JPS6389459A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS6389459A
JPS6389459A JP61235720A JP23572086A JPS6389459A JP S6389459 A JPS6389459 A JP S6389459A JP 61235720 A JP61235720 A JP 61235720A JP 23572086 A JP23572086 A JP 23572086A JP S6389459 A JPS6389459 A JP S6389459A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
sintering
weight
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61235720A
Other languages
Japanese (ja)
Other versions
JPH0764639B2 (en
Inventor
隆夫 西岡
雅也 三宅
英一 松本
樋口 松夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61235720A priority Critical patent/JPH0764639B2/en
Publication of JPS6389459A publication Critical patent/JPS6389459A/en
Publication of JPH0764639B2 publication Critical patent/JPH0764639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば高速鋳物切削等の材料に適した窒化ケ
イ素焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a silicon nitride sintered body suitable for use as a material for, for example, high-speed casting cutting.

〔従来の技術〕[Conventional technology]

窒化ケイ素焼結体は高強度で耐摩耗性や耐熱性に優れて
いることから、耐摩耗性部品をはじめ各種の用途が開発
されつつある。
Silicon nitride sintered bodies have high strength, excellent wear resistance, and heat resistance, so they are being developed for a variety of uses, including wear-resistant parts.

かかる窒化ケイ素焼結体の製造方法としては、特公昭5
2−3649号公報に記載のごとく、従来かラム(Ae
203)等の焼結助剤を混合し、非酸化性雰囲気中で焼
結する方法が取られてきた。この方法では、低温安定型
のα−3i3’N4が焼結時に高温安定型のβ−5i3
N4に相変態を生じて接離状組織を生成し、これが得ら
れる焼結体の強度を向上させることが知られている。
As a method for manufacturing such a silicon nitride sintered body,
As described in Japanese Patent No. 2-3649, conventional or ram (Ae
A method has been adopted in which a sintering aid such as No. 203) is mixed and sintered in a non-oxidizing atmosphere. In this method, low-temperature stable α-3i3'N4 is converted into high-temperature stable β-5i3 during sintering.
It is known that N4 undergoes a phase transformation to produce a detached structure, which improves the strength of the obtained sintered body.

しかし、α−3i3N4は焼結温度付近において不安定
で、焼結時に液化した焼結助剤中に固溶したり分解して
焼結体外に飛散し易く、また相変態の際の再結晶化及び
結晶粒成長に伴って焼結体中に気孔を残存し易く、従っ
て均一微細な組織となりにくいことから、得られる窒化
ケイ素焼結体の強度及びその他の特性の低下の原因とな
っていた。
However, α-3i3N4 is unstable near the sintering temperature, easily dissolves in the sintering aid that liquefies during sintering, decomposes, and scatters outside the sintered body, and recrystallizes during phase transformation. With the growth of crystal grains, pores tend to remain in the sintered body, making it difficult to form a uniform and fine structure, which causes a decrease in the strength and other properties of the resulting silicon nitride sintered body.

そのため、気孔率を低下させて緻密な焼結体を得るため
にホットプレス法等の加圧焼結が採用されている現状で
あるが、連続焼結が困難であシ、製品がコスト高になる
等の欠点があシ、高い生産効率を要求される切削工具材
料等の焼結手段としては不適当であった。
For this reason, pressure sintering such as the hot press method is currently being used to reduce the porosity and obtain a dense sintered body, but continuous sintering is difficult and the product is expensive. However, it was not suitable as a means for sintering materials for cutting tools, etc., which required high production efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の事情に鑑み、焼結によって気孔が残存
し難く、緻密で高硬度、高強度の優れた特性を具えた窒
化ケイ素焼結体の製造方法を提供することを目的とする
In view of the above-mentioned circumstances, an object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that hardly leaves pores during sintering and has excellent properties such as denseness, high hardness, and high strength.

〔問題点を解決するだめの手段〕 本発明の窒化ケイ素焼結体の製造方法は、酸化アルミニ
ウムと酸化イツトリウムを合計で1〜15重量%と、残
部の95チ以上がβ型である窒化ケイ素との混合粉末を
、非酸化性雰囲気中において1600〜1900Cで焼
結することを特徴としている。
[Means for Solving the Problems] The method for producing a silicon nitride sintered body of the present invention includes a method for producing a silicon nitride sintered body containing aluminum oxide and yttrium oxide in a total of 1 to 15% by weight, and silicon nitride in which the remaining 95% or more is β type. The mixed powder is sintered at 1600 to 1900C in a non-oxidizing atmosphere.

β型窒化ケイ素(β−3i3N4 )は、市販のα型窒
化ケイ素を1〜10気圧の窒素ガス雰囲気中で1700
〜19001:’の温度で熱処理することによシ得られ
る。なかでも均一微細な粒状組織を得るために微細であ
シ、粒径分布幅の小さいβ型窒化ケイ素粉末の使用が好
ましく、平均粒径で0.5μm以下の範囲及び粒度分布
幅で2.0μm以下の範囲が特に好ましい。
β-type silicon nitride (β-3i3N4) is produced by heating commercially available α-type silicon nitride at 1,700 mL in a nitrogen gas atmosphere of 1 to 10 atm.
It can be obtained by heat treatment at a temperature of ~19001:'. Among these, in order to obtain a uniform and fine grain structure, it is preferable to use β-type silicon nitride powder, which is fine and has a narrow particle size distribution width, with an average particle size in the range of 0.5 μm or less and a particle size distribution width of 2.0 μm. The following ranges are particularly preferred.

焼結助剤としては、酸化イツトリウム及び酸化アルミニ
ウムであシ、その他必要に応じてランタニド系希土類元
素の酸化物のうち1種又は2種以上を組合わせて使用し
てもよい。焼結はホットプレス等の加圧焼結でも常圧焼
結でもよいが、生産効率のよい常圧焼結が好ましい。焼
結雰囲気は非酸化性雰囲気であり、特に1気圧以上30
0気圧以下の加圧窒素雰囲気中で焼結を行えば一層緻密
で特性の優れた焼結体を得ることができる。
The sintering aid may be yttrium oxide or aluminum oxide, or one or more lanthanide rare earth element oxides may be used in combination, if necessary. The sintering may be performed by pressure sintering such as hot pressing or normal pressure sintering, but normal pressure sintering is preferred because of its good production efficiency. The sintering atmosphere is a non-oxidizing atmosphere, especially at a pressure of 1 atm or above 30
If sintering is performed in a pressurized nitrogen atmosphere at 0 atmospheres or lower, a sintered body that is denser and has better properties can be obtained.

更に、本発明の窒化ケイ素焼結体に繊維状組織を発達さ
せることによって破壊靭性を向上させる目的で、元素周
期律表のF/a 、 Va 、 Via族元素から選ば
れた少なくとも1種の金属元素の炭化物、窒化物、炭窒
化物又は硼化物、若しぐは炭化ケイ素又は炭化ケイ素ウ
ィスカー等を5〜30重量%添加することが有効である
。この添加量が5重量%未満では上記効果がなく、30
重量%をこえると焼結体密度の低下をまねくので不適当
である。
Furthermore, for the purpose of improving fracture toughness by developing a fibrous structure in the silicon nitride sintered body of the present invention, at least one metal selected from the F/a, Va, and Via group elements of the periodic table of elements. It is effective to add 5 to 30% by weight of elemental carbides, nitrides, carbonitrides or borides, or silicon carbide or silicon carbide whiskers. If the amount added is less than 5% by weight, the above effect will not be obtained, and 30% by weight will not be obtained.
If it exceeds % by weight, the density of the sintered body decreases, which is inappropriate.

〔作用〕[Effect]

本方法ではβ型窒化ケイ素を用いるので焼結時に相変態
が起こらず、焼結時に液化した焼結助剤への固溶や焼結
体外への分解飛散がなく、また結晶粒成長も少ないので
焼結体組織が緻密で気孔が残存する可能性は常圧焼結に
おいても著しく少なくなる。
Since this method uses β-type silicon nitride, no phase transformation occurs during sintering, there is no solid solution in the sintering aid liquefied during sintering, there is no decomposition and scattering outside the sintered body, and there is little crystal grain growth. The structure of the sintered body is dense, and the possibility that pores remain is significantly reduced even in pressureless sintering.

焼結助剤であるアルミニウム、イツトリウム及びランタ
ニド系希土類元素から選ばれた少なくとも1種の酸化物
は、粒界層を緻密化させ焼結体の密度を向上させるが、
この添加量が1重電チ未満では上記密度向上の効果が不
充分で1.15重量%を超えると焼結体の強度及び高温
硬度の低下を招く。
At least one oxide selected from aluminum, yttrium, and lanthanide-based rare earth elements, which is a sintering aid, densifies the grain boundary layer and improves the density of the sintered body.
If the amount added is less than 1% by weight, the effect of increasing the density is insufficient, and if it exceeds 1.15% by weight, the strength and high-temperature hardness of the sintered body will decrease.

前記したβ型窒化ケイ素の使用により焼結時の物質移動
が少なくなるのでα型窒化ケイ素を用いた場合よシも焼
結時間を長くする必要があるが、一方では焼結助剤の添
加量を減少させても充分に緻密な焼結体が得られる。こ
のことは高温雰囲気下で焼結体強度に影響を与える粒界
軟化を低減させ、強度劣化を減少させるために有効であ
る。
The use of β-type silicon nitride reduces mass transfer during sintering, so the sintering time needs to be longer than when α-type silicon nitride is used, but on the other hand, the amount of sintering aid added A sufficiently dense sintered body can be obtained even if the amount is decreased. This is effective in reducing grain boundary softening that affects the strength of the sintered body in a high-temperature atmosphere and reducing strength deterioration.

また、上記fVa r Va r Via族元素の化合
物を添加することによって、焼結体中に繊維状組織が発
達し、その結果として靭性が向上する。
Furthermore, by adding the fVarVarVia group element compound, a fibrous structure develops in the sintered body, resulting in improved toughness.

かくして本方法で得られる窒化ケイ素焼結体は組織が常
圧焼結であっても均−微細化及び緻密化され、気孔が著
しく少なくなシ、硬度等の焼結体の特性及びその均一性
が向上し、高温での強度や硬度の劣化も少ないため、特
に切削工具用材料として好適である。また、IVa 、
 Va 、 ■a族元素化合物の添加によって靭性を改
善した焼結体は構造用材料としても有効である。
In this way, the structure of the silicon nitride sintered body obtained by this method is evenly refined and densified even if it is sintered under pressure, has significantly fewer pores, and has good properties of the sintered body such as hardness and its uniformity. It is particularly suitable as a material for cutting tools because it has improved properties and less deterioration in strength and hardness at high temperatures. Also, IVa,
A sintered body whose toughness has been improved by adding Va, (ii) a group element compound is also effective as a structural material.

〔実施例〕〔Example〕

実施例1 市販のα−8i3N4粉末をlO無気圧N2雰囲気下に
おいて1800t:”で3時間熱処理した。得られた粉
末はX線回折によシ100%β型のSi3N4であるこ
とが分った。
Example 1 Commercially available α-8i3N4 powder was heat-treated at 1800t:'' for 3 hours in a 1O2 atmosphere of N2.The obtained powder was found to be 100% β-type Si3N4 by X-ray diffraction. .

このβ−5i3N4粉末(平均粒径0.5μm、粒度分
布幅2 ttm )と、Ap203粉末(平均粒径0.
5μm)及びY2O3粉末(平均粒径0.5μm)を下
記第1表の組成で混合し、成形用・々イングーを添加し
たのち混合粉末を1.5 ton/z2の圧力でJIS
 5N0432級のスローアウェイチップにプレス成形
した。この成形体を10気圧のN2雰囲気下において1
850Cで3時間焼結した。
This β-5i3N4 powder (average particle size 0.5 μm, particle size distribution width 2 ttm) and Ap203 powder (average particle size 0.5 μm, particle size distribution width 2 ttm).
5 μm) and Y2O3 powder (average particle size 0.5 μm) were mixed with the composition shown in Table 1 below, and after adding molding powder, the mixed powder was JIS-treated at a pressure of 1.5 ton/z2.
It was press-molded into a 5N0432 grade indexable tip. This molded body was placed in a N2 atmosphere of 10 atm for 1
Sintering was performed at 850C for 3 hours.

(注)試料A4及び5は比較例である。(Note) Samples A4 and 5 are comparative examples.

得られた各焼結体試料を上記スローアウェイチップに研
削加工し、下記切削条件により切削テストを行った結果
を、各焼結体試料の密度(制及び硬度(HRA )とと
もに第2表に表示した。
Each of the obtained sintered body samples was ground into the above-mentioned indexable tip, and a cutting test was conducted under the following cutting conditions. The results are shown in Table 2 along with the density (hardness) and hardness (HRA) of each sintered body sample. did.

ワ − り: FC25幅180×長さ300龍機  
械二NC型旋盤 切削条件:切削速度 600m/min切込み 2!1
1 送り   0.36 H/ rev。
Work: FC25 width 180 x length 300 dragon machine
Machine 2 NC type lathe cutting conditions: cutting speed 600m/min depth of cut 2!1
1 feed 0.36 H/rev.

寿命判定: VB = 0.311 第2表 (注)試料754及び5は比較例である。Lifespan judgment: VB = 0.311 Table 2 (Note) Samples 754 and 5 are comparative examples.

実施例2 下記第3表に示す組成に混合した粉末を実施何重と同様
の方法で焼結し、焼結体よfi JIS R1601試
験片を切シ出して特性評価を行った。結果を第3表にあ
わせて記載した。
Example 2 Powder mixed with the composition shown in Table 3 below was sintered in the same manner as in the experiments, and the sintered body was cut out into JIS R1601 test pieces for characteristic evaluation. The results are also listed in Table 3.

第3表 (注)試料168〜10及び14は比較例である。Table 3 (Note) Samples 168-10 and 14 are comparative examples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、生産効率のよい常圧焼結による製造が
可能であり、気孔の残存が少なく緻密であって高強度及
び高硬度で耐摩耗性に優れた切削工具材料として好適な
窒化ケイ素焼結体を製造することができる。
According to the present invention, silicon nitride is suitable as a cutting tool material that can be manufactured by pressureless sintering with high production efficiency, is dense with few remaining pores, and has high strength, high hardness, and excellent wear resistance. A sintered body can be manufactured.

Claims (3)

【特許請求の範囲】[Claims] (1)酸化アルミニウムと酸化イットリウムを合計で1
〜15重量%と、残部の95%以上がβ型である窒化ケ
イ素との混合粉末を、非酸化性雰囲気中において160
0〜1900℃で焼結することを特徴とする窒化ケイ素
焼結体の製造方法。
(1) Aluminum oxide and yttrium oxide in total 1
A mixed powder of ~15% by weight and silicon nitride, of which the remaining 95% or more is β type, was heated to 160% by weight in a non-oxidizing atmosphere.
A method for producing a silicon nitride sintered body, the method comprising sintering at a temperature of 0 to 1900°C.
(2)上記焼結を1気圧以上300気圧以下の加圧窒素
雰囲気中で行うことを特徴とする、特許請求の範囲(1
)項記載の窒化ケイ素焼結体の製造方法。
(2) Claim (1) characterized in that the sintering is performed in a pressurized nitrogen atmosphere of 1 atm or more and 300 atm or less.
) A method for producing a silicon nitride sintered body as described in item 2.
(3)酸化アルミニウムと酸化イットリウムを合計で1
〜15重量%と、元素周期律表のIVa、Va、VIa
族元素から選ばれた少なくとも1種の金属元素の炭化物
、窒化物、炭窒化物又は硼化物、若しくは炭化ケイ素又
は炭化ケイ素ウィスカーを5〜30重量%と、残部の9
5%以上がβ型である窒化ケイ素との混合粉末を、非酸
化性雰囲気中において1600〜1900℃で焼結する
ことを特徴とする窒化ケイ素焼結体の製造方法。
(3) Aluminum oxide and yttrium oxide in total 1
~15% by weight and IVa, Va, VIa of the periodic table of elements
5 to 30% by weight of carbides, nitrides, carbonitrides, or borides of at least one metal element selected from group elements, or silicon carbide or silicon carbide whiskers, and the remaining 9% by weight.
A method for producing a silicon nitride sintered body, which comprises sintering a mixed powder with silicon nitride in which 5% or more is of the β type at 1600 to 1900°C in a non-oxidizing atmosphere.
JP61235720A 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body Expired - Fee Related JPH0764639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235720A JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235720A JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS6389459A true JPS6389459A (en) 1988-04-20
JPH0764639B2 JPH0764639B2 (en) 1995-07-12

Family

ID=16990230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235720A Expired - Fee Related JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0764639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252967A (en) * 1987-04-09 1988-10-20 京セラ株式会社 Manufacture of silicon nitride base sintered body
JPH01145380A (en) * 1987-11-30 1989-06-07 Kyocera Corp Production of silicon nitride sintered form
JPH0244064A (en) * 1988-07-29 1990-02-14 Mazda Motor Corp Production of sliding member made of ceramic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578046A (en) * 1980-06-11 1982-01-16 Hitachi Ltd Thread fastening device
JPS58151371A (en) * 1982-02-25 1983-09-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
JPS6143311A (en) * 1984-08-08 1986-03-01 Nippon Kokan Kk <Nkk> Internal pressure control method of incomplete airtight space

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578046A (en) * 1980-06-11 1982-01-16 Hitachi Ltd Thread fastening device
JPS58151371A (en) * 1982-02-25 1983-09-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
JPS6143311A (en) * 1984-08-08 1986-03-01 Nippon Kokan Kk <Nkk> Internal pressure control method of incomplete airtight space

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252967A (en) * 1987-04-09 1988-10-20 京セラ株式会社 Manufacture of silicon nitride base sintered body
JPH01145380A (en) * 1987-11-30 1989-06-07 Kyocera Corp Production of silicon nitride sintered form
JPH0244064A (en) * 1988-07-29 1990-02-14 Mazda Motor Corp Production of sliding member made of ceramic

Also Published As

Publication number Publication date
JPH0764639B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
AU671349B2 (en) Silicon nitride ceramic and cutting tool made thereof
US4406668A (en) Nitride coated silicon nitride cutting tools
US5094986A (en) Wear resistant ceramic with a high alpha-content silicon nitride phase
US4409003A (en) Carbonitride coated silicon nitride cutting tools
US4406667A (en) Nitride coated composite silicon nitride cutting tools
JPS6011288A (en) Surface coated sialon-base ceramic tool member
US4431431A (en) Carbide coated silicon nitride cutting tools
JP3476507B2 (en) Method for producing cubic boron nitride-containing sintered body
US4801564A (en) High-toughness ceramic tool materials
EP0035777A1 (en) Abrasion resistant silicon nitride based articles
US4440547A (en) Alumina coated silicon nitride cutting tools
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
US4433979A (en) Abrasion resistant silicon nitride based articles
US4497228A (en) Method of machining cast iron
US5439854A (en) TiC-base/SiC whisker composite ceramic cutting tools
JPS6389459A (en) Manufacture of silicon nitride sintered body
EP0095131A1 (en) Coated silicon nitride cutting tools
CA1204637A (en) Coated composite modified silicon aluminum oxynitride cutting tools
JPS6117473A (en) Silicon nitride base sintering material for cutting tool
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JPS6222951B2 (en)
JPS6317795B2 (en)
JPS59217676A (en) Silicon nitride-base sintering material for cutting tool
JP2805957B2 (en) Aluminum oxide based ceramic cutting tool with high strength and high toughness
JPS58213678A (en) Sialon base sintering material for cutting tool and abrasion-resistant tool

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees