JPS63119578A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63119578A
JPS63119578A JP26521286A JP26521286A JPS63119578A JP S63119578 A JPS63119578 A JP S63119578A JP 26521286 A JP26521286 A JP 26521286A JP 26521286 A JP26521286 A JP 26521286A JP S63119578 A JPS63119578 A JP S63119578A
Authority
JP
Japan
Prior art keywords
thin film
film transistor
channel
channel type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26521286A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP26521286A priority Critical patent/JPS63119578A/en
Publication of JPS63119578A publication Critical patent/JPS63119578A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To control a threshold voltage value (Vth) to be an adequate value all the time and to make it possible to manufacture the title device by a simple method, by providing a conductor layer and an insulating layer in contact with the conductor layer with respect to an N-channel type thin film transistor group and a P-channel type thin film transistor group, and contacting the insulating layer with the channel part of each thin film transistor (TFT). CONSTITUTION:In a semiconductor device, a complementary type circuit comprising an N-channel type thin film transistor and a P-channel type thin film transistor and the like are provided. A conductor layer and an insulating layer contacting the conductor layer are provided with respect to the N-channel type thin film transistor group and the P-channel type thin film transistor group. The insulating layer is in contact with the channel part of each thin film transistor. For example, source and drain parts 107, 109, 110 and 112 of the TFTs are formed only in the vicinities of the surfaces of the thin films. Thus Vth can be always controlled at an adequate value, and a semiconductor device, which includes the complementary integrated circuit that can be fabricated by a simple method, is obtained.

Description

【発明の詳細な説明】 c腫業上の利用分野〕 本発明は薄膜トランジスタ(以下TPTと示す)による
相補型回路等を有する半導体装置の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Use in Oncology The present invention relates to the structure of a semiconductor device having a complementary circuit using a thin film transistor (hereinafter referred to as TPT).

〔従来の技術〕[Conventional technology]

従来の相補型TF’T集積回路の構造は第2図に示す如
(、TFTのチャネル部に誘起される電荷を制御する電
極はゲート電極のみであった。同図において、101は
絶縁基板、107及び109.11O及び112はそれ
ぞれTF’Tのソース・ドレイン部、108及び111
はそれぞれTPTのチャネル部%113及び114はそ
れぞれTPTのゲート[化111.115及び116は
それぞれTl!’Tのゲート電極であシ、107乃至1
09及び113及び115で溝成されるT F Tt−
Nチャネル型とすれば、11O乃至112及び114及
び116で構成されるTUFTはPチャネル型となる。
The structure of a conventional complementary TF'T integrated circuit is as shown in FIG. 107 and 109. 11O and 112 are the source and drain parts of TF'T, 108 and 111, respectively.
113 and 114 are the gates of the TPT, respectively. 115 and 116 are Tl!, respectively. 'T gate electrode, 107 to 1
T F Tt- grooved at 09, 113 and 115
If it is an N-channel type, the TUFT composed of 11O to 112, 114, and 116 will be a P-channel type.

117,119,120,123は層間絶縁膜、125
乃至128は配線材料、130は保護膜である。
117, 119, 120, 123 are interlayer insulating films, 125
Reference numerals 128 to 128 are wiring materials, and 130 is a protective film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図の如きTF’Tにおいては、N、Pチャネル型共
製造工程中の異変により、しきい値電圧(以下vthと
する)が変動する(例えばチャネル部108及び111
の不純物濃度、ゲート電極115及び116中の不純物
濃度の変化等)特にH!プラズマ工程もしくはスバツタ
工程を行った後はvthが大きくシフトする。第3図(
aJはvthが負の方向にシフトし、デグレション型と
なったTUFTのゲート電圧(Vas )−ドレイン電
流(より11)e性、同図(b)はvthが正の方向に
シフトし、エンハンスメント型となりたTFTのVO2
−より8%性で、同図(c)はvthが正常な[(V(
ha = OV付近テより8が最小となる)の時のVO
2−より8特注である。
In the TF'T as shown in FIG. 2, the threshold voltage (hereinafter referred to as vth) fluctuates due to abnormalities during the N and P channel co-manufacturing process (for example, the channel portions 108 and 111
change in the impurity concentration in the gate electrodes 115 and 116), especially in H! After performing a plasma process or a sputtering process, vth shifts significantly. Figure 3 (
aJ is the gate voltage (Vas)-drain current (11) of the TUFT, which is a degradation type with vth shifting in the negative direction, and (b) is an enhancement type with vth shifting in the positive direction. The VO2 of TFT became
- 8% sex, and the same figure (c) shows normal vth [(V(
VO when ha = 8 is the minimum from near OV)
2-8 is custom made.

vthが一/7トした場合(第3図(”) * (6)
 ) 、Vall =口Vにおけるより8(以下工Of
f  とする)が増加し。
When vth is 1/7th (Figure 3 ('') * (6)
), Vall = 8 in mouth V (hereinafter referred to as work of
f ) increases.

回路動作に支障をきたす。This may interfere with circuit operation.

以上の問題点を解決するため、チャネル部108及び1
11の上下に電極を設ける!ll造の’rFTが考案さ
れているが、パターニング工程を2回余分に要し、配線
も複雑である等の問題点を有し、実用化に至っていない
In order to solve the above problems, the channel parts 108 and 1
Provide electrodes above and below 11! Although a 11-structure 'rFT has been devised, it has problems such as requiring two extra patterning steps and complicated wiring, and has not been put into practical use.

そこで本発明は以との如き問題点を解決するもので、そ
の目的とするところは、常にvth’を適正な直に制御
でき、かつ簡単な方法で製造可能な相補型T11′T集
積回路を実現することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the problems described below, and its purpose is to provide a complementary T11'T integrated circuit that can always control vth' properly and directly and that can be manufactured by a simple method. It is about realization.

〔問題点を解決するための手段〕[Means for solving problems]

以上の如き問題点を解決するため、本発明はNチャネル
型riIi嘆トランジスタ群とPチャネル製薄膜トラン
ジスタ群各々について導電層及び前記導電層に接した絶
縁層を設け、前記絶縁層が薄膜トランジスタのチャネル
部に接して成ることを特数とする。
In order to solve the above-mentioned problems, the present invention provides a conductive layer and an insulating layer in contact with the conductive layer for each of the N-channel RIII transistor group and the P-channel thin film transistor group, and the insulating layer is connected to the channel portion of the thin film transistor. A special number is that it is tangent to .

〔実施列〕[Implementation row]

本発明の実施列を第1図に示す、同図(a)は断面図、
同図(6)は平面図である。同図(α)において、10
1は絶縁基板、102及び103は導電層、104乃至
106は絶縁層である。107,109.110,11
2はTPTのソース会ドレイン部。
An embodiment of the present invention is shown in FIG. 1, where (a) is a sectional view,
Figure (6) is a plan view. In the same figure (α), 10
1 is an insulating substrate, 102 and 103 are conductive layers, and 104 to 106 are insulating layers. 107,109.110,11
2 is the source and drain part of TPT.

108及びillはTPTのチャネル部、113及び1
14は??TOゲート絶縁嗅、工15及び116はTN
TOゲート電極である。107.108.109,11
3,115で構成されるTIFTをNチャネル型とすれ
ば、110,111,112.114,116で構成さ
れるTIFTはPチャネル型となる。117乃至123
は層間絶縁嗅。
108 and ill are TPT channel parts, 113 and 1
What about 14? ? TO gate insulation, engineering 15 and 116 are TN
This is a TO gate electrode. 107.108.109,11
If the TIFT composed of 3,115 is an N-channel type, the TIFT composed of 110, 111, 112, 114, and 116 is a P-channel type. 117 to 123
Is the interlayer insulation olfactory.

124乃至129はムj等の配線材料、130乃至13
2は保獲膜である。同図(6)において、同図(a)と
同一の記号は同一のものを表わす、同図(6)において
、133及び134はそれぞれ107乃至109及び1
10乃至112によシ構成される薄膜、135及び14
0はそれぞれ配線材料と導電層102及び103″f:
接続する為のコンタクトホール、136乃至139は配
線材料とTPTのソーX・ドレイン部を接続するコンタ
クトホールである。同図の如き構造においては、配線材
料工24及び129がそれぞれ導電層102及び103
の電位を制御する端子となる1本構造のTPTのしきい
値電圧vthは次式の如くなる。
124 to 129 are wiring materials such as muj, 130 to 13
2 is the retention membrane. In Figure (6), the same symbols as in Figure (a) represent the same things. In Figure (6), 133 and 134 are 107 to 109 and 1, respectively.
A thin film composed of 10 to 112, 135 and 14
0 is the wiring material and conductive layer 102 and 103″f, respectively:
Contact holes 136 to 139 for connection are contact holes for connecting the wiring material and the saw X/drain portion of the TPT. In the structure shown in the figure, the wiring materials 24 and 129 are connected to the conductive layers 102 and 103, respectively.
The threshold voltage vth of a single-wire TPT serving as a terminal for controlling the potential of is expressed by the following equation.

Vth = VT −Cs、Vsrb / Cow +
 a   (1)VT・・・導電層102及び103の
電位がTPTのソース電位に等しい 時のvth C8・・−絶縁層105の容量(面積はチャネル部10
8及び111の面 積) v8舊・・・導電層102及び103とTFTのソース
間の電位差 C6W・・・ゲート絶縁膜113及び114の容量 α・・e・その他の要因 Nチャネル型とPチャネル温においては、α)式の右辺
2,3項の符号が反転するのみで適用できる。
Vth = VT - Cs, Vsrb / Cow +
a (1) VT...vth when the potentials of the conductive layers 102 and 103 are equal to the source potential of TPT C8...-Capacitance of the insulating layer 105 (area is equal to the channel part 10
8 and 111) v8 舊...Potential difference between the conductive layers 102 and 103 and the source of the TFT C6W...Capacity α of the gate insulating films 113 and 114 e...Other factors N-channel type and P-channel temperature can be applied by simply inverting the signs of the second and third terms on the right side of equation α).

(1)弐に示される如(、VTがいかなる直でも4電層
102及び103に与える電位を適切なVSlLとなる
様に設定すればVthは適切な直となり、TPT特注を
第3図(c)の如くすることができる。
(1) As shown in Figure 2 (2), if VT is set so that the potential applied to the four electric layers 102 and 103 is set to an appropriate value VSlL, Vth becomes an appropriate value, and the custom-made TPT is shown in Figure 3 (c). ) can be done as follows.

また1本構造の如くすれば、経験と、ソース・ドレイン
部107.109.110.112を形成するイオン打
込み工程及び、保i4@130乃至132t−形成する
スバツタ工程等におけるTll”l’へのダメージ(ゲ
ート絶縁膜113,114の絶縁破壊等)を軽減出来、
高歩留りとなる。
In addition, if a single structure is used, experience and the ion implantation process for forming the source/drain parts 107, 109, 110, 112, and the sputtering process for forming the retainer i4@130 to 132t, etc. Damage (dielectric breakdown of gate insulating films 113, 114, etc.) can be reduced,
High yield.

まな、絶縁層104乃至106と1層間絶@膜117乃
至123を同一工程でエツチング出来る様に材料、膜厚
を設定すれば、(例えば酸化シリコン膜とする)最低限
のパターニング工程で第1図に示す構造を実現できる。
However, if the materials and film thicknesses are set so that the insulating layers 104 to 106 and the one-layer interlayer films 117 to 123 can be etched in the same process, the patterning process shown in FIG. The structure shown in can be realized.

また、導電層102及び103を多結晶シリコンに不純
物をドープしたもの、絶縁層104乃至106t−前記
多結晶シリコンを熱酸化した酸化シリコン層とすれば、
絶縁層104乃至106の膜質も良<、TIFTの信頼
性が向上する。
Furthermore, if the conductive layers 102 and 103 are polycrystalline silicon doped with impurities, and the insulating layers 104 to 106t are silicon oxide layers obtained by thermally oxidizing the polycrystalline silicon,
The film quality of the insulating layers 104 to 106 is also good, and the reliability of the TIFT is improved.

同図はゲート電極115,116及びゲート絶縁膜11
3,114がチャネル部108.111の上部にある場
合の列であるが、ゲニト電極及びゲート絶縁膜がチャネ
ル部の下部にある場合も同様に、チャネル部のと部に接
して絶縁層、導電層を設ければ良い。
The figure shows gate electrodes 115, 116 and gate insulating film 11.
3 and 114 are on the upper part of the channel part 108 and 111. Similarly, when the genit electrode and the gate insulating film are on the lower part of the channel part, the insulating layer and the conductive film are in contact with the channel part. All you have to do is create layers.

第4図は本発明の実施列で、TPTのソース及びドレイ
ン部107,109,110,112を薄膜の表面付近
にのみ形成している列である。これは、ソース・ドレイ
ン領域を形成する工程の条件を詰めれば製造が可能であ
る。第1図の如き実施例においては導電層102及び1
03に与える電位によっては108,111と105の
界面付近にチャネルが形成され、TFTのリーク電流が
増加する可能性があるが、第4図の如き構造とする事に
よシ、その問題は解決された。
FIG. 4 shows an embodiment of the present invention, in which TPT source and drain portions 107, 109, 110, and 112 are formed only near the surface of the thin film. This can be manufactured if the conditions for the process of forming the source/drain regions are perfected. In the embodiment shown in FIG. 1, conductive layers 102 and 1
Depending on the potential applied to 03, a channel may be formed near the interface between 108, 111 and 105, and the leakage current of the TFT may increase, but this problem can be resolved by creating a structure as shown in Figure 4. It was done.

第5図は本発明の応用列で、3次元集積回路に本発明を
適用している列である。同図において。
FIG. 5 shows an application of the present invention, in which the present invention is applied to a three-dimensional integrated circuit. In the same figure.

第1図と同一の記号は第1図と同一のものを表わす、5
01及び502は導電層、503及び504は絶縁層、
505及び506はTFTのソース及ヒトレイン部、5
07はTIPTのチャネル部、508はTIPTのゲー
ト絶@膜、509はTPTのゲート電極、510乃至5
14は層間絶縁膜、515乃至518は配線材料、51
9乃至521は保護膜である。同図の如き実施列におい
ては。
The same symbols as in Figure 1 represent the same things as in Figure 1, 5
01 and 502 are conductive layers, 503 and 504 are insulating layers,
505 and 506 are TFT source and human train parts, 5
07 is the channel part of TIPT, 508 is the gate insulation film of TIPT, 509 is the gate electrode of TPT, 510 to 5
14 is an interlayer insulating film, 515 to 518 are wiring materials, 51
9 to 521 are protective films. In the implementation sequence as shown in the same figure.

505乃至509の要素で11I成されるTFTのvt
hを導電層501に与える電位によフ制御できるばかシ
でなく、導電層501が505乃至509による上TP
Tと107,108,109,113.115による下
TPTの干渉を遮蔽する役割も果たすため、アナログ微
小信号も取り扱うことができる。
vt of TFT made up of 11I elements from 505 to 509
h can be controlled by the potential applied to the conductive layer 501;
Since it also plays the role of shielding the lower TPT from interference caused by T and 107, 108, 109, 113, and 115, analog minute signals can also be handled.

〔発明の効果〕 以上述べた如く本発明を用いることによt)、常にvt
hを適正な直に制御でき、簡単な方法で製造可能な成補
型TIFT集積回路を含んだ半導体装置が実現される1
本発明はvthの変化しやすいH2グツズ、工程等を含
んだプロセスに適用すれば特に効果大であり、また3次
元集積回路に適用しても効果大である。
[Effect of the invention] As described above, by using the present invention, t), always vt
A semiconductor device including a complementary TIFT integrated circuit that can be controlled directly and appropriately and that can be manufactured by a simple method is realized1.
The present invention is particularly effective when applied to a process that includes H2 products, processes, etc. in which vth easily changes, and is also highly effective when applied to three-dimensional integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)は本発明の実施列における半導体装置の断
面図、同図(6)は平面図。 第2因は従来の半導体装置の断面図。 第3図((L) (6) (6)はTFTのvG8−よ
り8特性を説明するための図、&a)はデプレション型
、(b)はエンノーンスメント型、(C)はvthが適
正な直の場合を示した図。 第4図は本発明の実施例における、TFTのソース及び
ドレイン領域を薄膜の表面付近に形成している列の断面
図。 第5図は本発明の応用列における、3次元集積回路の断
面図。 101・・・絶縁基板 102.103−−−導電層 104乃至106・・・絶縁層 107.109,110,112−−−TPTのソース
拳ドレイン部 108.111・・・TFTのチャネル部113.11
4−・・TFTのゲート絶縁膜115.116Q・・T
F”!’のゲート電極117乃至123・・・層間絶t
#、@124乃至129・・Φ配線材料 130乃至132−・・保護膜 以   上 出願人 セイコーエグンン株式会社 −二、
FIG. 1(α) is a sectional view of a semiconductor device in an implementation row of the present invention, and FIG. 1(6) is a plan view. The second factor is a cross-sectional view of a conventional semiconductor device. Figure 3 ((L) (6) (6) is a diagram for explaining the vG8-8 characteristics of TFT, &a) is depletion type, (b) is ennouncment type, (C) is vth A diagram showing a case of proper direct handling. FIG. 4 is a cross-sectional view of a row in which source and drain regions of TFTs are formed near the surface of a thin film in an embodiment of the present invention. FIG. 5 is a cross-sectional view of a three-dimensional integrated circuit in an application row of the present invention. 101...Insulating substrate 102.103---Conductive layers 104 to 106...Insulating layers 107, 109, 110, 112---TPT source/drain portion 108.111...TFT channel portion 113. 11
4-...TFT gate insulating film 115.116Q...T
Gate electrodes 117 to 123 of F"!'...interlayer t
#, @124 to 129...Φ Wiring material 130 to 132-...Protective film or more Applicant: Seiko Egun Co., Ltd.-2,

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板上にNチャネル型薄膜トランジスタ及び
Pチャネル型薄膜トランジスタによる相補型回路等を有
する半導体装置において、Nチャネル型薄膜トランジス
タ群とPチャネル型薄膜トランジスタ群各々について導
電層及び前記導電層に接した絶縁層を設け、前記絶縁層
が薄膜トランジスタのチャネル部に接して成ることを特
徴とする半導体装置。
(1) In a semiconductor device having a complementary circuit including an N-channel thin film transistor and a P-channel thin film transistor on an insulating substrate, a conductive layer and insulation in contact with the conductive layer are provided for each of the N-channel thin film transistor group and the P-channel thin film transistor group. 1. A semiconductor device comprising a layer, the insulating layer being in contact with a channel portion of a thin film transistor.
(2)前記導電層が不純物をドープした多結晶シリコン
により形成されることを特徴とする、特許請求の範囲第
一項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the conductive layer is formed of polycrystalline silicon doped with impurities.
JP26521286A 1986-11-07 1986-11-07 Semiconductor device Pending JPS63119578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26521286A JPS63119578A (en) 1986-11-07 1986-11-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26521286A JPS63119578A (en) 1986-11-07 1986-11-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63119578A true JPS63119578A (en) 1988-05-24

Family

ID=17414084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26521286A Pending JPS63119578A (en) 1986-11-07 1986-11-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63119578A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138409A (en) * 1989-02-09 1992-08-11 Fujitsu Limited High voltage semiconductor device having silicon-on-insulator structure with reduced on-resistance
US5378919A (en) * 1991-01-21 1995-01-03 Sony Corporation Semiconductor integrated circuit device with plural gates and plural passive devices
US5384762A (en) * 1990-09-27 1995-01-24 International Business Machines Corporation Focusing servo in an optical disk drive
US5567959A (en) * 1993-12-27 1996-10-22 Nec Corporation Laminated complementary thin film transistor device with improved threshold adaptability
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
JP2003104649A (en) * 2001-09-27 2003-04-09 Toshiba Elevator Co Ltd Elevator device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688354A (en) * 1979-12-20 1981-07-17 Toshiba Corp Semiconductor integrated circuit device
JPS56111261A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Thin film field effect semiconductor device
JPS59124165A (en) * 1982-12-29 1984-07-18 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof
JPS60154549A (en) * 1984-01-24 1985-08-14 Fujitsu Ltd Manufacture of semiconductor device
JPS60225469A (en) * 1984-04-23 1985-11-09 Toshiba Corp Mosfet on insulation substrate
JPS6167269A (en) * 1984-09-07 1986-04-07 Sharp Corp Semiconductor element
JPS61220371A (en) * 1985-03-26 1986-09-30 Toshiba Corp Mos type integrated circuit device on insulating substrate
JPS62213272A (en) * 1986-03-14 1987-09-19 Nissan Motor Co Ltd Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688354A (en) * 1979-12-20 1981-07-17 Toshiba Corp Semiconductor integrated circuit device
JPS56111261A (en) * 1980-01-07 1981-09-02 Chiyou Lsi Gijutsu Kenkyu Kumiai Thin film field effect semiconductor device
JPS59124165A (en) * 1982-12-29 1984-07-18 Matsushita Electric Ind Co Ltd Insulated gate type transistor and manufacture thereof
JPS60154549A (en) * 1984-01-24 1985-08-14 Fujitsu Ltd Manufacture of semiconductor device
JPS60225469A (en) * 1984-04-23 1985-11-09 Toshiba Corp Mosfet on insulation substrate
JPS6167269A (en) * 1984-09-07 1986-04-07 Sharp Corp Semiconductor element
JPS61220371A (en) * 1985-03-26 1986-09-30 Toshiba Corp Mos type integrated circuit device on insulating substrate
JPS62213272A (en) * 1986-03-14 1987-09-19 Nissan Motor Co Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138409A (en) * 1989-02-09 1992-08-11 Fujitsu Limited High voltage semiconductor device having silicon-on-insulator structure with reduced on-resistance
US5384762A (en) * 1990-09-27 1995-01-24 International Business Machines Corporation Focusing servo in an optical disk drive
US5378919A (en) * 1991-01-21 1995-01-03 Sony Corporation Semiconductor integrated circuit device with plural gates and plural passive devices
US6013928A (en) * 1991-08-23 2000-01-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interlayer insulating film and method for forming the same
US5567959A (en) * 1993-12-27 1996-10-22 Nec Corporation Laminated complementary thin film transistor device with improved threshold adaptability
JP2003104649A (en) * 2001-09-27 2003-04-09 Toshiba Elevator Co Ltd Elevator device

Similar Documents

Publication Publication Date Title
US4395726A (en) Semiconductor device of silicon on sapphire structure having FETs with different thickness polycrystalline silicon films
JPS6113661A (en) Semiconductor device and manufacture thereof
US3925804A (en) Structure of and the method of processing a semiconductor matrix or MNOS memory elements
JPS63119578A (en) Semiconductor device
GB2064866A (en) Field effect semiconductor device
JP2000340795A (en) Semiconductor logic element and logic circuit using the same
JPS6167269A (en) Semiconductor element
US3665265A (en) Mos integrated circuit semiconductor device
JPH08293598A (en) Semiconductor device and manufacture thereof
JPH02178965A (en) Insulated isolation type field-effect semiconductor device
KR970004079A (en) Semiconductor device and manufacturing method
JPH04176165A (en) Semiconductor device and manufacture thereof
JPS60225469A (en) Mosfet on insulation substrate
JPH04280474A (en) Soi structure mosfet
CN108615764B (en) Semiconductor structure
JPS6346993B2 (en)
JPS6343375A (en) Semiconductor device and manufacture thereof
JPS60251669A (en) Semiconductor device
JPS5837989B2 (en) field effect semiconductor device
JPS5898970A (en) Thin film mis transistor
JPS60158670A (en) Thin-film transistor and manufacture thereof
JPS6358973A (en) Semiconductor device
JP2710356B2 (en) Semiconductor device
JPS57106078A (en) Mos semiconductor device
JPH04192365A (en) Semiconductor device