焼結性が低下するようになり、この結
果焼結材料の強度が低下することから、その含有
量を10〜40%と定めた。 (c) ZrおよびHfの炭・窒化物 これらの成分には、TiC、TiN、およびTiCN
と同様に、サイアロン粒子の粒成長を一層抑制
し、むしろこれを微細化して一段と耐摩耗性を向
上させる作用があるので、特に高い耐摩耗性が要
求される場合に必要に応じて含有されるが、その
含有量が0.1%未満では所望の向上効果が得られ
ず、一方12%を越えて含有させると、焼結性が低
下し、焼結材料が強度低下をきたすようになるこ
とから、その含有量を0.1〜12%と定めた。 なお、この発明の焼結材料は、通常の粉末冶金
法にしたがつて製造することができるが、特に以
下の方法、すなわち、まずサイアロン粉末と
Y2O3粉末、またはサイアロンに相当する配合組
成の窒化けい素(以下Si3N4で示す)粉末、窒化
アルミニウム(以下AlNで示す)粉末、および酸
化アルミニウム(以下Al2O3で示す)粉末と、
Y2O3粉末とを、湿式混合し、乾燥した後、混合
粉末ままの状態、または約100Kg/cm3の圧力で圧
粉体とした状態で、アルミナ管に入れ、窒素雰囲
気中、温度:1300〜1500℃の範囲内の所定温度に
1〜10時間保持して拡散固溶させることによつて
サイアロンとY2O3の固溶体を形成し、これを粉
砕して原料粉末とし、この原料粉末に、同じく原
料粉末として用意したTiC粉末、TiN粉末、およ
びTiCN粉末、さらに必要に応じてZrおよびHfの
炭・窒化物粉末を配合して所定の配合組成とし、
〓〓〓〓〓
通常の条件で湿式混合し、乾燥し、圧粉体とした
後、窒素雰囲気中、温度:1700〜1800℃の範囲内
の所定温度で、常圧焼結あるいはホツトプレス
し、さらに必要に応じて窒素またはアルゴン雰囲
気中で熱間静水圧プレスを施すことによつて製造
するのが好ましい。 つぎに、この発明の焼結材料を実施例により具
体的に説明する。 実施例 まず、原料粉末として、いずれも市販の平均粒
径:0.6μmを有するSi3N4粉末、同0.4μmの
Al2O3粉末、および同1.2μmのAlN粉末を用意
し、これら原料粉末をサイアロン組成に相当する
配合組成に配合し、湿式ボールミルにて混合し、
乾燥した後、100Kg/cm2の圧力にて圧粉体とし、
ついでこの圧粉体を窒素雰囲気中、温度:1550℃
に5時間保持して反応させて組成式:Si4Al2O2N6
を有するサイアロンとし、このサイアロンは破砕
性の良好なものなので容易に−60meshに粉砕で
き、ついでこのように調整したサイアロン粉末
と、別途用意した平均粒径:0.6μmを有する
Y2O3粉末、いずれも同0.8μmのTiC粉末、TiN
粉末、およびTiCN粉末、さらに同じくいずれも
平均粒径:1.2μmを有するZrとHfの炭・窒化物
粉末(以下それぞれZrC粉末、ZrN粉末、ZrCN粉
末、HfC粉末、HfN粉末、およびHfCN粉末で示
す)とを原料粉末として使用し、これら原料粉末
をそれぞれ第1表に示される配合組成に配合し、
湿式ボールミルにて混合し、乾燥した後、1ton/
cm2の圧力にて圧粉体に成形し、この圧粉体を黒鉛
鋳型内に上下を窒化ボロン粉末でサンドイツチし
た状態で挿入し、窒素雰囲気中、温度:1750℃に
1時間保持のホツトプレスを行ない、実質的に配
合組成と同一の成分組成をもつた本発明焼結材料
1〜19および従来焼結材料をそれぞれ製造した。 つぎに、この結果得られた各種の焼結材料の密
度、硬さ(ロツクウエル硬さAスケール)、およ
び抗折力を測定すると共に、これより切削チツプ
を切り出し、被削材:SNCM−8(硬さ:HB
270)、切削速度:300m/min、送り:0.2mm/
rev、切込み:1.5mm、切削時間:2minの条件で
鋼の高速切削試験を行ない、切刃の逃げ面摩耗幅
を測定した。これらの測定結果を第1表に合せて
示した。
This invention relates to sialon-based sintered materials that exhibit excellent wear resistance, particularly when used as cutting tools and wear-resistant tools. Sialon consists of a solid solution of silicon nitride, aluminum oxide, and aluminum nitride {composition formula:
Si 6-Z Al Z O Z N 8-Z (Z: 0.2 to 4.2), β-sialon (also called β'-sialon) is the main component, and this is supplemented with a sintering accelerating component. Sialon-based sintered materials with a composition containing 0.2 to 10% yttrium oxide (hereinafter referred to as Y 2 O 3 ) have thermal stability up to high temperatures, and have excellent oxidation resistance and thermal shock resistance. In recent years, attempts have been made to use this material as cutting tools, wear-resistant tools, and the like. However, when using the above-mentioned conventional sialon-based sintered material for cutting cast iron as a cutting tool, the heat and load applied to the cutting edge are relatively small compared to when cutting steel. Although it exhibits good wear resistance, when the work material is steel, not only does the cutting force that causes heat generation increase, but also the Si component of this material and the Fe in the work material Coupled with the strong chemical affinity of
Since welding and peeling occur on the cutting edge, it causes significant wear and cannot be put to practical use at present. From the above-mentioned viewpoints, the present inventors have discovered that although it is thermally stable up to high temperature ranges and has excellent oxidation resistance and thermal shock resistance, when used as a cutting tool for cutting steel, for example, it suffers from wear. Remarkably useful for practical use〓〓〓〓〓
Focusing on the conventional sialon-based sintered material mentioned above, we conducted research to give it excellent wear resistance.As a result, we added Ti carbide, nitride, and carbon to the conventional sialon-based sintered material. When one or more types of nitrides (hereinafter referred to as TiC, TiN, and TiCN) are added and contained, the bonding force between particles in the sialon-based sintered material itself is further improved, and Grain growth is now suppressed, and its constituent Si
The chemical affinity of Zr and Hf for Fe becomes significantly weakened, resulting in significantly improved wear resistance, which is further supplemented by Zr and Hf carbides, nitrides, and carbonitrides (hereinafter, respectively).
ZrC, ZrN, ZrCN, HfC, HfN, and HfCN, and these are collectively referred to as Zr and Hf charcoal and
They found that when one or more of the following types (called nitrides) are contained, grain growth is further suppressed, and the grains become finer, further improving wear resistance. . This invention was made based on the above knowledge, and includes Y2O3 : 0.2 to 10%, one or more of TiC, TiN, and TiCN: 10 to 40 %.
%, and if necessary, one or more of Zr and Hf carbon/nitride: 0.1~
It has a composition (wt%) of 12% and the rest is Sialon and unavoidable impurities, and is particularly effective when used as a cutting tool for cutting not only cast iron, but also steel, and as a wear-resistant tool. This material is characterized by a sialon-based sintered material that exhibits high wear resistance. Next, in the sintered material of the present invention, the reason why the component composition range is limited as described above will be explained. (a) Y 2 O 3 The Y 2 O 3 component acts as a sintering aid, generating a yttrium silicate liquid phase during sintering and promoting the densification of the sintered body, and 1850 Melilite-type compounds (Si 3 N 4
It has the effect of precipitating the crystal phase of Y 2 O 3 ) at the grain boundaries and improving the high-temperature strength of the sintered material.
If the content is less than 0.2%, the desired effect cannot be obtained, while if the content exceeds 10%, the characteristics brought about by Sialon cannot be fully exhibited. Ten
%. (b) TiC, TiN, and TiCN As mentioned above, these components exist as independent particles between the sialon particles and have the effect of suppressing the grain growth of the sialon particles and improving wear resistance. In addition, these particles and Sialon particles have an extremely strong bond strength, which has the effect of significantly improving toughness. Therefore, for example, the resulting sintered material can be used as a cutting tool for cutting steel. When used, exfoliation wear and diffusion wear caused by welding of Fe and Si, which are the constituent components of the workpiece material, are significantly suppressed. However, if the content is less than 10%, the above effects will be suppressed. On the other hand, if the desired effect is not obtained, if the content exceeds 40%, the proportion of particles of these components in contact with each other becomes too large, resulting in a decrease in sinterability, and as a result, the strength of the sintered material decreases. The content was set at 10% to 40%. (c) Carbon/nitrides of Zr and Hf These components include TiC, TiN, and TiCN.
Similarly, it has the effect of further suppressing the grain growth of sialon particles, or rather making them finer, further improving wear resistance, so it is included as necessary when particularly high wear resistance is required. However, if the content is less than 0.1%, the desired improvement effect cannot be obtained, while if the content exceeds 12%, the sinterability decreases and the strength of the sintered material decreases. Its content was set at 0.1-12%. The sintered material of the present invention can be produced by the usual powder metallurgy method, but in particular, the sintered material of the present invention can be produced by the following method.
Y 2 O 3 powder, or silicon nitride (hereinafter referred to as Si 3 N 4 ) powder, aluminum nitride (hereinafter referred to as AlN) powder, and aluminum oxide (hereinafter referred to as Al 2 O 3 ) with a composition equivalent to Sialon. powder and
After wet mixing with Y 2 O 3 powder and drying, the mixed powder as it is or the compacted powder at a pressure of about 100 kg/cm 3 is placed in an alumina tube and heated in a nitrogen atmosphere at a temperature of: A solid solution of Sialon and Y 2 O 3 is formed by holding it at a predetermined temperature within the range of 1300 to 1500°C for 1 to 10 hours and causing a diffusion solid solution, and this is pulverized to obtain a raw material powder. TiC powder, TiN powder, and TiCN powder, which were also prepared as raw material powders, are further mixed with Zr and Hf carbon/nitride powders as necessary to obtain a predetermined composition.
〓〓〓〓〓
After wet mixing under normal conditions and drying to form a green compact, it is sintered under normal pressure or hot pressed in a nitrogen atmosphere at a predetermined temperature within the range of 1700 to 1800°C, and further heated with nitrogen if necessary. Alternatively, it is preferable to manufacture by hot isostatic pressing in an argon atmosphere. Next, the sintered material of the present invention will be specifically explained with reference to Examples. Example First, as raw material powders, commercially available Si 3 N 4 powder with an average particle size of 0.6 μm and Si 3 N 4 powder with an average particle size of 0.4 μm were used.
Prepare Al 2 O 3 powder and 1.2 μm AlN powder, blend these raw powders into a composition corresponding to the Sialon composition, and mix in a wet ball mill.
After drying, it is made into a compact under a pressure of 100Kg/ cm2 ,
Next, this green compact was heated in a nitrogen atmosphere at a temperature of 1550°C.
Composition formula: Si 4 Al 2 O 2 N 6
Since this Sialon has good crushability, it can be easily ground to -60mesh, and then the Sialon powder prepared in this way and the separately prepared Sialon powder having an average particle size of 0.6 μm are prepared.
Y 2 O 3 powder, 0.8 μm TiC powder, TiN
powder, and TiCN powder, as well as Zr and Hf carbon/nitride powders (hereinafter referred to as ZrC powder, ZrN powder, ZrCN powder, HfC powder, HfN powder, and HfCN powder, respectively), both of which have an average particle size of 1.2 μm. ) are used as raw material powders, and these raw material powders are blended into the composition shown in Table 1,
After mixing in a wet ball mill and drying, 1 ton/
The compact was formed into a compact at a pressure of cm 2 , inserted into a graphite mold with the top and bottom sandwiched with boron nitride powder, and hot pressed at a temperature of 1750°C for 1 hour in a nitrogen atmosphere. Sintered materials 1 to 19 of the present invention and conventional sintered materials having substantially the same composition as the compounded composition were manufactured. Next, the density, hardness (Rockwell hardness A scale), and transverse rupture strength of the various sintered materials obtained as a result were measured, and cutting chips were cut from the materials.Work material: SNCM-8 ( Hardness: H B
270), cutting speed: 300m/min, feed: 0.2mm/
A high-speed cutting test was conducted on steel under the conditions of rev, depth of cut: 1.5 mm, and cutting time: 2 min, and the flank wear width of the cutting edge was measured. These measurement results are also shown in Table 1.

【表】 〓〓〓〓〓
[Table] 〓〓〓〓〓

【表】 第1表に示される結果から、本発明焼結材料1
〜19は、いずれも従来焼結材料に比して高硬度お
よび高靭性を有し、かつ切削工具として使用した
場合にはすぐれた耐摩耗性を示すことが明らかで
ある。 上述のように、この発明の焼結材料は、特にす
ぐれた靭性と耐摩耗性を備え、かつ高温強度、耐
酸化性、および耐熱衝撃性にすぐれ、さらに高温
領域まで熱的に安定した性質をもつので、これら
の特性が要求される切削工具や、軸受および線引
ダイスなどの耐摩耗工具として使用した場合に長
期に亘つてすぐれた性能を発揮するのである。 〓〓〓〓〓
[Table] From the results shown in Table 1, the sintered material 1 of the present invention
It is clear that all of Samples 1 to 19 have higher hardness and toughness than conventional sintered materials, and exhibit excellent wear resistance when used as cutting tools. As mentioned above, the sintered material of the present invention has particularly excellent toughness and wear resistance, and has excellent high-temperature strength, oxidation resistance, and thermal shock resistance, as well as thermally stable properties even in high-temperature ranges. Therefore, it exhibits excellent performance over a long period of time when used as cutting tools that require these characteristics, or as wear-resistant tools such as bearings and wire drawing dies. 〓〓〓〓〓

Claims (1)

【特許請求の範囲】 1 酸化イツトリウム:0.2〜10%、Tiの炭化
物、窒化物、および炭窒化物のうちの1種または
2種以上:10〜40%を含有し、残りがサイアロン
と不可避不純物からなる組成(以上重量%)を有
することを特徴とする切削工具および耐摩耗工具
用サイアロン基焼結材料。 2 酸化イツトリウム:0.2〜10%、Tiの炭化
物、窒化物、および炭窒化物のうちの1種または
2種以上:10〜40%を含有し、さらにZrおよび
Hfの炭化物、窒化物、および炭窒化物のうちの
1種または2種以上:0.1〜12%を含有し、残り
がサイアロンと不可避不純物からなる組成(以上
重量%)を有することを特徴とする切削工具およ
び耐摩耗工具用サイアロン基焼結材料。
[Claims] 1 Contains 0.2 to 10% of yttrium oxide, 10 to 40% of one or more of Ti carbides, nitrides, and carbonitrides, and the remainder is Sialon and inevitable impurities. A sialon-based sintered material for cutting tools and wear-resistant tools, characterized by having a composition (the above weight %) consisting of: 2 Contains yttrium oxide: 0.2 to 10%, one or more of Ti carbides, nitrides, and carbonitrides: 10 to 40%, and further contains Zr and
It is characterized by having a composition (weight %) containing one or more of Hf carbides, nitrides, and carbonitrides: 0.1 to 12%, with the remainder consisting of sialon and inevitable impurities. Sialon-based sintered material for cutting tools and wear-resistant tools.
JP57093752A 1982-06-01 1982-06-01 Sialon base sintering material for cutting tool and abrasion-resistant tool Granted JPS58213678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093752A JPS58213678A (en) 1982-06-01 1982-06-01 Sialon base sintering material for cutting tool and abrasion-resistant tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093752A JPS58213678A (en) 1982-06-01 1982-06-01 Sialon base sintering material for cutting tool and abrasion-resistant tool

Publications (2)

Publication Number Publication Date
JPS58213678A JPS58213678A (en) 1983-12-12
JPS6241193B2 true JPS6241193B2 (en) 1987-09-01

Family

ID=14091156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093752A Granted JPS58213678A (en) 1982-06-01 1982-06-01 Sialon base sintering material for cutting tool and abrasion-resistant tool

Country Status (1)

Country Link
JP (1) JPS58213678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007092A1 (en) * 1988-01-28 1989-08-10 Hitachi Metals, Ltd. Electroconductive sialon sinter and heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62275070A (en) * 1984-11-09 1987-11-30 日立金属株式会社 Electroconductive sialon sintered body and manufacture
DE3990082T1 (en) * 1988-01-28 1990-01-11 Hitachi Metals Ltd SINTER BODY FROM CONDUCTIVE SIALON AND A HEATING ELEMENT MADE OF IT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239508A (en) * 1975-09-23 1977-03-26 Sumitomo Electric Ind Ltd Composite ceramic tool
JPS52147607A (en) * 1976-06-03 1977-12-08 Lucas Industries Ltd Manufacture of ceramic materials
JPS5632377A (en) * 1979-08-20 1981-04-01 Mitsubishi Metal Corp Silicon nitride base sintered material for cutting tool
JPS56129667A (en) * 1980-03-12 1981-10-09 Kagaku Gijutsucho Mukizai Manufacture of alpha-sialon sintered body
JPS58213679A (en) * 1982-05-20 1983-12-12 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレ−テツド Composite ceramic cutting tool and manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239508A (en) * 1975-09-23 1977-03-26 Sumitomo Electric Ind Ltd Composite ceramic tool
JPS52147607A (en) * 1976-06-03 1977-12-08 Lucas Industries Ltd Manufacture of ceramic materials
JPS5632377A (en) * 1979-08-20 1981-04-01 Mitsubishi Metal Corp Silicon nitride base sintered material for cutting tool
JPS56129667A (en) * 1980-03-12 1981-10-09 Kagaku Gijutsucho Mukizai Manufacture of alpha-sialon sintered body
JPS58213679A (en) * 1982-05-20 1983-12-12 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレ−テツド Composite ceramic cutting tool and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007092A1 (en) * 1988-01-28 1989-08-10 Hitachi Metals, Ltd. Electroconductive sialon sinter and heater

Also Published As

Publication number Publication date
JPS58213678A (en) 1983-12-12

Similar Documents

Publication Publication Date Title
JPS6011288A (en) Surface coated sialon-base ceramic tool member
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPS6227033B2 (en)
JPS59199581A (en) Abrasion resistant sialon base ceramics
JPS6241193B2 (en)
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS6256106B2 (en)
JPS644989B2 (en)
JPS62187173A (en) Bite chip for machining iron material
JPS6215505B2 (en)
JP2808725B2 (en) Sintered body for high hardness tools
JP2778179B2 (en) Manufacturing method of silicon nitride based sintered material with high toughness and high strength
JP2712737B2 (en) Silicon nitride based sintered material with high toughness and high strength
JPH0911006A (en) Cutting tool made of cubic nitride boron group sintered material which provides excellent wear resistance in high-speed cutting
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPH10226575A (en) High-pressure form of boron nitride sintered compact for cutting tool
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPS6183681A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPS6090873A (en) Silicon nitride sintered body for tool part
JPS6257596B2 (en)
JPS6215504B2 (en)
JPS6241194B2 (en)
JPH059386B2 (en)
JPS621592B2 (en)
JPS6246513B2 (en)