JPS6215505B2 - - Google Patents

Info

Publication number
JPS6215505B2
JPS6215505B2 JP57111349A JP11134982A JPS6215505B2 JP S6215505 B2 JPS6215505 B2 JP S6215505B2 JP 57111349 A JP57111349 A JP 57111349A JP 11134982 A JP11134982 A JP 11134982A JP S6215505 B2 JPS6215505 B2 JP S6215505B2
Authority
JP
Japan
Prior art keywords
sialon
cutting
tin
powder
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57111349A
Other languages
Japanese (ja)
Other versions
JPS593073A (en
Inventor
Kenichi Nishigaki
Katsuaki Anzai
Teruyoshi Tanase
Taijiro Sugisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57111349A priority Critical patent/JPS593073A/en
Publication of JPS593073A publication Critical patent/JPS593073A/en
Publication of JPS6215505B2 publication Critical patent/JPS6215505B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特に切削工具および耐摩耗工具と
して使用した場合にすぐれた耐摩耗性を示す高強
度サイアロン基焼結材料に関するものである。 窒化ケイ素と酸化アルミニウムとの固溶体はサ
イアロンと呼ばれており、高温領域までの熱的安
定性、耐酸化性、および耐熱衝撃性が良好なた
め、エンジニアリングセラミツクス関係をはじ
め、耐摩耗性部品、耐食性部品、あるいは切削工
具をはじめとする各種工具材として有望な材料の
1つとされているが、極めて難焼結性材料である
ことが直接の用途に結び付ける上での大きな障害
となつていた。 ところが、最近に至つて、酸化イツトリウム
(以下、Y2O3で示す)が上記サイアロンに対する
すぐれた焼結助剤として作用することが発見さ
れ、該サイアロンを主成分とし、これに焼結促進
成分としてY2O3を0.2〜10%(以下、%は重量基
準として示す)添加含有させて焼結したサイアロ
ン基焼結材料は、高温領域まで熱的安定性を有
し、かつすぐれた耐酸化性および耐熱衝撃性をも
具備していることがわかり、この材料を切削工具
や耐摩耗工具などとして用いる試みがなされ、す
でに一部市販もなされている。 しかし、上記従来サイアロン基焼結材料におい
ては、これを、例えば切削工具として鋳鉄系材料
の高速切削に用いた場合、従来広く使用されてい
るAl2O3基セラミツクに比して耐熱衝撃性にすぐ
れているうえ、刃先に加わる熱および負荷が鋼切
削の場合に比して少ないので湿式切削を可能と
し、作業環境の改善や切屑処理等の面で好ましい
結果が得られるようであるが、被削材が鋼である
場合には、熱発生の原因となる切削抵抗が大きく
なるばかりでなく、溶着、拡散が著しくなり、被
削材中のFeとサイアロン基焼結材料の構成成分
であるSiとの化学的親和力が強いことと相まつ
て、刃先の剥離が生じやすく、摩耗進行が速いと
いう問題点を有していた。 本発明者等は、上述のような観点から、高温領
域まで熱的に安定し、かつすぐれた耐酸化性およ
び耐熱衝撃性をもつが、例えば鋼の切削に切削工
具として使用した場合、摩耗が著しく実用に供し
得ない上記従来サイアロン基焼結材料に着目し、
これにすぐれた耐摩耗性を付与するとともに、そ
の靭性をより向上させることを目ざして研究を行
なつた結果、Y2O3を含む前記従来サイアロン基
焼結材料に、酸化ジルコニウム(以下、ZrO2
示す)と窒化チタン(以下、TiNで示す)とを共
にして、その適量を添加含有せしめると、サイア
ロンの特性を損なうことなく靭性並びに耐摩耗性
が著しく向上するようになるとの知見を得たので
ある。 これは、ZrO2が1000℃前後で変態を伴なうた
めに、焼結からの冷却過程においてZrO2粒子周
辺に極めて微細なマイクロクラツクを発生し、こ
れが外部応力の吸収作用をなして耐衝撃を著しく
向上させるとともに、Feとの親和性の少ないTiN
が焼結材料中に分散して耐溶着性の向上、ひいて
は耐摩耗性の向上に寄与するためであると推定さ
れる。 そして、添加するTiNはサイアロン粒子間に独
立して分散するので、一般にはサイアロン粒子同
士の結合が弱まつて焼結材料の靭性を劣化させ勝
ちであるが、ZrO2と共存させると、TiとZrとが
同族元素であるということもあつて、TiN粒子の
表面層にZrO2のO2の1部が拡散し、TiNの極く
表面層のみTiNOの形を作ると考えられ、この表
面に酸素が入つたTiNOとサイアロン粒子とが強
い結合力を有することから、むしろ靭性を向上す
るという結果を示すのである。 この発明は、上記知見に基づいてなされたもの
であつて、サイアロン基焼結材料を、 Y2O2:0.2〜10%、 ZrO2:0.5〜10%、 TiN:10〜30%、 を含有し、 サイアロンおよび不可避不純物:残り、 から成る組成として、切削工具および耐摩耗工具
用に供することに特徴を有するものである。 つぎに、この発明の焼結材料において、成分組
成範囲を上記の通りに限定した理由を説明する。 (a) Y2O3 Y2O3成分には、焼結時にイツトリウムケイ
酸塩質の液相を形成して焼結体の緻密化を促進
するという焼結助剤としての作用と、1850℃以
上の高融点を有するメリライト型化合物
(Si3N4・Y2O3)の結晶相を粒界に析出させて焼
結材料の高温強度を向上させる作用があるが、
その含有量が0.2%未満では前記作用に所望の
効果が得られず、一方10%を越えて含有させる
と、サイアロンによつてもたらされる特性、特
に耐熱衝撃抵抗性及び耐摩耗性を十分に発揮す
ることができなくなることから、その含有量を
0.2〜10%と定めた。 (b) ZrO2 ZrO2成分は、焼結材料組織内に微細に分散
し、焼結の冷却過程における約1000℃付近で変
態して該粒子周辺に微細なクラツク場を形成
し、応力吸収をなすという作用を有するうえ、
TiN粒子とサイアロン粒子間の結合力を向上
し、結果として焼結材料の靭性を改善する効果
を奏するものであるが、その含有量が0.5%未
満では上記作用に所望の効果が得られず、一方
10%を越えて含有すると変態に伴なうクラツク
場が多くなりすぎ、かえつて靭性低下を来たす
ようになることから、その含有量を0.5〜10%
と定めた。 なお、ZrO2は、焼結材料中に1.0μm以下の
粒子で残存させるのが好ましい。 (c) TiN TiN成分は、焼結材料中に独立した粒子とし
て存在し、サイアロン粒子の粒成長抑制効果を
有するとともに、鋼切削時の耐溶着性を改善す
る作用を有するものであるが、その含有量が10
%未満では前記作用に所望の効果が得られず、
一方30%を越えて含有させると焼結性が低下し
て靭性劣化を招くようになるので、その含有量
を10〜30%と定めた。 なお、TiNはNを置換してCやOを比較的多
く固溶し得る化合物であるが、その製造工程上
入るCやOを固溶した、いわゆるTiNC、
TiNOあるいはTiNCO等の化合物形態のものを
TiN成分に置き換えても、同様の効果を得るこ
とができるものである。 また、ZrO2と同様、TiNも焼結材料中に1.0
μm以下の粒子で残存させるのが好ましい。 この発明の焼結材料は、通常の粉末冶金法に
従つて、所望のサイアロン組成に相当する
Si3N4、AlNおよびAl2O3の混合粉末に、Y2O3
ZrO2およびTiNの各粉末を配合し、混合・成形
後焼結して製造することができるが、特に以下
に示す方法で製造するのが好ましい。すなわ
ち、一旦、所望のサイアロン組成に相当する
Si3N4、AlNおよびAl2O3の各粉末を混合後、
100Kg/cm2程度の加圧力で圧粉体としたものを
アルミナ管に入れ、窒素雰囲気中、温度:1400
〜1500℃の範囲内の所定温度に1〜10時間保持
して拡散固溶させたものを取り出して粉砕し、
これにさらにY2O3、ZrO2およびTiNの各粉末
を添加して十分に混合し、これを1〜1.5t/cm2
の圧力で加圧成形後、再び、窒素雰囲気中、温
度:1700〜1800℃の範囲内の所定温度で常圧焼
結するか、あるいはホツトプレスすることによ
つて製造するのが好ましい。また、必要に応じ
て、この焼結体を、さらに窒素雰囲気中または
アルゴン雰囲気中にて熱間静水圧プレス
(HIP)すれば、中心部までより緻密化した良
好な焼結体を得ることができる。 また、いわゆるサイアロン固溶体(Si6
zAlzOzN8−z)は、そのz値で0〜5までの
広い範囲にわたつて存在し、その値によつて特
性が一部変化するものであるが、この発明の焼
結材料はSi3N4の持つ耐熱衝撃特性とサイアロ
ンの持つ耐酸化性を生かして工具用としての特
性を具備させた点にも大きな特徴を有するもの
であつて、z値が0を越えることは必要である
が、3を越えると、相対的にAlおよびOの量
が多くなりすぎて、抗析力、耐摩耗性ともに低
下し、さらにSi3N4の持つ耐熱衝撃値が生かせ
ないようになるため好ましくない。 つぎに、この発明の焼結材料を実施例により具
体的に説明する。 実施例 まず、原料粉末として、いずれも市販の平均粒
径:0.6μmを有するSi3N4粉末、同0.4μmの
Al2O3粉末、および同1.2μmのAlN粉末を用い
て、第1表に示すz値を有するSi6−zAlzOzN8
z(サイアロン)になるように各粉末を配合し、
湿式ボールミルにて混合し、乾燥した後、100
Kg/cm2の圧力にて圧粉体に成形し、窒素雰囲気
中、温度:1450℃で5時間反応させた。この反応
粉は容易に粉砕できるので、−60メツシユに粉砕
した。 つぎに、この粉末に、粒径が0.6μmのY2O3
末、同0.3μmの粉末、および同0.8μmのTiN粉
末を、第1表に示す組成に配合し、湿式ボールミ
ルにて混合し、乾燥した後、1t/cm2の圧力にて圧
粉体に成形し、この圧粉体を黒鉛型内に上下を窒
化ホウ素粉末でサンドイツチにした状態で挿入
し、窒素雰囲気中、温度:1750℃に1時間保持の
ホツトプレスを行ない、実質的に配合組成と同一
の成分組成をもつた本発明焼結材料1〜16、およ
び従来焼結材料あるいは成分組成範囲が本発明の
範囲から外れた比較材17〜27をそれぞれ製造し
た。 ついで、この結果得られた各種の焼結材料の密
度、硬さ(ロツクウエル硬さAスケール)、およ
び抗折力を測定すると共に、これより切削用チツ
プを切り出し、被削材:SNCM−8(更さ:HB
270)、切込速度:300m/min、送り:0.2mm/
rev.
This invention relates to high-strength sialon-based sintered materials that exhibit excellent wear resistance, particularly when used as cutting tools and wear-resistant tools. A solid solution of silicon nitride and aluminum oxide is called Sialon, and it has good thermal stability, oxidation resistance, and thermal shock resistance up to high temperatures, so it is used in engineering ceramics, wear-resistant parts, and corrosion-resistant parts. Although it is considered to be one of the promising materials for parts and various tools such as cutting tools, the fact that it is an extremely difficult-to-sinter material has been a major obstacle in putting it into direct use. However, it has recently been discovered that yttrium oxide (hereinafter referred to as Y 2 O 3 ) acts as an excellent sintering aid for the above-mentioned Sialon. Sialon-based sintered materials containing 0.2 to 10% Y 2 O 3 (hereinafter expressed on a weight basis) have thermal stability up to high temperatures and excellent oxidation resistance. It has been found that this material also has good durability and thermal shock resistance, and attempts have been made to use this material as cutting tools and wear-resistant tools, and some are already commercially available. However, when the conventional sialon-based sintered material mentioned above is used as a cutting tool for high-speed cutting of cast iron materials, it has poor thermal shock resistance compared to the conventionally widely used Al 2 O 3- based ceramic. In addition to this, the heat and load applied to the cutting edge are lower than when cutting steel, making it possible to perform wet cutting, which seems to yield favorable results in terms of improving the working environment and disposing of chips. When the cutting material is steel, not only does the cutting resistance that causes heat generation increase, but also welding and diffusion become significant, causing Fe in the cutting material and Si, which is a constituent of the sialon-based sintered material, to Coupled with the strong chemical affinity with the metal, there were problems in that the cutting edge easily peeled off and wear progressed rapidly. From the above-mentioned viewpoints, the present inventors have discovered that although it is thermally stable up to high temperature ranges and has excellent oxidation resistance and thermal shock resistance, when used as a cutting tool for cutting steel, for example, it suffers from wear. Focusing on the above-mentioned conventional sialon-based sintered material, which is extremely impractical,
As a result of research aimed at imparting excellent wear resistance to this material and further improving its toughness, we found that zirconium oxide (hereinafter referred to as ZrO 2 ) and titanium nitride (hereinafter referred to as TiN) together in appropriate amounts, the toughness and wear resistance of Sialon can be significantly improved without impairing its properties. I got it. This is because ZrO 2 undergoes transformation at around 1000°C, so extremely fine micro-cracks are generated around the ZrO 2 particles during the cooling process from sintering, which acts to absorb external stress and improve the resistance. TiN, which significantly improves impact and has low affinity with Fe
It is presumed that this is because it is dispersed in the sintered material and contributes to improving the welding resistance and, ultimately, the wear resistance. Since the added TiN is independently dispersed between the sialon particles, it generally tends to weaken the bonds between the sialon particles and deteriorate the toughness of the sintered material, but when it coexists with ZrO 2 , Ti and Part of the O 2 of ZrO 2 diffuses into the surface layer of TiN particles, and only the very surface layer of TiN forms TiNO, partly because Zr is a homologous element. Since the TiNO containing oxygen and the Sialon particles have a strong bonding force, the result is that the toughness is actually improved. This invention was made based on the above findings, and contains a sialon -based sintered material containing Y2O2 : 0.2-10%, ZrO2 : 0.5-10%, TiN: 10-30%. The composition is characterized in that it is suitable for use in cutting tools and wear-resistant tools as it has a composition consisting of: Sialon and unavoidable impurities: the remainder. Next, in the sintered material of the present invention, the reason why the component composition range is limited as described above will be explained. (a) The Y 2 O 3 Y 2 O 3 component acts as a sintering aid by forming a yttrium silicate liquid phase during sintering to promote densification of the sintered body; It has the effect of improving the high-temperature strength of the sintered material by precipitating the crystalline phase of a melilite-type compound (Si 3 N 4・Y 2 O 3 ), which has a high melting point of 1850°C or higher, at the grain boundaries.
If the content is less than 0.2%, the desired effects cannot be obtained, while if the content exceeds 10%, the properties provided by Sialon, especially thermal shock resistance and abrasion resistance, are fully exhibited. Since it becomes impossible to
It was set at 0.2% to 10%. (b) ZrO 2 ZrO 2 components are finely dispersed within the sintered material structure and transform at around 1000℃ during the cooling process of sintering, forming a fine crack field around the particles and absorbing stress. In addition to having the effect of eggplant,
It has the effect of improving the bonding force between TiN particles and Sialon particles, and as a result, improving the toughness of the sintered material, but if its content is less than 0.5%, the desired effect cannot be obtained, on the other hand
If the content exceeds 10%, there will be too many crack fields due to metamorphosis, which will actually cause a decrease in toughness, so the content should be reduced to 0.5 to 10%.
It was determined that Note that it is preferable that ZrO 2 remain in the sintered material in the form of particles of 1.0 μm or less. (c) TiN The TiN component exists as independent particles in the sintered material, and has the effect of suppressing the grain growth of SiAlON particles, as well as improving the adhesion resistance when cutting steel. Content is 10
If it is less than %, the desired effect cannot be obtained,
On the other hand, if the content exceeds 30%, the sinterability will decrease and the toughness will deteriorate, so the content was set at 10 to 30%. Note that TiN is a compound that can replace N and dissolve a relatively large amount of C and O in solid solution.
Compound forms such as TiNO or TiNCO
Even if it is replaced with a TiN component, the same effect can be obtained. Also, like ZrO2 , TiN also contains 1.0% in the sintered material.
It is preferable that particles of .mu.m or less remain. The sintered material of this invention corresponds to the desired sialon composition according to conventional powder metallurgy methods.
Si 3 N 4 , AlN and Al 2 O 3 mixed powder, Y 2 O 3 ,
Although it can be manufactured by blending ZrO 2 and TiN powders, mixing, shaping, and sintering, it is particularly preferable to manufacture by the method shown below. That is, once the composition corresponds to the desired sialon composition,
After mixing Si 3 N 4 , AlN and Al 2 O 3 powders,
The compacted powder was pressed with a pressure of about 100 kg/cm 2 and put into an alumina tube in a nitrogen atmosphere at a temperature of 1400.
The mixture is kept at a predetermined temperature within the range of ~1500°C for 1 to 10 hours to form a solid solution and then taken out and pulverized.
Further, each powder of Y 2 O 3 , ZrO 2 and TiN is added and mixed thoroughly, and this is mixed at 1 to 1.5 t/cm 2 .
It is preferable to produce the product by pressure molding at a pressure of 1,000° C., followed by pressureless sintering at a predetermined temperature within the range of 1,700° C. to 1,800° C., or by hot pressing. In addition, if necessary, this sintered body can be further hot-isostatically pressed (HIP) in a nitrogen atmosphere or an argon atmosphere to obtain a good sintered body that is more dense up to the center. can. In addition, so-called sialon solid solution (Si 6
Si 3 N Another major feature is that it takes advantage of the thermal shock resistance of 4 and the oxidation resistance of Sialon to provide properties for tools, and although it is necessary for the z value to exceed 0, If it exceeds 3, the amounts of Al and O become relatively too large, resulting in a decrease in both anti-deposition strength and wear resistance, and furthermore, the thermal shock resistance value of Si 3 N 4 cannot be utilized, which is not preferable. Next, the sintered material of the present invention will be specifically explained with reference to Examples. Example First, as raw material powders, commercially available Si 3 N 4 powder with an average particle size of 0.6 μm and Si 3 N 4 powder with an average particle size of 0.4 μm were used.
Using Al 2 O 3 powder and AlN powder of 1.2 μm, Si 6 −zAlzOzN 8 − with the z value shown in Table 1 was prepared.
Blend each powder so that it becomes z (Sialon),
After mixing in a wet ball mill and drying, 100
The mixture was molded into a green compact under a pressure of Kg/cm 2 and reacted in a nitrogen atmosphere at a temperature of 1450° C. for 5 hours. Since this reaction powder can be easily ground, it was ground to -60 mesh. Next, Y 2 O 3 powder with a particle size of 0.6 μm, powder with a particle size of 0.3 μm, and TiN powder with a particle size of 0.8 μm were added to this powder in the composition shown in Table 1, and mixed in a wet ball mill. After drying, it was molded into a green compact under a pressure of 1t/cm 2 , and this green compact was inserted into a graphite mold with the top and bottom sandwiched with boron nitride powder at a temperature of 1750 in a nitrogen atmosphere. Sintered materials 1 to 16 of the present invention, which were hot-pressed at ℃ for 1 hour and had substantially the same composition as the compounded composition, and conventional sintered materials or comparative materials whose composition range was outside the scope of the present invention. Materials 17 to 27 were manufactured respectively. Next, the density, hardness (Rockwell hardness A scale), and transverse rupture strength of the various sintered materials obtained as a result were measured, and chips for cutting were cut out from the materials. Longer: H B
270), cutting speed: 300m/min, feed: 0.2mm/
rev.

【表】【table】

【表】 切込み:1.5mm、切削時間2minの条件で鋼の高速
切削試験を行ない、フランク摩耗幅(切刃の逃げ
面摩耗幅:VB)を測定した。これらの測定結果
を第1表に併せて示した。 第1表に示される結果から、本発明焼結材料1
〜16は、いずれも、従来焼結材料あるいは成分組
成範囲が本発明の範囲から外れた比較材17〜27に
比して高靭性および高硬度を有し、かつ切削工具
として使用した場合にはすぐれた耐摩耗性を示す
ことが明らかである。 上述のように、この発明の焼結材料は、特にす
ぐれた靭性と耐摩耗性を備え、かつ高温強度、耐
酸化性、および耐熱衝撃性にすぐれ、さらに高温
領域まで熱的に安定した性質をもつので、これら
の特性が要求される切削工具や、軸受および線引
ダイスなどの耐摩耗工具として使用した場合に長
期にわたつてすぐれた性能を発揮するのである。
[Table] A high-speed cutting test was conducted on steel under the conditions of a depth of cut of 1.5 mm and a cutting time of 2 minutes, and the flank wear width (flank wear width of the cutting edge: V B ) was measured. These measurement results are also shown in Table 1. From the results shown in Table 1, the sintered material 1 of the present invention
- 16 have higher toughness and hardness than conventional sintered materials or comparative materials 17 - 27 whose composition ranges are outside the range of the present invention, and when used as cutting tools. It is clear that it exhibits excellent abrasion resistance. As mentioned above, the sintered material of the present invention has particularly excellent toughness and wear resistance, and has excellent high-temperature strength, oxidation resistance, and thermal shock resistance, as well as thermally stable properties even in high-temperature ranges. Therefore, it exhibits excellent performance over a long period of time when used as cutting tools that require these characteristics, or wear-resistant tools such as bearings and wire drawing dies.

Claims (1)

【特許請求の範囲】 1 酸化イツトリウム:0.2〜10%、 酸化ジルコニウム:0.5〜10%、 窒化チタン:10〜30%、 を含有し、 サイアロンおよび不可避不純物:残り、 (以上重量%)から成る組成を有することを特徴
とする切削工具および耐摩耗工具用サイアロン基
焼結材料。
[Scope of Claims] 1. A composition containing: 1 Yttrium oxide: 0.2 to 10%, Zirconium oxide: 0.5 to 10%, Titanium nitride: 10 to 30%, and Sialon and unavoidable impurities: the remainder (at least % by weight) A sialon-based sintered material for cutting tools and wear-resistant tools, characterized by having:
JP57111349A 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool Granted JPS593073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111349A JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111349A JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Publications (2)

Publication Number Publication Date
JPS593073A JPS593073A (en) 1984-01-09
JPS6215505B2 true JPS6215505B2 (en) 1987-04-08

Family

ID=14558935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111349A Granted JPS593073A (en) 1982-06-28 1982-06-28 Sialon base sintered material for cutting tool and antiabrasive tool

Country Status (1)

Country Link
JP (1) JPS593073A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013525A1 (en) * 1989-04-28 1990-11-15 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON SINTER

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027643A (en) * 1983-07-27 1985-02-12 株式会社日立製作所 Heat impact resistant ceramic structure
DE3990082T1 (en) * 1988-01-28 1990-01-11 Hitachi Metals Ltd SINTER BODY FROM CONDUCTIVE SIALON AND A HEATING ELEMENT MADE OF IT

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990013525A1 (en) * 1989-04-28 1990-11-15 Nihon Cement Co., Ltd. PROCESS FOR PRODUCING β-SIALON SINTER
GB2250284A (en) * 1989-04-28 1992-06-03 Nihon Cement Process for producing ¼-sialon sinter
GB2250284B (en) * 1989-04-28 1993-04-14 Nihon Cement Process for producing b-sialon based sintered bodies
US5302329A (en) * 1989-04-28 1994-04-12 Nihon Cement Co., Ltd. Process for producing β-sialon based sintered bodies
DE3991655C2 (en) * 1989-04-28 1994-07-21 Nihon Cement Process for producing a improved beta-sialon sinter

Also Published As

Publication number Publication date
JPS593073A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
WO1990009969A1 (en) Alumina ceramic, production thereof, and throwaway tip made therefrom
JPS58185477A (en) High speed cutting ceramic for cutting tool
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPS6335589B2 (en)
US5106788A (en) Process for producing highly tough ceramics
JPS6215505B2 (en)
JPS61146762A (en) Antiabrasive silicon nitride base product
JPH02217359A (en) Titanium carbon nitride based toughened ceramics
JPS62187173A (en) Bite chip for machining iron material
JPS6241193B2 (en)
US5023211A (en) Super-hard ceramics
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPS6225632B2 (en)
JP2997334B2 (en) Fiber reinforced ceramics
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS6337075B2 (en)
JP2794122B2 (en) Fiber reinforced ceramics
JP2794121B2 (en) Fiber reinforced ceramics
JPS6246513B2 (en)
JPS6215504B2 (en)
JPS6232151B2 (en)
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JPS6153155A (en) Manufacture of high tenacity ceramic
JPS621592B2 (en)