JPS6343375A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6343375A
JPS6343375A JP18803786A JP18803786A JPS6343375A JP S6343375 A JPS6343375 A JP S6343375A JP 18803786 A JP18803786 A JP 18803786A JP 18803786 A JP18803786 A JP 18803786A JP S6343375 A JPS6343375 A JP S6343375A
Authority
JP
Japan
Prior art keywords
conductive layer
insulating
contact
layer
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18803786A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP18803786A priority Critical patent/JPS6343375A/en
Publication of JPS6343375A publication Critical patent/JPS6343375A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain a thin-film transistor capable of controlling threshold voltage at a proper value at all times by forming a conductive layer and an insulating layer being in contact with the conductive layer and bringing the insulating layer into contact with a channel section for the thin-film transistor. CONSTITUTION:A conductive layer 102 and insulating layers 103, 104 are shaped onto an insulating substrate 101. Source, drain and channel sections 105, 106, 107 for a thin-film transistor TFT are formed onto the layer 104, thus shaping the thin-film transistor TFT. The conductive layer 102 and the insulating layer 103 are formed adjacently at that time, and the insulating layer 103 is brought into contact with the channel section of the TFT. The potential of the conductive layer 102 is controlled by a wiring material 116. Accordingly, the fluctuation of threshold voltage is prevented, thus causing no trouble on circuit operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタ(以下TPTと示す)等を集
積して成る半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device formed by integrating thin film transistors (hereinafter referred to as TPT), etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来のTIPT集積回路の構造は第2図に示す如く、チ
ャネル部に誘起される電荷を制御する電極はゲート1!
極のみであった。同図において101は絶縁基板、10
5及び106はTF’Tのソース及びドレイン部、1o
7はTF’Tのチャネル部、108はゲート絶縁膜、1
09はゲート1!極、11Q乃至112は層間絶縁膜、
114及び115はへ2等の配線材料である。同図にお
いて保護膜は省略しである◇ 〔発明が解決しようとする問題点〕 第2図の如きTFTにおいては、製造工程中の異変によ
り、しきい値電圧(以下vthとする)が変動する。(
例えばチャネル部107の不純物濃度、ゲート電極10
9中の不純物濃度の変化等)特にH,プラズマ工程もし
くはスバツタ工程を行った後はv thが大きくシフト
する。第3図(α)はvthが負の方向にシフトし、デ
プレション型トなったTPTのゲート電圧(VGII)
−ドレイン電流(I D8)特性、同図(b)はvth
が正の方向にシフトし、エンハンスメント型となったT
’FT(7)VG[]−よりfl特性で、同図(c)は
vthが正常な値(Vag =OV付近でよりSが最小
となる)の時のvG日−より8特性である。v thが
シフトした場合(第3図(α) +(b)) 、V a
g=Q yにおけるよりB(以下I offとする)が
増加し、回路動作に支障をきたす〇 以上の問題点を解決するため、チャネル部107の上下
に電極を設ける構造のTIFTが考案されているが、バ
ターニング工程を2回余分に要し、配線も複雑である等
の問題点を有し、実用化に至っていない。
The structure of a conventional TIPT integrated circuit is shown in FIG. 2, where the electrode that controls the charge induced in the channel region is the gate 1!
It was only extreme. In the figure, 101 is an insulating substrate;
5 and 106 are the source and drain parts of TF'T, 1o
7 is the channel part of TF'T, 108 is the gate insulating film, 1
09 is gate 1! poles, 11Q to 112 are interlayer insulating films,
114 and 115 are wiring materials such as He2. In the figure, the protective film is omitted ◇ [Problem to be solved by the invention] In the TFT shown in Fig. 2, the threshold voltage (hereinafter referred to as vth) fluctuates due to abnormalities during the manufacturing process. . (
For example, the impurity concentration of the channel part 107, the gate electrode 10
(e.g., changes in impurity concentration in 9), especially after performing an H, plasma process, or sputtering process, v th shifts significantly. Figure 3 (α) shows the TPT gate voltage (VGII) when vth shifts in the negative direction and becomes depletion type.
- Drain current (I D8) characteristics, the same figure (b) is vth
T shifted in the positive direction and became an enhancement type.
'FT(7)VG[]- is the fl characteristic, and the figure (c) is the 8 characteristic from vG day- when vth is a normal value (S is minimum near Vag = OV). When v th shifts (Fig. 3 (α) + (b)), V a
g=Q In order to solve the above problems in which B (hereinafter referred to as Ioff) increases at y, which hinders circuit operation, a TIFT with a structure in which electrodes are provided above and below the channel portion 107 was devised. However, it has problems such as requiring two extra buttering steps and complicated wiring, so it has not been put into practical use.

そこで本発明は以上の如き問題点を解決するもので、そ
の目的とするところは、常にvthを適正な値に制御で
き、かつ簡単な方法で製造可能なTPT集積回路を実現
することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its purpose is to realize a TPT integrated circuit that can always control vth to an appropriate value and that can be manufactured by a simple method.

〔問題点を解決するための手段〕[Means for solving problems]

以上の如き問題点を解決するため、本発明は導電層及び
前記導電層に接した絶縁層を設け、前記絶縁層が薄膜ト
ランジスタ(TPT)のチャネル部に接して成ることを
特徴とする。
In order to solve the above problems, the present invention is characterized in that a conductive layer and an insulating layer are provided in contact with the conductive layer, and the insulating layer is in contact with a channel portion of a thin film transistor (TPT).

〔実施例〕〔Example〕

本発明の実施例を第1図に示す。同図において、101
は絶縁基板、102は導電層、103及び104は絶縁
層である。105及び106はTFTのソース及びドレ
イン部、107はTFTのキャネル部、708はTPT
のゲート絶縁膜、109はTF’Tのゲート電極であり
、以上の要素105乃至109によりTPTが形成され
る。110乃至113は配線材料とTIFT間の層間絶
縁膜、114乃至116はA込等の配線材料、117及
び11Bは保護膜である。第1図の如き構造においては
・配線材料116が導電層102の電位を制御する端子
となる。本構造のTPTのしきい値電圧vtbは次式の
如くなる0 Vth=VT−Q 5rI10 ox+α     (
1)VT・・・・・・導電層102の電位がTIFTの
ソース電位に等しい時のvth 0日・・・・・・絶縁層105の容量(面積はチャネル
部1070面積) VIFσ ・・・導電層102とソース間の電位差Co
x  ・・・ゲート絶縁膜10日の容量α・・・・・・
・・・その他の要因 (1)式に示される如く、vTがいかなる値でも導電層
102に与える電位を適切なy sUとなる様に設定す
れば、v thは適切な値となり、特性を第3図(c)
の如くすることができる。また、本構造においては導電
層102のパターニングが一切不要で工程が簡単であり
、また段差に起因する不良症状を起こしにくい。また、
本構造の如くすれば、経験上、ソース、ドレイン部10
5及び1o6を形成するイオン打込み工程及び、保護膜
117及び118を形成するスバツタ工程等におけるT
F’Tへのダメージ(ゲート絶縁膜108の絶縁破壊等
)を軽減出来、高歩留りとなる。
An embodiment of the invention is shown in FIG. In the same figure, 101
is an insulating substrate, 102 is a conductive layer, and 103 and 104 are insulating layers. 105 and 106 are the source and drain parts of the TFT, 107 is the channel part of the TFT, and 708 is the TPT.
The gate insulating film 109 is the gate electrode of the TF'T, and the above elements 105 to 109 form the TPT. 110 to 113 are interlayer insulating films between the wiring material and the TIFT, 114 to 116 are wiring materials including A, and 117 and 11B are protective films. In the structure shown in FIG. 1, the wiring material 116 serves as a terminal for controlling the potential of the conductive layer 102. The threshold voltage vtb of the TPT of this structure is as follows: 0 Vth=VT-Q 5rI10 ox+α (
1) VT...vth when the potential of the conductive layer 102 is equal to the source potential of TIFT 0 days...Capacity of the insulating layer 105 (area is the area of the channel portion 1070) VIFσ...Conductivity Potential difference Co between layer 102 and source
x... Gate insulating film capacitance α after 10 days...
...Other factors As shown in equation (1), if the potential applied to the conductive layer 102 is set to be an appropriate value y sU no matter what value vT is, then v th will be an appropriate value, and the characteristics can be adjusted to Figure 3 (c)
It can be done as follows. Furthermore, this structure does not require any patterning of the conductive layer 102, resulting in a simple process, and is less likely to cause defects due to steps. Also,
With this structure, from experience, the source and drain parts 10
T in the ion implantation process to form 5 and 1o6, the sputtering process to form protective films 117 and 118, etc.
Damage to the F'T (dielectric breakdown of the gate insulating film 108, etc.) can be reduced, resulting in a high yield.

また・絶縁層103及び104と、層間絶縁膜110乃
至115を同一工程でエツチング出来る様に材料、膜厚
を設定すれば、(例えば酸化シリコン膜とする)パター
ニング工程(コンタクトホール形成工程)を増加させる
事なく第1図に示す構造を実現できる。
In addition, if the material and film thickness are set so that the insulating layers 103 and 104 and the interlayer insulating films 110 to 115 can be etched in the same process, the patterning process (contact hole forming process) will be increased (for example, using a silicon oxide film). The structure shown in FIG. 1 can be realized without causing any problems.

また、導電層102を多11!晶シリコンに不純物をド
ープしたもの、絶縁層103及び104を前記多結晶シ
リコンを熱酸化した酸化シリコン層とすれば、絶縁層1
06及び104の膜質も良く、TIFTの信頼性が向上
する■ 同図はゲート電極109及びゲート絶縁膜108がチャ
ネル部107の上部にある場合の例であるが、ゲート電
極及びゲート絶縁膜がチャネル部の下部にある場合も同
様に、チャネル部の上部に接して絶縁層、導電層を設け
れば良いO第4図は本発明の実施例で、TPTのソース
及びドレイン部105及び106を薄膜の表面付近にの
み形成している例である0これは・ソース・ドレイン領
域を形成する工程の条件を詰めれば製造が可能である0
第1図の如き実施例においては導電層102に与える電
位によっては107と103の界面付近にチャネルが形
成され、TPTのリーク電流が増加する可能性があるが
、第4図の如き構造とする事により、その問題は解決さ
れたO第5図は本発明の応用例で、3次元集積回路に本
発明を適用している例である。同図において、第1図と
同一の記号は第1図と同一のものを表わす。501及び
502は導電層、503及び504は絶縁層、505及
び506はTPTのソース及びドレイン部、507はT
IFTのチャネル部、508はTPTのゲート絶縁膜、
509はTIIFTのゲートN極、510乃至514は
層間絶縁膜、515乃至518は配線材料、519乃至
521は保護膜である・同図の如き実施例においては、
505乃至509の要素で構成されるTIFTのvth
を導電層501に与える電位により制御できるばかりで
なく、導電層501が505乃至509による上TIF
Tと105乃至109による下TPTの干渉をしやへい
する役割も果たすため、アナログ微小信号も取り扱うこ
とができる0〔発明の効果〕 以上述べた如く本発明を用いることにより、常にvth
を適正な値に制御でき、簡単な方法で製造可能なTIF
Tfi積回路を含んだ半導体装置が実現される◎本発明
は、vthの変化しゃすいH,プラズマ工程等を含んだ
プロセスに適用すれば特に効果大であり、また3次元集
積回路に適用しても効果大である。
In addition, the conductive layer 102 is multilayered by 11! If crystalline silicon is doped with impurities and the insulating layers 103 and 104 are silicon oxide layers obtained by thermally oxidizing the polycrystalline silicon, the insulating layer 1
The film quality of 06 and 104 is also good, improving the reliability of TIFT.■ The figure shows an example where the gate electrode 109 and the gate insulating film 108 are on the upper part of the channel part 107, but the gate electrode and the gate insulating film are on the channel part 107. Similarly, in the case where the TPT source and drain parts 105 and 106 are formed using a thin film, an insulating layer and a conductive layer may be provided in contact with the upper part of the channel part. This is an example in which the source/drain regions are formed only near the surface.0 This is possible if the process conditions for forming the source/drain regions are perfected.0
In the embodiment shown in FIG. 1, depending on the potential applied to the conductive layer 102, a channel may be formed near the interface between 107 and 103, and the leakage current of the TPT may increase, but the structure shown in FIG. As a result, this problem has been solved. FIG. 5 shows an example of application of the present invention, in which the present invention is applied to a three-dimensional integrated circuit. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1. 501 and 502 are conductive layers, 503 and 504 are insulating layers, 505 and 506 are TPT source and drain parts, and 507 is TPT.
IFT channel part, 508 is TPT gate insulating film,
509 is the gate N pole of TIIFT, 510 to 514 are interlayer insulating films, 515 to 518 are wiring materials, and 519 to 521 are protective films.In the embodiment shown in the figure,
TIFT vth consisting of elements 505 to 509
Not only can the conductive layer 501 be controlled by the potential applied to the conductive layer 501, but also the conductive layer 501 can be
Since it also plays the role of suppressing the interference of the lower TPT caused by T and 105 to 109, analog minute signals can also be handled.
TIF that can be controlled to an appropriate value and manufactured using a simple method
A semiconductor device including a Tfi integrated circuit is realized. ◎The present invention is particularly effective when applied to a process including H, plasma process, etc. where vth changes easily, and is also applicable to a three-dimensional integrated circuit. is also very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における半導体装置の断面図。 第2図は従来の半導体装置の断面図。 第3図(a) s (6) 、(6)はTIFTのve
s−より日持性を説明するための図。(α)はデプレシ
ョン型。(6)はエンハンスメント型、 (C)はvt
hが適正な値の場合を示した図0 第4図は本発明の実施例における、TIFTのソース及
びドレイン領域を薄膜の表面付近に形成している例の断
面図。 第5図は本発明の応用例における、3次元集積回路の断
面図。 101・・・・・・絶縁基板 102・・・・・・導電層 103及び104・・・・・・絶縁層 105及び106・・・・・・TFTの゛ノース及びド
レイン部 107・・・・・・TIFTのチャネル部108・・・
・・・TFTのゲート絶縁膜109・・・・・・TIF
Tのゲート電極110乃至113・・・・・・層間絶縁
膜114乃至116・・・・・・配線材料117及び1
18・・・・・・保護膜 以  上 出願人 セイコーエプソン株式会社 /ρ7 丁FT−すfネル遮P VT 1図 第2図 第3図(0) 淳4図 49〜川 1峰ふL後 第5図
FIG. 1 is a sectional view of a semiconductor device in an embodiment of the present invention. FIG. 2 is a sectional view of a conventional semiconductor device. Figure 3(a) s (6) and (6) are ve of TIFT.
A diagram for explaining shelf life from s-. (α) is depression type. (6) is enhancement type, (C) is vt
FIG. 4 shows a case where h is an appropriate value. FIG. 4 is a cross-sectional view of an example in which the source and drain regions of a TIFT are formed near the surface of a thin film in an embodiment of the present invention. FIG. 5 is a cross-sectional view of a three-dimensional integrated circuit in an application example of the present invention. 101...Insulating substrate 102...Conductive layers 103 and 104...Insulating layers 105 and 106...TFT north and drain portions 107... ...TIFT channel section 108...
...TFT gate insulating film 109...TIF
Gate electrodes 110 to 113 of T...Interlayer insulating films 114 to 116...Wiring materials 117 and 1
18...Protective film or more Applicant Seiko Epson Corporation/ρ7 Ding FT-Sf channel shield P VT 1 Figure 2 Figure 3 (0) Jun 4 Figure 49 ~ River 1 Minefu L after Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に薄膜トランジスタ等を集積して成る
半導体装置において、導電層及び前記導電層に接した絶
縁層を設け、前記絶縁層が薄膜トランジスタのチャネル
部に接して成ることを特徴とする半導体装置。
(1) A semiconductor device comprising thin film transistors etc. integrated on an insulating substrate, characterized in that a conductive layer and an insulating layer in contact with the conductive layer are provided, and the insulating layer is in contact with a channel portion of the thin film transistor. Device.
(2)前記導電層が不純物をドープした多結晶シリコン
により形成されることを特徴とする、特許請求の範囲第
1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the conductive layer is formed of polycrystalline silicon doped with impurities.
(3)絶縁基板上に導電層、前記導電層に接した絶縁層
、前記絶縁層にチャネル部を接して成る薄膜トランジス
タを集積した半導体装置の製造方法において、薄膜トラ
ンジスタと配線材料間のコンタクトホールを形成する工
程及び導電層と配線材料間のコンタクトホールを形成す
る工程が同一工程であることを特徴とする、半導体装置
の製造方法。
(3) In a method for manufacturing a semiconductor device that integrates a conductive layer on an insulating substrate, an insulating layer in contact with the conductive layer, and a thin film transistor with a channel portion in contact with the insulating layer, a contact hole is formed between the thin film transistor and wiring material. A method for manufacturing a semiconductor device, characterized in that a step of forming a contact hole between a conductive layer and a wiring material is the same step.
(4)多結晶シリコンによる薄膜を形成した後、前記多
結晶シリコンを熱酸化し絶縁層を形成することを特徴と
する、特許請求の範囲第3項記載の半導体装置の製造方
法。
(4) The method for manufacturing a semiconductor device according to claim 3, characterized in that after forming a thin film of polycrystalline silicon, the polycrystalline silicon is thermally oxidized to form an insulating layer.
JP18803786A 1986-08-11 1986-08-11 Semiconductor device and manufacture thereof Pending JPS6343375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18803786A JPS6343375A (en) 1986-08-11 1986-08-11 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18803786A JPS6343375A (en) 1986-08-11 1986-08-11 Semiconductor device and manufacture thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24808296A Division JPH09107111A (en) 1996-09-19 1996-09-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6343375A true JPS6343375A (en) 1988-02-24

Family

ID=16216565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18803786A Pending JPS6343375A (en) 1986-08-11 1986-08-11 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6343375A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211668A (en) * 1989-02-11 1990-08-22 Takehide Shirato Semiconductor device
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718364A (en) * 1980-07-09 1982-01-30 Agency Of Ind Science & Technol Mis field-effect transistor
JPS60225469A (en) * 1984-04-23 1985-11-09 Toshiba Corp Mosfet on insulation substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718364A (en) * 1980-07-09 1982-01-30 Agency Of Ind Science & Technol Mis field-effect transistor
JPS60225469A (en) * 1984-04-23 1985-11-09 Toshiba Corp Mosfet on insulation substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211668A (en) * 1989-02-11 1990-08-22 Takehide Shirato Semiconductor device
US5264720A (en) * 1989-09-22 1993-11-23 Nippondenso Co., Ltd. High withstanding voltage transistor

Similar Documents

Publication Publication Date Title
JPH1174541A (en) Manufacture of display board
JPH06148685A (en) Liquid crystal display device
JPH02168630A (en) Thin film transistor, its
EP0028654B1 (en) Semiconductive memory device and fabricating method therefor
JPH04279064A (en) Display device
JP3056813B2 (en) Thin film transistor and method of manufacturing the same
JPS6343375A (en) Semiconductor device and manufacture thereof
JP3264724B2 (en) Semiconductor device
JPS63119578A (en) Semiconductor device
JPS6148976A (en) Thin-film transistor
JPH0923013A (en) Semiconductor element and its preparation
JPH04240733A (en) Manufacture of thin film transistor
KR100451152B1 (en) Polycrystalline Silicon Thin Film Transistor and Manufacturing Method Thereof
JPH0230147A (en) Manufacture of thin film transistor
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JP2523536B2 (en) Method for manufacturing thin film transistor
JPH02252269A (en) Semiconductor device
KR0142886B1 (en) Fabrication method of mosfet
JPS60158670A (en) Thin-film transistor and manufacture thereof
JPH09162395A (en) Insulated gate transistor
JPS62254470A (en) Manufacture of junction type thin film transistor
KR0151273B1 (en) Method of manufacturing thin film transistor
JPH0555576A (en) Thin film transistor
JPH05198808A (en) Thin film transistor and manufacturing method thereof
JPH05190853A (en) Display device