JPS6312380B2 - - Google Patents

Info

Publication number
JPS6312380B2
JPS6312380B2 JP57101101A JP10110182A JPS6312380B2 JP S6312380 B2 JPS6312380 B2 JP S6312380B2 JP 57101101 A JP57101101 A JP 57101101A JP 10110182 A JP10110182 A JP 10110182A JP S6312380 B2 JPS6312380 B2 JP S6312380B2
Authority
JP
Japan
Prior art keywords
silicon substrate
impurity
nitride film
region
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57101101A
Other languages
Japanese (ja)
Other versions
JPS58216437A (en
Inventor
Makoto Hirayama
Natsuo Tsubochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10110182A priority Critical patent/JPS58216437A/en
Publication of JPS58216437A publication Critical patent/JPS58216437A/en
Publication of JPS6312380B2 publication Critical patent/JPS6312380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Description

【発明の詳細な説明】 この発明は、素子間分離絶縁領域を形成する工
程を有する半導体装置の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, which includes a step of forming an isolation region between elements.

従来、この種の半導体装置の製造方法として
は、酸化シリコン膜を下敷膜とした薄い窒化シリ
コン膜をマスクとして用いてシリコン基板の高温
度・長時間の熱酸化を行ない、素子間分離絶縁領
域を形成する方法が知られている。すなわち、こ
の種の酸化膜形成方法は、シリコンを材料として
選択酸化法を応用するMOS型半導体装置のフイ
ールド領域の厚い酸化膜の形成やバイポーラ型半
導体装置の分離用の酸化膜の形成など、あらゆる
半導体装置の製造方法に一般的に用いられてい
る。しかしながら、この方法では、バーズビーク
と呼ばれる形状の酸化膜の尾状の領域が所要の酸
化膜の上部の両側から延びて形成されてしまう。
従つて、酸化膜本体の最小線幅が1ミクロンなら
両側にそれぞれ0.5ミクロンで計1ミクロンのバ
ーズビークが発生し、線幅2ミクロン以下の加工
が困難であつた。
Conventionally, the method for manufacturing this type of semiconductor device is to thermally oxidize the silicon substrate at high temperature and for a long time using a thin silicon nitride film with a silicon oxide film as an underlying film as a mask, thereby forming an isolation region between elements. Methods of forming are known. In other words, this type of oxide film formation method can be used for all kinds of applications, such as the formation of thick oxide films in the field region of MOS semiconductor devices using silicon as a material and the formation of isolation oxide films in bipolar semiconductor devices. It is generally used in the manufacturing method of semiconductor devices. However, in this method, a tail-like region of the oxide film having a shape called a bird's beak is formed extending from both sides of the upper part of the desired oxide film.
Therefore, if the minimum line width of the oxide film body is 1 micron, a bird's beak of 0.5 micron on each side, totaling 1 micron, will occur, making it difficult to process lines with a line width of 2 microns or less.

この発明は、上記の点に鑑みてなされたもので
あり、厚さが厚く幅の狭い素子間分離絶縁領域を
形成することのできる半導体装置の製造方法を提
供することを目的としたものである。
The present invention has been made in view of the above points, and aims to provide a method for manufacturing a semiconductor device that can form a thick and narrow inter-element isolation insulating region. .

この発明に係る半導体装置の製造方法は、シリ
コン基板に幅の狭い溝を形成し、シリコン基板を
直接に窒化した窒化シリコン膜をマスクにして、
シリコン基板のこの溝に面した部分を熱酸化させ
ることによつて、素子間分離絶縁領域を形成する
ようにしたものである。
A method for manufacturing a semiconductor device according to the present invention includes forming a narrow groove in a silicon substrate, using a silicon nitride film obtained by directly nitriding the silicon substrate as a mask, and
By thermally oxidizing the portion of the silicon substrate facing this groove, an inter-element isolation insulating region is formed.

以下、実施例に基づいてこの発明を説明する。 The present invention will be explained below based on examples.

第1図a〜dはこの発明による半導体装置の製
造方法の一実施例の素子間分離絶縁領域の形成方
法の主要段階を示す断面図である。
FIGS. 1A to 1D are cross-sectional views showing the main steps of a method for forming an inter-element isolation region in an embodiment of the method for manufacturing a semiconductor device according to the present invention.

まず、第1図aに示すように、シリコン基板1
の表面にフオトレジスト、金属などからなり所要
の開口部2aを有するマスク2を形成する。次
に、第1図bに示すように、マスク2をマスクと
して、反応性イオン・エツチング(RIE)などの
方法によつて、シリコン基板1の開口部2a直下
の部分をエツチング除去して溝3を形成する。つ
づいて、第1図cに示すように、シリコン基板1
の溝3の底面下の部分にイオン注入法などによつ
てシリコン基板1の不純物と同型の不純物を導入
して不純物導入領域4を形成する。さらに、第1
図dに示すように、マスク2を除去した後、シリ
コン基板1の表面部を直接に窒化させて窒化シリ
コン膜5を形成する、このとき、窒化シリコン膜
5には溝3に対応する部分に開口部5aが形成さ
れる。溝3の側面および底面にも窒化シリコン膜
が形成されるが、これらは、シリコン基板1の表
面の窒化シリコン膜5をマスクした後、熱リン酸
でエツチングして取り除く。つづいて、開口部5
aを有する窒化シリコン膜5をマスクにしてシリ
コン基板1を熱酸化するとシリコン基板1の溝3
の底面および側面に接する部分が酸化され、酸化
シリコンが溝3を埋めて素子間分離絶縁領域6が
形成される。この場合、素子間分離絶縁領域6の
幅は開口部5aの幅の1.4〜1.5倍になるが、窒化
シリコン膜5の下に下敷膜としての酸化シリコン
膜を用いバーズビークが生じた場合の約2倍より
は小さくなる。すなわち、厚さが厚く、幅が狭い
素子間分離絶縁領域6が形成される。また、窒化
シリコン膜5はシリコン基板1の表面部を直接に
窒化させたものであるから、シリコン基板1との
密着性がよく、また、熱酸化に際してシリコン基
板1に結晶欠陥が生じることがない。さらに、素
子間分離絶縁領域6の底面下には不純物導入領域
4の不純物が拡散して形成されたシリコン基板1
より不純物濃度の高い拡大不純物導入領域4aが
存在しており、これが分離効果を高めるチヤンネ
ルストツパーになつている。
First, as shown in FIG. 1a, a silicon substrate 1
A mask 2 made of photoresist, metal, etc. and having a required opening 2a is formed on the surface of the mask. Next, as shown in FIG. 1b, using the mask 2 as a mask, the portion directly below the opening 2a of the silicon substrate 1 is etched away by a method such as reactive ion etching (RIE) to form the groove 3. form. Next, as shown in FIG. 1c, the silicon substrate 1
An impurity of the same type as the impurity of the silicon substrate 1 is introduced into a portion below the bottom surface of the groove 3 by ion implantation or the like to form an impurity-introduced region 4. Furthermore, the first
As shown in FIG. d, after removing the mask 2, the surface of the silicon substrate 1 is directly nitrided to form a silicon nitride film 5. At this time, the silicon nitride film 5 has a portion corresponding to the groove 3. An opening 5a is formed. A silicon nitride film is also formed on the side and bottom surfaces of the groove 3, but these are removed by etching with hot phosphoric acid after masking the silicon nitride film 5 on the surface of the silicon substrate 1. Next, opening 5
When the silicon substrate 1 is thermally oxidized using the silicon nitride film 5 having a
The portions in contact with the bottom and side surfaces of the substrate are oxidized, silicon oxide fills the trench 3, and an inter-element isolation insulating region 6 is formed. In this case, the width of the inter-element isolation insulating region 6 is 1.4 to 1.5 times the width of the opening 5a, but it is about 2 times the width when a bird's beak is created using a silicon oxide film as an underlayer film under the silicon nitride film 5. It will be smaller than double. That is, the inter-element isolation insulating region 6 having a large thickness and a narrow width is formed. Furthermore, since the silicon nitride film 5 is obtained by directly nitriding the surface portion of the silicon substrate 1, it has good adhesion to the silicon substrate 1, and crystal defects are not generated in the silicon substrate 1 during thermal oxidation. . Further, under the bottom surface of the element isolation insulating region 6, a silicon substrate 1 is formed by diffusing the impurities of the impurity introduction region 4.
There is an enlarged impurity introduced region 4a having a higher impurity concentration, and this serves as a channel stopper that enhances the separation effect.

第2図a〜eはこの発明による半導体装置の製
造方法の他の実施例の素子間分離絶縁領域の形成
方法の主要段階を示す断面図である。第2図にお
いて、第1図と同一符号は第1図にて示したもの
と同様のものを表わしている。第2図a,bの段
階は第1図a,bの段階と同様にして行う。第2
図cに示すようにシリコン基板1の溝3の底面下
の部分にイオン注入法などによつてシリコン基板
1の不純物と異なる型の不純物を導入して第1の
不純物導入領域7を形成する。次に、第2図dに
示すように、第2図cの場合と同様にして、シリ
コン基板1の不純物と同型の不純物を導入して第
2の不純物導入領域8を形成する。つづいて、第
2図eに示すように、第1図に示した実施例と同
様にして開口部5aを有する窒化シリコン膜5を
マスクにしてシリコン基板1を熱酸化して同様の
素子間分離絶縁領域6を形成する。この場合、第
1の不純物導入領域7および第2の不純物導入領
域8の不純物が拡散してそれぞれ第1の拡大不純
物導入領域7aおよび第2の拡大不純物導入領域
8aが形成され、この間に拡散接合容量が形成さ
れる。この拡散接合容量は、素子間分離を強化す
ると共に、保護回路の一部として応用される。
FIGS. 2a to 2e are cross-sectional views showing the main steps of a method for forming an isolation region in another embodiment of the method for manufacturing a semiconductor device according to the present invention. In FIG. 2, the same reference numerals as in FIG. 1 represent the same components as shown in FIG. The steps a and b in FIG. 2 are performed in the same manner as the steps a and b in FIG. 1. Second
As shown in FIG. c, a first impurity-introduced region 7 is formed by introducing an impurity of a type different from that of the silicon substrate 1 into a portion below the bottom surface of the groove 3 of the silicon substrate 1 by ion implantation or the like. Next, as shown in FIG. 2d, in the same manner as in FIG. 2c, an impurity of the same type as the impurity in the silicon substrate 1 is introduced to form a second impurity-introduced region 8. Subsequently, as shown in FIG. 2e, the silicon substrate 1 is thermally oxidized using the silicon nitride film 5 having the opening 5a as a mask in the same manner as in the embodiment shown in FIG. An insulating region 6 is formed. In this case, the impurities in the first impurity introduced region 7 and the second impurity introduced region 8 are diffused to form a first enlarged impurity introduced region 7a and a second enlarged impurity introduced region 8a, and a diffusion bond is formed between them. A capacitance is formed. This diffused junction capacitance strengthens isolation between elements and is applied as part of a protection circuit.

以上詳述したように、この発明による半導体装
置の製造方法においては、シリコン基板の一方の
主面から内部に掘り込んだ溝の側面および底面に
接するシリコン基板の部分を、シリコン基板を直
接に窒化させて形成した窒化シリコン膜をマスク
にして、熱酸化して溝を酸化シリコンで埋めて素
子間分離絶縁領域を形成するので、シリコン基板
に結晶欠陥を生じることなく、厚さが厚く幅が狭
い素子間分離絶縁領域を形成することができる。
As described in detail above, in the method for manufacturing a semiconductor device according to the present invention, the silicon substrate is directly nitrided in the portion of the silicon substrate that is in contact with the side and bottom surfaces of the trench dug inward from one main surface of the silicon substrate. Using the silicon nitride film formed in this process as a mask, thermal oxidation is performed to fill the trench with silicon oxide to form an isolation region between elements, which eliminates crystal defects in the silicon substrate, resulting in a thick and narrow silicon substrate. An element isolation insulating region can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dはこの発明の一実施例のこの発明
に関連のある主要段階を示す断面図、第2図a〜
eはこの発明の他の実施例のこの発明に関連のあ
る主要段階を示す断面図である。 図において、1はシリコン基板、3は溝、4は
不純物導入領域、4aは拡大不純物導入領域、5
は窒化シリコン膜、6は素子間分離絶縁領域、7
は第1の不純物導入領域、7aは第1の拡大不純
物導入領域、8は第2の不純物導入領域、8aは
第2の拡大不純物導入領域である。なお、図中同
一符号はそれぞれ同一または相当部分を示す。
Figures 1 a to d are cross-sectional views showing the main steps related to the present invention in one embodiment of the present invention; Figures 2 a to d
FIG. 5e is a cross-sectional view of another embodiment of the invention showing the main steps relevant to the invention; In the figure, 1 is a silicon substrate, 3 is a trench, 4 is an impurity doped region, 4a is an enlarged impurity doped region, and 5 is a silicon substrate.
6 is a silicon nitride film, 6 is an isolation insulating region between elements, and 7 is a silicon nitride film.
7a is a first expanded impurity implanted region, 8 is a second impurity implanted region, and 8a is a second expanded impurity implanted region. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 シリコン基板の一方の主面から内部へ堀り込
んだ溝を形成する工程、上記シリコン基板の表面
部を直接に窒化させて窒化シリコン膜を形成する
工程、上記溝の側面および底面に形成された窒化
シリコン膜を除去する工程、および残存する上記
窒化シリコン膜をマスクにして上記シリコン基板
を熱酸化して酸化シリコンによつて上記溝を埋め
て素子間分離絶縁領域を形成する工程を備えた半
導体装置の製造方法。 2 上記シリコン基板の溝の底面に接する部分に
該シリコン基板の不純物と同一型の不純物を導入
し、上記素子間分離絶縁領域の下に上記シリコン
基板より不純物濃度の高い不純物導入領域を形成
するようにしたことを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。 3 上記シリコン基板の溝の底面に接する部分に
n型およびp型の不純物を導入し、上記素子間分
離絶縁領域の下に拡散接合容量を形成するように
したことを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
[Claims] 1. A step of forming a groove dug inward from one main surface of a silicon substrate, a step of directly nitriding the surface portion of the silicon substrate to form a silicon nitride film, and a step of forming a silicon nitride film by directly nitriding the surface portion of the silicon substrate. A step of removing the silicon nitride film formed on the side and bottom surfaces, and thermally oxidizing the silicon substrate using the remaining silicon nitride film as a mask to fill the trench with silicon oxide to form an isolation insulating region between elements. A method for manufacturing a semiconductor device, comprising a step of forming a semiconductor device. 2. Introducing an impurity of the same type as the impurity of the silicon substrate into a portion of the silicon substrate in contact with the bottom surface of the groove, and forming an impurity-introduced region with a higher impurity concentration than the silicon substrate under the element isolation insulating region. A method of manufacturing a semiconductor device according to claim 1, characterized in that: 3. Claims characterized in that n-type and p-type impurities are introduced into a portion of the silicon substrate in contact with the bottom surface of the groove to form a diffusion junction capacitance under the element isolation insulating region. 2. A method for manufacturing a semiconductor device according to item 1.
JP10110182A 1982-06-10 1982-06-10 Preparation of semiconductor device Granted JPS58216437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10110182A JPS58216437A (en) 1982-06-10 1982-06-10 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10110182A JPS58216437A (en) 1982-06-10 1982-06-10 Preparation of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58216437A JPS58216437A (en) 1983-12-16
JPS6312380B2 true JPS6312380B2 (en) 1988-03-18

Family

ID=14291692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10110182A Granted JPS58216437A (en) 1982-06-10 1982-06-10 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58216437A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637553B2 (en) * 2004-11-22 2011-02-23 パナソニック株式会社 Schottky barrier diode and integrated circuit using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429573A (en) * 1977-08-10 1979-03-05 Hitachi Ltd Fine machining method of semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5429573A (en) * 1977-08-10 1979-03-05 Hitachi Ltd Fine machining method of semiconductor

Also Published As

Publication number Publication date
JPS58216437A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
JPH0513566A (en) Manufacture of semiconductor device
JP2521611B2 (en) Method of manufacturing CMOS having twin well
US4295266A (en) Method of manufacturing bulk CMOS integrated circuits
US5369052A (en) Method of forming dual field oxide isolation
US5256895A (en) Pad oxide protect sealed interface isolation
JPH02277253A (en) Manufacture of semiconductor device
JPS60106142A (en) Manufacture of semiconductor element
JPS6312380B2 (en)
JPH0268930A (en) Manufacture of semiconductor device
JPH10308448A (en) Isolation film of semiconductor device and formation method thereof
JP2820465B2 (en) Method for manufacturing semiconductor device
JPS6237543B2 (en)
JPS6159675B2 (en)
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPS6025247A (en) Manufacture of semiconductor device
JP2775782B2 (en) Method for manufacturing semiconductor device
KR0135068B1 (en) Method of forming active well on the semiconductor device
JPH0223630A (en) Manufacture of semiconductor device
JPH0680726B2 (en) Method for manufacturing semiconductor device
JPS6238857B2 (en)
JPH11340326A (en) Manufacture of semiconductor device
JPS63144543A (en) Formation of semiconductor interelement isolation region
JPS6236390B2 (en)
JPS59942A (en) Manufacture of semiconductor device
JPS58149A (en) Semiconductor device