JPH0764639B2 - Method for manufacturing silicon nitride sintered body - Google Patents

Method for manufacturing silicon nitride sintered body

Info

Publication number
JPH0764639B2
JPH0764639B2 JP61235720A JP23572086A JPH0764639B2 JP H0764639 B2 JPH0764639 B2 JP H0764639B2 JP 61235720 A JP61235720 A JP 61235720A JP 23572086 A JP23572086 A JP 23572086A JP H0764639 B2 JPH0764639 B2 JP H0764639B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
particle size
sintering
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61235720A
Other languages
Japanese (ja)
Other versions
JPS6389459A (en
Inventor
隆夫 西岡
雅也 三宅
英一 松本
松夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61235720A priority Critical patent/JPH0764639B2/en
Publication of JPS6389459A publication Critical patent/JPS6389459A/en
Publication of JPH0764639B2 publication Critical patent/JPH0764639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば高速鋳物切削等の材料に適した窒化ケ
イ素焼結体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body suitable for materials such as high-speed casting cutting.

〔従来の技術〕[Conventional technology]

窒化ケイ素焼結体は高強度で耐摩耗性や耐熱性に優れて
いることから、耐摩耗性部品をはじめ各種の用途が開発
されつつある。
Since a silicon nitride sintered body has high strength and is excellent in wear resistance and heat resistance, various applications including wear resistant parts are being developed.

かかる窒化ケイ素焼結体の製造方法としては、特公昭52
−3649号公報に記載のごとく、従来からα型窒化ケイ素
(α−Si3N4)を原料粉末としてこれに酸化イツトリウ
ム(Y2O3)や酸化アルミニウム(Al2O3)等の焼結助剤
を混合し、非酸化性雰囲気中で焼結する方法が取られて
きた。この方法では、低温安定型のα−Si3N4が焼結時
に高温安定型のβ−Si3N4に相変態を生じて繊維状組織
を生成し、これが得られる焼結体の強度を向上させるこ
とが知られている。
As a method for producing such a silicon nitride sintered body, Japanese Patent Publication No.
As described in JP-A-3649, conventionally, α-type silicon nitride (α-Si 3 N 4 ) was used as a raw material powder and yttrium oxide (Y 2 O 3 ) or aluminum oxide (Al 2 O 3 ) was sintered. The method of mixing an auxiliary agent and sintering in a non-oxidizing atmosphere has been taken. In this method, the low-temperature stable α-Si 3 N 4 undergoes a phase transformation in the high-temperature stable β-Si 3 N 4 during sintering to generate a fibrous structure, and the strength of the resulting sintered body is improved. It is known to improve.

しかし、α−Si3N4は焼結温度付近において不安定で、
焼結時に液化した焼結助剤中に固溶したり分解して焼結
体外に飛散し易く、また相変態の際の再結晶化及び結晶
粒成長に伴つて焼結体中に気孔を残存し易く、従つて均
一微細な組織となりにくいことから、得られる窒化ケイ
素焼結体の強度及びその他の特性の低下の原因となつて
いた。
However, α-Si 3 N 4 is unstable near the sintering temperature,
It easily dissolves in the sintering aid liquefied during sintering, decomposes and easily scatters out of the sintered body, and pores remain in the sintered body due to recrystallization and crystal grain growth during phase transformation. Therefore, it is difficult to form a uniform and fine structure, which is a cause of deterioration of strength and other properties of the obtained silicon nitride sintered body.

そのため、気孔率を低下させて緻密な焼結体を得るため
にホツトプレス法等の加圧焼結が採用されている現状で
あるが、連続焼結が困難であり、製品がコスト高になる
等の欠点があり、高い生産効率を要求される切削工具材
料等の焼結手段としては不適当であつた。
Therefore, pressure sintering such as hot pressing is currently used to reduce the porosity and obtain a dense sintered body, but continuous sintering is difficult and the cost of the product is high. However, it is unsuitable as a sintering means for cutting tool materials and the like which require high production efficiency.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、上記の事情に鑑み、焼結によっつ気孔が残存
し難く、緻密で高硬度、高強度の優れた特性を具えた窒
化ケイ素焼結体の製造方法を提供することを目的とす
る。
In view of the above circumstances, the present invention aims to provide a method for producing a silicon nitride sintered body having excellent characteristics of being dense, having high hardness, and high strength in which pores are unlikely to remain due to sintering. To do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の窒化ケイ素焼結体の製造方法は、酸化アルミニ
ウムと酸化イツトリウムを合計で1〜15重量%と、β型
が95%以上であって、平均粒径が0.5μm以下且つ粒粉
分布幅が2.0μm以下である残部の窒化ケイ素との混合
粉末を、非酸化性雰囲気中において1600〜1900℃で焼結
することを特徴としている。尚、ここで残部の窒化ケイ
素とは、混合粉末から酸化アルミニウム等の他の化合物
粉末の合計量を除いた残りの部分が窒化ケイ素であるこ
とを意味する。
The manufacturing method of the silicon nitride sintered body of the present invention is 1 to 15% by weight in total of aluminum oxide and yttrium oxide, β-type is 95% or more, the average particle size is 0.5 μm or less and the particle powder distribution width. Is 2.0 μm or less, and the mixed powder with the remaining silicon nitride is sintered at 1600 to 1900 ° C. in a non-oxidizing atmosphere. Here, the remaining silicon nitride means that the remaining portion of the mixed powder excluding the total amount of other compound powder such as aluminum oxide is silicon nitride.

β型窒化ケイ素(β−Si3N4)は、例えば市販のα型窒
化ケイ素を1〜10気圧の窒素ガス雰囲気中で1700〜1900
℃の温度で熱処理することにより得られる。なかでも主
として均一微細な粒状組織を得るために微細粒径分布幅
の小さいβ型窒化ケイ素粉末の使用が好ましく、平均粒
径で0.5μm以下の範囲及び粒径分布幅で2.0μm以下の
範囲が特に好ましい。
β-type silicon nitride (β-Si 3 N 4 ) is, for example, commercially available α-type silicon nitride in the range of 1700 to 1900 in a nitrogen gas atmosphere of 1 to 10 atm.
It is obtained by heat treatment at a temperature of ° C. Above all, it is preferable to use β-type silicon nitride powder having a small fine particle size distribution width mainly in order to obtain a uniform fine grain structure, and the average particle size range is 0.5 μm or less and the particle size distribution range is 2.0 μm or less. Particularly preferred.

焼結助剤としては、酸化イツトリウム及び酸化アルミニ
ウムであり、その他必要に応じてランタニド系希土類元
素の酸化物のうち1種又は2種以上を組合わせて使用し
てもよい。焼結はホツトプレス等の加圧焼結でも常圧焼
結でもよいが、生産効率のよい常圧焼結が好ましい。焼
結雰囲気は非酸化性雰囲気であり、特に1気圧以上300
気圧以下の加圧窒素雰囲気中で焼結を行えば一層緻密で
特性の優れた焼結体を得ることができる。
As the sintering aid, yttrium oxide and aluminum oxide may be used, and if necessary, one or more kinds of lanthanide-based rare earth element oxides may be used in combination. The sintering may be pressure sintering using a hot press or the like, or pressureless sintering, but pressureless sintering is preferable because of its high production efficiency. The sintering atmosphere is a non-oxidizing atmosphere, especially 1 atmosphere or more 300
If sintering is performed in a pressurized nitrogen atmosphere at atmospheric pressure or less, a denser and more excellent sintered body can be obtained.

更に、本発明の窒化ケイ素焼結体に繊維状組織を発達さ
せることによつて破壊靭性を向上させる目的で、元素周
期律のIV a,V a,VI a族元素から選ばれた少なくとも1
種の金属元素の炭化物,窒化物,炭窒化物又は硼化物、
若しくは炭化ケイ素又は炭化ケイ素ウイスカー等を5〜
30重量%添加することが有効である。この添加量が5重
量%未満では上記効果がなく、30重量%をこえると焼結
体密度の低下をまねくので不適当である。
Further, for the purpose of improving the fracture toughness by developing a fibrous structure in the silicon nitride sintered body of the present invention, at least one selected from the IVa, Va, and VIa group elements of the periodic system of elements.
Carbides, nitrides, carbonitrides or borides of certain metallic elements,
Or silicon carbide or silicon carbide whiskers, etc.
It is effective to add 30% by weight. If the addition amount is less than 5% by weight, the above effect is not obtained, and if it exceeds 30% by weight, the density of the sintered body is lowered, which is not suitable.

〔作用〕[Action]

本方法では、高β型の窒化ケイ素を用いるので焼結時に
相変態が起こらず、物質移動が少なくなる。即ち、焼結
時に液化した焼結助剤への窒化ケイ素の固溶が生じず、
焼結体外への成分の分解飛散がない。又、粒径が小さく
且つ粒径分布幅の小さい窒化ケイ素粉末を用いるので、
焼結体粒径が細かく且つ組織全体で均一に粒成長する。
その結果、常圧焼結であっても、緻密で空孔が著しく少
なく、均一微細な組織が得られ、高温で高強度肩つ高硬
度の窒化ケイ素焼結体を得ることができる。
In this method, since high β-type silicon nitride is used, phase transformation does not occur during sintering and mass transfer is reduced. That is, solid solution of silicon nitride does not occur in the sintering aid liquefied during sintering,
There is no decomposition and scattering of components outside the sintered body. Moreover, since silicon nitride powder having a small particle size and a small particle size distribution width is used,
The grain size of the sintered body is fine and the grains grow uniformly throughout the structure.
As a result, it is possible to obtain a silicon nitride sintered body which is dense and has few pores and has a uniform fine structure even at normal pressure sintering, and which has high strength and high hardness at high temperature.

焼結助剤であるアルミニウム、イツトリウム及びランタ
ニド系希土類元素から選ばれた少なくとも1種の酸化物
は、粒界層を緻密化させ焼結体の密度を向上させるが、
この添加量が1重量%未満では上記密度向上の効果が不
充分であり、15重量%を超えると焼結体の強度及び高温
硬度の低下を招く。
At least one oxide selected from aluminum, yttrium and lanthanide rare earth elements, which is a sintering aid, densifies the grain boundary layer and improves the density of the sintered body,
If the addition amount is less than 1% by weight, the effect of improving the density is insufficient, and if it exceeds 15% by weight, the strength and high temperature hardness of the sintered body are deteriorated.

前記したβ型窒化ケイ素の使用により焼結時の物質移動
が少なくなるのでα型窒化ケイ素を用いた場合よりも焼
結時間を長くする必要があるが、一方では焼結助剤の添
加量を減少させても充分に緻密な焼結体が得られる。こ
のことは高温雰囲気下で焼結体強度に影響を与える粒界
軟化を低減させ、強度劣化を減少させるために有効であ
る。
Since the use of β-type silicon nitride reduces the mass transfer during sintering, it is necessary to prolong the sintering time as compared with the case of using α-type silicon nitride. Even if the amount is reduced, a sufficiently dense sintered body can be obtained. This is effective in reducing grain boundary softening that affects the strength of the sintered body in a high temperature atmosphere and reducing strength deterioration.

また、上記IV a,V a,VI a族元素の化合物を添加するこ
とによつて、焼結体中に繊維状組織が発達し、その結果
として靭性が向上する。
In addition, by adding the compound of the IVa, Va, and VIa group elements, a fibrous structure develops in the sintered body, and as a result, toughness is improved.

かくして本方法で得られる窒化ケイ素焼結体は組織が常
圧焼結であつても均一微細化及び緻密化され、気孔が著
しく少なくなり、硬度等の焼結体の特性及びその均一性
が向上し、高温での強度や硬度の劣化も少ないため、特
に切削工具用材料として好適である。また、IV a,V a,V
I a族元素化合物の添加によつて靭性を改善した焼結体
は構造用材料としても有効である。
Thus, the structure of the silicon nitride sintered body obtained by this method is uniformly refined and densified even under normal pressure sintering, the number of pores is significantly reduced, and the characteristics of the sintered body such as hardness and its uniformity are improved. However, since the strength and hardness at high temperatures are not significantly deteriorated, it is particularly suitable as a material for cutting tools. Also, IV a, V a, V
The sintered body whose toughness is improved by adding the group Ia element compound is also effective as a structural material.

〔実施例〕〔Example〕

実施例1 市販の平均粒径が0.5μmのSi3N4粉末を10気圧のN2雰囲
気下において1800℃で3時間熱処理した。得られたSi3N
4粉末Aは平均粒径が0.5μm、粒径分布幅が2.0μmで
あり、X線回折により100%β型のSi3N4であることが分
つた。
Example 1 A commercially available Si 3 N 4 powder having an average particle size of 0.5 μm was heat-treated at 1800 ° C. for 3 hours in an N 2 atmosphere at 10 atm. Obtained Si 3 N
4 Powder A had an average particle size of 0.5 μm and a particle size distribution width of 2.0 μm, and was found by X-ray diffraction to be 100% β-type Si 3 N 4 .

又、比較例として、市販の平均粒径が1.5μmのα−Si3
N4粉末を10気圧のN2雰囲気下において1800℃で3時間熱
処理した。得られた比較例のSi3N4粉末Bは平均粒径1.5
μm、粒径分布幅3.1μmで、X線回折により100%β型
のSi3N4であることが分かった。
As a comparative example, α-Si 3 having a commercially available average particle size of 1.5 μm is used.
The N 4 powder was heat-treated at 1800 ° C. for 3 hours in a N 2 atmosphere at 10 atm. The obtained Si 3 N 4 powder B of the comparative example has an average particle size of 1.5.
It was found to be 100% β type Si 3 N 4 by X-ray diffraction with a particle size distribution width of 3.1 μm.

これらのβ−Si3N4粉末A、Bに別々にAl2O3粉末(平均
粒径0.5μm)及びY2O3粉末(平均粒径0.5μm)を下記
第1表の組成で混合し、成形用バインダーを添加したの
ち混合粉末を1.5ton/cm2の圧力でJIS SNG432級のスロー
アウエイチツプにプレス成形した。この成形体を10気圧
のN2雰囲気下において1850℃で3時間焼結した。
These β-Si 3 N 4 powders A and B were separately mixed with Al 2 O 3 powder (average particle size 0.5 μm) and Y 2 O 3 powder (average particle size 0.5 μm) in the composition shown in Table 1 below. After adding a molding binder, the mixed powder was press molded into a JIS SNG 432 grade slow away chip at a pressure of 1.5 ton / cm 2 . The compact was sintered at 1850 ° C. for 3 hours in a N 2 atmosphere at 10 atm.

(注)試料No.4、5、6、7は比較例である。 (Note) Sample Nos. 4, 5, 6, and 7 are comparative examples.

得られた各焼結体試料を上記スローアウエイチツプに研
削加工し、下記切削条件により切削テストを行つた結果
を、各焼結体試料の相対密度(%)及び硬度(HRA)と
ともに第2表に表示した。
Each sintered body samples obtained by grinding in the slow Au H. class tap, the results of cutting tests having conducted the following cutting conditions, the as well as the relative density of each sintered body sample (%) and hardness (H R A) The results are shown in Table 2.

ワーク:FC25幅180×長さ300mm 機 械:NC型旋盤 切削条件:切削速度600m/min 切込み 2mm 送り 0.36mm/rev. 寿命判定:VB=0.3mm 又、JIS R1601に準じて、室温大気中での3点曲げ強度
試験及び1300℃大気中で3点曲げ強度試験を実施し、そ
の結果も第2表に室温強度及び高温強度として示した。
Work: FC25 Width 180 x Length 300mm Machine: NC lathe Cutting conditions: Cutting speed 600m / min Cutting depth 2mm Feed 0.36mm / rev. Life judgment: V B = 0.3mm Also according to JIS R1601, in room temperature atmosphere The three-point bending strength test was conducted at 1300 ° C. and the three-point bending strength test was conducted at 1300 ° C. in air.

実施例2 実施例1と同じβ型Si3N4粉末A、Al2O3粉末及びY2O3
末、並びに平均粒径0.5μmのTiC粉末とSiC粉末を用い
て、下記第3表に示す組成に混合した粉末を実施例1と
同様の方法で焼結し、焼結体よりJIS R1601試験片を切
り出して実施例1と同様の特性評価を行い、更に破壊靭
性値を求めた。これらの結果を第4表にあわせて記載し
た。
Example 2 Using the same β-type Si 3 N 4 powder A, Al 2 O 3 powder and Y 2 O 3 powder as in Example 1, and TiC powder and SiC powder having an average particle size of 0.5 μm, the following Table 3 is used. A powder mixed with the composition shown was sintered by the same method as in Example 1, a JIS R1601 test piece was cut out from the sintered body, the same characteristic evaluation as in Example 1 was performed, and the fracture toughness value was obtained. These results are also shown in Table 4.

〔発明の効果〕 本発明によれば、生産効率のよい常圧焼結による製造が
可能であり、気孔の残存が少なく緻密で微細な組織を有
し、高強度及び高硬度で耐摩耗性に優れ、高温での強度
や硬度の劣化が少なく、特に切削工具材料として好適な
窒化ケイ素焼結体を製造することができる。
[Effects of the Invention] According to the present invention, production can be performed by pressureless sintering with good production efficiency, has a fine and fine structure with few remaining pores, and has high strength and high hardness and wear resistance. It is possible to produce a silicon nitride sintered body which is excellent, has little deterioration in strength and hardness at high temperatures, and is particularly suitable as a cutting tool material.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 102 M 102 Q 102 R (72)発明者 樋口 松夫 兵庫県伊丹市昆陽北1丁目1番1号 住友 電気工業株式会社伊丹製作所内 (56)参考文献 特開 昭59−107908(JP,A) 特開 昭58−151371(JP,A) 特公 昭57−8046(JP,B2) 特公 昭61−43311(JP,B2)Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location 102 M 102 Q 102 R (72) Inventor Matsuo Higuchi 1-1-1 Kunyokita, Itami City, Hyogo Sumitomo Electric Industries Itami Seisakusho Co., Ltd. (56) Reference JP-A-59-107908 (JP, A) JP-A-58-151371 (JP, A) JP-B 57-8046 (JP, B2) JP-B 61-43311 ( JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化アルミニウムと酸化イツトリウムを合
計で1〜15重量%と、β型が95%以上であって、平均粒
径が0.5μm以下且つ粒径分布幅が2.0μm以下である残
部の窒化ケイ素との混合粉末を、非酸化性雰囲気中にお
いて1600〜1900℃で焼結することを特徴とする窒化ケイ
素焼結体の製造方法。
1. A total of 1 to 15% by weight of aluminum oxide and yttrium oxide, β-type is 95% or more, and the balance of the average particle size is 0.5 μm or less and the particle size distribution width is 2.0 μm or less. A method for producing a silicon nitride sintered body, which comprises sintering a mixed powder with silicon nitride at 1600 to 1900 ° C in a non-oxidizing atmosphere.
【請求項2】上記焼結を1気圧以上300気圧以下の加圧
窒素雰囲気中で行うことを特徴とする、特許請求の範囲
(1)項記載の窒化ケイ素焼結体の製造方法。
2. The method for producing a silicon nitride sintered body according to claim 1, wherein the sintering is performed in a pressurized nitrogen atmosphere of 1 atm to 300 atm.
【請求項3】酸化アルミニウムと酸化イツトリウムを合
計で1〜15重量%と、元素周期律表のIV a、V a、VI a
族元素から選ばれた少なくとも1種の金属元素の炭化
物、窒化物、炭窒化物又は硼化物、若しくは炭化ケイ素
又は炭化ケイ素ウイスカーを5〜30重量%と、β型が95
%以上であって、平均粒径が0.5μm以下且つ粒径分布
幅が2.0μm以下である残部の窒化ケイ素との混合粉末
を、非酸化性雰囲気中において1600〜1900℃で焼結する
ことを特徴とする窒化ケイ素焼結体の製造方法。
3. A total of 1 to 15% by weight of aluminum oxide and yttrium oxide, and IVa, Va, VIa of the periodic table of elements.
5 to 30% by weight of carbide, nitride, carbonitride or boride of at least one metal element selected from the group elements, or silicon carbide or silicon carbide whiskers, and β type is 95
% Or more and an average particle size of 0.5 μm or less and a particle size distribution width of 2.0 μm or less, the mixed powder with the rest of silicon nitride is sintered at 1600 to 1900 ° C. in a non-oxidizing atmosphere. A method for producing a silicon nitride sintered body, which is characterized.
JP61235720A 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body Expired - Fee Related JPH0764639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61235720A JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61235720A JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS6389459A JPS6389459A (en) 1988-04-20
JPH0764639B2 true JPH0764639B2 (en) 1995-07-12

Family

ID=16990230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61235720A Expired - Fee Related JPH0764639B2 (en) 1986-10-03 1986-10-03 Method for manufacturing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPH0764639B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662863B2 (en) * 1987-04-09 1997-10-15 京セラ株式会社 Method for producing silicon nitride based sintered body
JP2631115B2 (en) * 1987-11-30 1997-07-16 京セラ株式会社 Manufacturing method of silicon nitride sintered body
JP2659409B2 (en) * 1988-07-29 1997-09-30 マツダ株式会社 Manufacturing method of ceramic sliding member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578046A (en) * 1980-06-11 1982-01-16 Hitachi Ltd Thread fastening device
JPS58151371A (en) * 1982-02-25 1983-09-08 住友電気工業株式会社 Manufacture of silicon nitride sintered body
JPS59107908A (en) * 1982-12-08 1984-06-22 Toyo Soda Mfg Co Ltd Manufacture of silicon nitride powder with superior sinterability
JPS6143311A (en) * 1984-08-08 1986-03-01 Nippon Kokan Kk <Nkk> Internal pressure control method of incomplete airtight space

Also Published As

Publication number Publication date
JPS6389459A (en) 1988-04-20

Similar Documents

Publication Publication Date Title
AU671349B2 (en) Silicon nitride ceramic and cutting tool made thereof
US4801564A (en) High-toughness ceramic tool materials
US4769350A (en) Silicon nitride sintered material for cutting tools and process for making the same
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
US5439854A (en) TiC-base/SiC whisker composite ceramic cutting tools
EP0468486B1 (en) A ceramic material, reinforced by the incorporation of alumina fibers and process for production thereof
US4956317A (en) Whisker-reinforced ceramics
JPH0764639B2 (en) Method for manufacturing silicon nitride sintered body
JP2000218411A (en) Cubic boron nitride sintered body cutting tool
JPH07172919A (en) Titanium-compound sintered material
JPH06329470A (en) Sintered silicon nitride and its sintered and coated material
JP3051603B2 (en) Titanium compound sintered body
JP2997334B2 (en) Fiber reinforced ceramics
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPH1029869A (en) Silicon nitride-silicon carbide composite sintered compact and its production
JP2794121B2 (en) Fiber reinforced ceramics
JP2794122B2 (en) Fiber reinforced ceramics
JP4798821B2 (en) Cutting tool and manufacturing method thereof
JPH05208869A (en) Silicon nitride cutting tool
JP3615634B2 (en) High toughness silicon nitride sintered body and manufacturing method thereof
JP3591799B2 (en) High toughness silicon nitride based sintered body and method for producing the same
JP2840696B2 (en) Method for producing alumina fiber reinforced ceramics
JPH0764640B2 (en) Method of manufacturing silicon nitride sintered body for cutting tool
JP2000007441A (en) High toughness ceramic sintered compact
JPH0537944B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees