JPS6298256A - Method for measuring respiration speed - Google Patents

Method for measuring respiration speed

Info

Publication number
JPS6298256A
JPS6298256A JP60238950A JP23895085A JPS6298256A JP S6298256 A JPS6298256 A JP S6298256A JP 60238950 A JP60238950 A JP 60238950A JP 23895085 A JP23895085 A JP 23895085A JP S6298256 A JPS6298256 A JP S6298256A
Authority
JP
Japan
Prior art keywords
respiration rate
dissolved oxygen
oxygen consumption
data
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60238950A
Other languages
Japanese (ja)
Other versions
JPH0731189B2 (en
Inventor
Koichi Akiyama
秋山 広一
Kaoru Toyoda
豊田 薫
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60238950A priority Critical patent/JPH0731189B2/en
Publication of JPS6298256A publication Critical patent/JPS6298256A/en
Publication of JPH0731189B2 publication Critical patent/JPH0731189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To calculate always an exact respiration speed by detecting the inflection point of a dissolved oxygen consumption curve by a respiration speed converter, setting the range where linear approximation is possible, calculating an equation for an approximate straight line by using the data on the dissolved oxygen consumption in said range and calculating the respiration speed by the inclination of said line. CONSTITUTION:A measurement stage signal 32 enters a central processing circuit 27 and a measurement action is started in the respiration speed converter 11. The circuit 27 reads the dissolved oxygen concn. signal 30 from a DO amplifier at prescribed time intervals, converts 26 the signal to a digital signal and stores 28 the signal. The time data in the stage of reading is also stored 28. Such process is repeated until the measurement stage ends and the data on the dissolved oxygen consumption curve is stored 28. The circuit 27 determines the range where the data can be linearly approximated from the stored data upon ending of the measurement circuit and determines the equation for the approximate straight line by the calculation of a method of least squares. The respiration speed is determined from the inclination of said straight line and is outputted 29.

Description

【発明の詳細な説明】 AJk業上の利用分野 本発明は、例えば活性汚泥法による下水処理システムの
ような好気的条件下で0*生物を用いる衛生工学や発酵
工学等の分野において、その所望の目的に適合した運転
管理を行なうための微生物の呼吸速度測定方法に関する
DETAILED DESCRIPTION OF THE INVENTION Fields of application in AJk industry The present invention is applicable to fields such as sanitary engineering and fermentation engineering that use 0* organisms under aerobic conditions, such as sewage treatment systems using activated sludge methods. This invention relates to a method for measuring the respiration rate of microorganisms in order to carry out operational management that meets desired objectives.

B1発明のa委 本発明は活性汚泥による下水処理システムのごとき好気
的条件下での微生物の呼吸速度を、呼吸速度変換器を用
いて溶存酸素消費曲線より呼吸速度を演算する呼吸速度
測定方法において、呼吸速度変換器により溶存酸素消費
曲線の屈曲点を検出し、直線近似可能な範囲を設定し、
その範囲の溶存酸素消費データを用いて近似直線式を計
算し、その傾きにより呼吸速度を演算することを特徴と
し、これにより屈曲線をもつ溶存酸素消費曲線を与える
ような水質でも正確な呼吸速度を算出し、出力すること
ができるものである。
B1 Part A of the Invention The present invention is a respiration rate measuring method for calculating the respiration rate of microorganisms under aerobic conditions such as in a sewage treatment system using activated sludge from a dissolved oxygen consumption curve using a respiration rate converter. , detect the bending point of the dissolved oxygen consumption curve using a respiration rate converter, set the range that can be approximated by a straight line,
The feature is that an approximate linear equation is calculated using the dissolved oxygen consumption data in that range, and the respiration rate is calculated from the slope of the equation.This allows accurate respiration rate even in water conditions that give a dissolved oxygen consumption curve with a curved line. can be calculated and output.

C0従来の技術 活性汚泥法を用いた下水処理システムの場合を例として
説明すると、活性汚泥微生物は、流入下廃水中の基質お
よび細胞内に蓄積された貯蔵物質を酸化分解する過程で
酸素を消費する。この消費量つまり呼吸速度を正確に把
握することは、活性汚泥プロセスを適正に運転、管理す
るうえできわめて重要なことである7 次に、活性汚泥の呼吸速度を自動的に測定する従来の装
置について第4図を参照して説明する。
C0 Conventional technology Taking the case of a sewage treatment system using the activated sludge method as an example, activated sludge microorganisms consume oxygen in the process of oxidizing and decomposing substrates in influent wastewater and stored substances accumulated in cells. do. Accurately understanding this consumption amount, or respiration rate, is extremely important for proper operation and management of the activated sludge process.7 Next, we will introduce a conventional device that automatically measures the respiration rate of activated sludge. This will be explained with reference to FIG.

呼吸測定装置は第4図に示すようにばつ気槽l中に浸漬
された検出部3と第5図に示す呼吸速度測定工程とから
なっている。検出部本体3aは第5図に示すように、下
端に検水吸込口ダを上端に検出吐出口5を有している。
The respiration measuring device consists of a detection section 3 immersed in an aeration tank 1 as shown in FIG. 4, and a respiration rate measuring step shown in FIG. As shown in FIG. 5, the main body 3a of the detection section has a test water inlet at the lower end and a detection outlet 5 at the upper end.

さらに本体の周胴部には、その周壁を内外に貫通して設
けた溶存酸素濃度を測寅する電極(以下p Q (di
ssolned oxygen )電極という)/6と
回転軸コSが本体周壁を貫通しており、その先端に回転
翼コφを有する攪拌機lりと駆動空気管tを設けている
。駆動空気管tは、ばつ気層空気管コlと上部ピンチパ
ルプ用空気管コOと下部ピンチパル用空気管ココとから
なっている。さらに、検出部本体3a内には測定槽23
が形成されると共に、測定槽コ3の上下部には空気管2
0,2コによって作動する上部、下部の2つのピンチパ
ルプlデ、/1を具備していムなお6はDO信号ケーブ
ル、7は攪拌機用ナープルである。
Furthermore, an electrode (hereinafter p Q (di
A rotating shaft S passes through the peripheral wall of the main body, and a stirrer having a rotary blade φ and a driving air pipe T are provided at the tip thereof. The drive air pipe t consists of an air pipe for air layer 1, an upper pinch pulp air pipe 0, and a lower pinch pulp air pipe ko. Furthermore, a measurement tank 23 is provided inside the detection unit main body 3a.
At the same time, air pipes 2 are formed in the upper and lower parts of the measuring tank 3.
It is equipped with two pinch pulp decoders, an upper one and a lower one, which are operated by 0 and 2. In addition, 6 is a DO signal cable, and 7 is a knurple for the stirrer.

また、検出部3に接続する制御部/3は第4図に示すよ
うにDo電極16からの信号を増幅するDo増幅器tと
、DO増幅器デのDO倍信号り呼吸速度を演算する呼吸
速度変換器l/と、演算した結果を出力する指示、出力
部lコと、測定の工程を制御するシーケンス制御回路I
Oと、シーケンス制御回路10よりの制御信号を空気圧
信号に変換する電/空変換部13と、t/空変換部13
および検出部3のばつ気層空気管tに空気を供給する空
気源lダとから構成されている。
In addition, as shown in FIG. 4, the control unit /3 connected to the detection unit 3 includes a Do amplifier t that amplifies the signal from the Do electrode 16, and a respiration rate converter that calculates the respiration rate by multiplying the DO signal by the DO amplifier d. 1, an instruction for outputting the calculated results, an output section 1, and a sequence control circuit I for controlling the measurement process.
O, an electric/pneumatic converter 13 that converts a control signal from the sequence control circuit 10 into a pneumatic signal, and a t/pneumatic converter 13.
and an air source L which supplies air to the air layer t of the detection unit 3.

つぎに、第5図の工程図に従って各部の動作を説明する
Next, the operation of each part will be explained according to the process diagram shown in FIG.

(1)  採水工程では、上部、下部のピンチパルプ/
9.Itを開き、検出部本体3aのばつ気用空気管二l
より検水中にばつ気し、気泡ポンプ作用(エアリフトポ
ンプ)により検水が、検水吸込日参より採水されて、検
水吐出口Sより排水される。
(1) In the water sampling process, the upper and lower pinch pulp/
9. Open it and open the air pipe 2l of the detection unit main body 3a.
The test water is exposed during the test, and the test water is sampled from the test water suction port S by the action of the air bubble pump (air lift pump) and drained from the test water discharge port S.

(2)  ばつ気工程では1、上部ピンチパルプ/9は
開tnたttで、下部ピンチパルプ/lを閉じ、攪拌機
Iりで測定権コ3内の検水を攪拌しなからばつ気し、検
水の溶存酸素濃度が所定の濃度(例えば5mg0t/j
 )に達したら次の脱気工程にうつる。
(2) In the aeration process, the upper pinch pulp/9 is opened and the lower pinch pulp/l is closed, and the test water in the measurement right column 3 is stirred using the stirrer I, and then air is removed. If the dissolved oxygen concentration of the sample water is a predetermined concentration (for example, 5mg0t/j
), move on to the next degassing process.

(3) 脱気工程では、上部ピンチパルプ/?は開。(3) In the degassing process, the upper pinch pulp/? is open.

下部ピンチパルプ11は閉のtまで、ばつ気と攪拌を停
止し、測定槽lコ内に残留する気泡を抜く。
The lower pinch pulp 11 stops blowing and stirring until the closing point t, and air bubbles remaining in the measuring tank 1 are removed.

(4)測定工程では、上下部のピンチパルプ/? 、 
#を閉じ、はり気を停止したままで、測定@/2内の検
水を攪拌しながら、その溶存酸素濃度の減少をDo電極
16で検出する。
(4) In the measurement process, pinch pulp/? ,
# is closed, and while stirring the test water in Measurement@/2 with the aeration stopped, a decrease in the dissolved oxygen concentration is detected with the Do electrode 16.

上記測定工程において検出される溶存酸素濃度の検出曲
線の例を第7図に示す。同図において、符号■で示す区
間が測定工程の溶存酸素消費曲線であり、はぼ直線的に
減少すると仮定すれば、あらかじめ設定した2つの溶存
酸素濃度D01 (符号■で示す)とDO2(符号■で
示す)の時間Tl(符号■で示す)とT2(符号[株]
で示す〕を測定すれば、呼吸速度は次式で与えられる。
FIG. 7 shows an example of a detection curve of the dissolved oxygen concentration detected in the above measurement step. In the same figure, the section indicated by the symbol ■ is the dissolved oxygen consumption curve in the measurement process, and assuming that it decreases almost linearly, the two preset dissolved oxygen concentrations D01 (indicated by the symbol ■) and DO2 (indicated by the symbol Time Tl (indicated by symbol ■) and T2 (indicated by symbol [stock])
], the respiration rate is given by the following formula.

(ただし、DOlとDO2OO2上”gos/’%Tl
、T2の単位はhとする。) 以上が従来の呼吸速度測定装置の動作で、測定工程の溶
存酸素曲線をDO電極16で検出し、加増幅器16で増
幅し、呼吸速度変換器//に−お−て、前記の(1)式
によって呼吸速度を演算するものである0なお、このよ
うな呼吸速度測定装置については、本出願人が先に実願
昭56−108439号として出願している。
(However, on DOl and DO2OO2 "gos/'%Tl
, T2 have units of h. ) The above is the operation of the conventional respiration rate measuring device, in which the dissolved oxygen curve in the measurement process is detected by the DO electrode 16, amplified by the amplifier 16, and respiration rate converter // ) The respiration rate is calculated using the equation 0.The applicant of the present application previously filed an application for such a respiration rate measuring device as Utility Model Application No. 108439/1983.

D0発明が解決しようとする問題点 従来の呼吸速度測定装置の問題点は呼吸速度変換器ll
にある。すなわち、従来の呼吸速度変換器llは測定工
程での溶存酸素消費曲線(第7図■)がほぼ直線的に減
少すると仮定して(1)弐を適用している。しかし、溶
存酸素消費曲線は常に直線的に減少するとは限らず、ば
つ気槽lの氷質によっては第8図に示したように溶存酸
素消費曲線の途中に屈曲点をもつ場合がある。ここで、
従来の呼吸速度変換器llで呼吸速度を求めると、DO
I−DO2 呼吸速度=□  ・・・(2) 4−TS (但し、第8図においてはTSは符号■で、T4は符号
[相]で、TSは符号■で示す)となるが、本当の呼吸
速度は、溶存酸素消費曲線(第8図の■ンの最初の直線
区間の傾きとするのが正しいので、本当の呼吸速度は となる。しかし、従来のlF’l’@速度変換器では、
屈曲線があっても無視されてしまうので、屈曲線をもつ
溶存酸素消費曲線を与えるような水質で社、測定される
呼吸速度は常に真の呼吸速度よりも小さい値となる。す
なわち、 である。
D0 Problems to be solved by the invention Problems with conventional respiration rate measuring devices are respiration rate converters.
It is in. That is, in the conventional respiration rate converter II, (1) II is applied on the assumption that the dissolved oxygen consumption curve (■ in FIG. 7) decreases approximately linearly during the measurement process. However, the dissolved oxygen consumption curve does not always decrease linearly, and depending on the ice quality of the aeration tank 1, there may be a bending point in the middle of the dissolved oxygen consumption curve as shown in FIG. here,
When the respiration rate is determined using a conventional respiration rate converter, DO
I-DO2 Respiration rate = □ ...(2) 4-TS (However, in Fig. 8, TS is indicated by the symbol ■, T4 is indicated by the symbol [phase], and TS is indicated by the symbol ■), but this is true. It is correct to assume that the respiration rate is the slope of the first straight section of the dissolved oxygen consumption curve (Fig. 8), so the true respiration rate is So,
If the water quality gives a curved dissolved oxygen consumption curve, the measured respiration rate will always be less than the true respiration rate, since any bending curve will be ignored. That is, .

本発明は、従来の呼吸速度測定方法において、溶存酸素
消費曲線より呼吸速度を演算する呼吸速度変換器の問題
点を解決すべ〈発明された呼吸速度変換器を備えた新し
い測定方法を提案することを目的とする。
The present invention aims to solve the problems of the respiration rate converter that calculates the respiration rate from the dissolved oxygen consumption curve in the conventional respiration rate measurement method. With the goal.

E0問題点を解決するための手段 まず、本発明に用いられる呼吸速度変換器の要点を述べ
ると、 (1)  本呼吸速度変換器は第1図の■に示したよう
な屈曲点をもつ溶存酸素消費曲線に対して、その屈曲点
を検出し直線で近似可能な範囲の起点(第1図の■)T
Sと終点(第1図の■)TEを決定する機能を持ってい
る。
Means for Solving the E0 Problem First, the main points of the respiration rate converter used in the present invention will be described. Detect the inflection point of the oxygen consumption curve and find the starting point of the range that can be approximated by a straight line (■ in Figure 1) T
It has the function of determining S and the end point (■ in Figure 1) TE.

(2)同じく本呼吸速度変換器は上記直線近似可能範1
fflTs−TE間の溶存酸素消費データを用いて最小
二乗法により近似直1IJ(第1図の■ンを求める機能
をもっている。近似直線を式で表わすと、DO=A+B
T    ・・・(5) となる。念だし DO:溶存酸素濃度(mgol /1)A :定数(m
go雪/1) B :直線の傾き(mgへ/−’、b)T :時間(h
) ここで、溶存酸素消費曲線の呼吸速度は、近似面1jl
(第1図■ンの傾きそのものであるから、呼吸速度(m
g01/j、h)  = −B   =16)となり、
これは第8図の例でいえば、式(3)に相当する。した
がって、本発明の呼吸速度変換器によれば、溶存酸素消
費曲線が屈曲点をもつ場合でも、真の呼吸速度を求める
ことができる。
(2) Similarly, this respiration rate converter has the above linear approximation range 1.
It has the function of calculating the approximate straight line 1IJ (in Figure 1) by the least squares method using the dissolved oxygen consumption data between fflTs and TE.If the approximate straight line is expressed by the formula, DO=A+B
T...(5) becomes. Just in case DO: Dissolved oxygen concentration (mgol/1) A: Constant (m
go snow/1) B: Slope of straight line (mg/-', b) T: Time (h
) Here, the respiration rate of the dissolved oxygen consumption curve is the approximation surface 1jl
(Figure 1) Since this is the slope itself, the respiration rate (m
g01/j, h) = -B = 16),
In the example of FIG. 8, this corresponds to equation (3). Therefore, according to the respiration rate converter of the present invention, the true respiration rate can be determined even when the dissolved oxygen consumption curve has an inflection point.

しかして、本発明は活性汚泥による下水処理システムの
ごとき好気的条件下での微生物の呼吸速度を、呼吸速度
変換器を用いて溶存酸素消費曲線より呼吸速度を演算す
る呼吸速度測定方法において、呼吸速度変換器により溶
存酸素消費曲線の屈曲点を検出し、直線近似可能な範囲
を設定し、その範囲の溶存酸素消費データを用いて近似
直線式を計算し、その傾きにより呼吸速度を演算するこ
とを特徴とする呼吸速度測定方法である。
Therefore, the present invention provides a method for measuring the respiration rate of microorganisms under aerobic conditions such as in a sewage treatment system using activated sludge, in which the respiration rate is calculated from a dissolved oxygen consumption curve using a respiration rate converter. Detect the bending point of the dissolved oxygen consumption curve using a respiration rate converter, set the range where a straight line can be approximated, calculate the approximate linear equation using the dissolved oxygen consumption data in that range, and calculate the respiration rate from the slope of the approximate linear equation. This is a respiration rate measuring method characterized by the following.

G、実 施 例 本発明の実施例を第1図〜第3図にもとづいて説明する
G. Embodiment An embodiment of the present invention will be described based on FIGS. 1 to 3.

第2図に示す呼吸速度変換器/lにおいて、測定工程に
入るとシーケンス制御回路10より測定工程信号32が
マイクロコンビエータより成ル中央処理回路コクに入り
、測定動作を開始する。測定動作は次のような順序で行
なわれる。
In the respiration rate converter/l shown in FIG. 2, when the measurement process begins, a measurement process signal 32 is sent from the sequence control circuit 10 to the micro combinatorial central processing circuit to start the measurement operation. The measurement operation is performed in the following order.

(1)  中央処理回路ユクはDO増幅器9からの溶存
酸素濃度信号30を所定時間間隔(一般には0.1秒か
ら10秒毎)で読み込み、A/D変換回路易でデジタル
信号にしてから記憶回路コtに記憶させる。また、読み
込み時の時間データも記憶させる。この処理を測定工程
が終了するまでくりかえしつづけ、溶存酸素消費曲線の
データを記憶回路に記憶させる。
(1) The central processing circuit reads the dissolved oxygen concentration signal 30 from the DO amplifier 9 at predetermined time intervals (generally every 0.1 seconds to 10 seconds), converts it into a digital signal using the A/D conversion circuit, and then stores it. Store it in the circuit. It also stores time data at the time of reading. This process is repeated until the measurement process is completed, and the data of the dissolved oxygen consumption curve is stored in the storage circuit.

(2)測定工程が終了したら、中央処理回路コアけ、記
憶したデータより直線で近似可能な範囲を決定する。
(2) After the measurement process is completed, the central processing circuit core determines the range that can be approximated by a straight line from the stored data.

(3)  次に中央処理回路コアは直線近似可能範囲の
溶存酸素消費データより、最小二乗法の計算により、近
似直線の式を求め、この傾きから呼吸速度を決定し、出
力回路コブより出力する。
(3) Next, the central processing circuit core calculates the equation of an approximate straight line using the least squares method based on the dissolved oxygen consumption data in the range that can be approximated by a straight line, determines the respiration rate from this slope, and outputs it from the output circuit knob. .

次に、直線近似可能な範囲の決定方法と近似直線の計算
方法を第3図を参照して説明する。第3図は測定工程の
部分の溶存酸素消費曲線を示したもので、直線近似可能
範囲の起点po8@ とすると、Do s@  の溶存
酸臭濃度を’fs■その時の時間をX8■とする◇同様
に終点DOe■の溶存酸素濃度をYe■、時間をXe■
、さらに曲線上の任意の点をDon@  その前後のデ
ータをそれぞれDOn−+  @ DOn中t■とする
と、溶存酸素濃度はそれぞれYn■ Y n−+■ Y
 n + I■ となり、時間はそれぞれXn■ xn
−t■Xn+1[株]となる。ここで、DOnが直線近
似可能範囲内にある時の条件は、 となる。ここで、Lは任意の点Donの前後の曲線の傾
きの比であり、L=1の時に’i DOn −r 、 
DO。
Next, a method for determining the range that can be approximated by a straight line and a method for calculating the approximate straight line will be explained with reference to FIG. Figure 3 shows the dissolved oxygen consumption curve in the measurement process.If the starting point of the linear approximation range is po8@, then the dissolved acid odor concentration of Do s@ is 'fs■The time at that time is X8■. ◇Similarly, the dissolved oxygen concentration at the end point DOe■ is set as Ye■, and the time as Xe■
, Furthermore, if an arbitrary point on the curve is Don@ and the data before and after it are DOn-+ @ t■ in DOn, then the dissolved oxygen concentration is Yn■ Y n-+■ Y
n + I■, and the time is Xn■ xn, respectively.
-t■Xn+1 [shares]. Here, the conditions when DOn is within the linear approximation range are as follows. Here, L is the ratio of the slopes of the curves before and after an arbitrary point Don, and when L=1, 'i DOn -r,
D.O.

IDn+tの3点は直線にあることになる。しかし、実
際の溶存酸素消費曲線は直線近似可能範囲でも完全な直
線ではないから、本実施例に係る呼吸速度変換器/lで
は、 を使用している。ここで、αは許容誤差で、呼吸速度測
定では経験上α= 0.01 か らα= 0.50の
間に設定すると良好である。したがって、測定工程で、
記憶回路コtに記憶した全データに対して測定開始から
測定終了まで、一つずつデータをずらしながら(8)式
を適用すると、(8)式が連続して成立する区間が直線
近似可能範囲である。
The three points IDn+t are on a straight line. However, since the actual dissolved oxygen consumption curve is not a perfect straight line even within the range where linear approximation is possible, the following is used in the respiration rate converter/l according to this embodiment. Here, α is a permissible error, and based on experience, it is best to set it between α = 0.01 and α = 0.50 for respiratory rate measurement. Therefore, in the measurement process,
When formula (8) is applied to all data stored in the memory circuit t while shifting the data one by one from the start of measurement to the end of measurement, the range where formula (8) is continuously satisfied is the range in which linear approximation is possible. It is.

そこで、本実施例に係る呼吸速度変換器//では測定開
始のデータから(8)式を適用して最初に(8)式を満
足する点のDonを起点DOsとして決めている。さら
に終点DOeは直線近似範囲に入ってから最初に次式を
満足する点の1つ前のデータをDOeと決めている。す
なわち、 である。
Therefore, in the respiration rate converter// according to the present embodiment, Equation (8) is applied from the data at the start of measurement, and the point Don that satisfies Equation (8) is first determined as the starting point DOs. Furthermore, the end point DOe is determined to be the data immediately before the point that satisfies the following equation for the first time after entering the linear approximation range. That is, .

以上の方法によって定めたDOaからDOeの間のデー
タを用いて、次に最小二乗法を用いて、近似直線の式を
求める。すなわち、DOaからDOa間の溶存酸素濃度
のデータをYi9時間をXi、データ数をM個とすると
、それぞれの平均次にXi、Yiの積和Sxyを計算す
る。
Using the data between DOa and DOe determined by the above method, the equation of the approximate straight line is then determined using the least squares method. That is, assuming that the data of dissolved oxygen concentration between DOa and DOa is Yi9 hours is Xi and the number of data is M, the sum of products Sxy of Xi and Yi is calculated after each average.

次にXtの平方和Sxxを計算する。Next, the sum of squares Sxx of Xt is calculated.

すると、傾きBは、 B = Sxy/Sxx    ・・・(14)となり
、Aは A=Y−BX    ・・・αω で与えられる。ここで、(6)式より呼吸速度は、次式
で算出される。
Then, the slope B becomes B=Sxy/Sxx (14), and A is given by A=Y-BX...αω. Here, the respiration rate is calculated from equation (6) using the following equation.

呼@速度(mgox/’−h)=−B=−(Sxy/5
xx)  ・・・asH0発明の効果 以上の説明から明らかなように、従来の呼吸速度変換方
法では、測定した溶存酸素消費曲線が屈曲点を持つよう
な水質の検水を測定した場合には正確な呼吸速度を演算
することはできなかったが、本発明による呼吸速度変換
方法によれば、屈曲点を検出し、直線近似可能な範囲を
定め、その範囲の近似直線を計算して、その傾きより、
呼吸速度を演算するので、常に正確な呼吸速度を算出し
、出力することができるものである。
Call@speed(mgox/'-h)=-B=-(Sxy/5
xx) ...Effects of the asH0 Invention As is clear from the above explanation, the conventional respiration rate conversion method is not accurate when measuring water quality where the measured dissolved oxygen consumption curve has an inflection point. However, according to the respiration rate conversion method according to the present invention, a bending point is detected, a range where a straight line can be approximated is determined, an approximate straight line within that range is calculated, and its slope is calculated. Than,
Since the respiration rate is calculated, it is possible to always calculate and output an accurate respiration rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は呼吸測定例の説明図、第2図は本発明に係る呼
吸速度変換器の説明図、第3図は溶存酸素消費曲線図、
第4図は従来の呼吸測定装置の説明図、第5図Fi呼吸
測定工程図、第6図は検出部本体のh面詳細図、第7図
と第8図は溶存酸素濃度の検出曲線の2つの例を示す図
である。 7i・・・呼吸速度変換器、コb・・・A/D変換回路
、コア・・・中央処理回路、コト・・記憶回路、コt・
・・出力回路、30・・・溶存酸素濃度信号、31・・
・呼吸速度山力、3コ・・・測定工程信号。 第4図 1・15 ■ 5す・1食−月へ靭     ■ 4嘴ヒ木■  
 弓;フλ■脱気  ■3す・1匁  ■轢4( ■TS      ■TE      ■L丘二イN 
J fLll−−−aチ唆遣没受授蕃 26−A/D 
Lj東肛啄27−−− 仲2ξス3丁T回路   28
−−一土己11・克胆路29−−− !#e外    
3o−−−;を陣ffttjl&作号31−+=taA
iji、zh      32−i・s・’iエイ= 
係%@1図 斥 酸 え シを 友 [1 2Il −シ1 ヲ、1 第5図 第6図 ■チ1区昭鵡 ■採入  ■イ゛7気 ■脱人  ■3i’・1タ  ■塊木 ■Dot   ■DO2■T1 [相]T2 ■涜\但臥知 ■4年水入  ■4゛つ算■炊へ   
■〕飢先  ■採水 ■Dot   ■O○2  ■T3 [相]工4   ■T5 第7図 第S図 ■ ■[相]晴讐
FIG. 1 is an explanatory diagram of a respiration measurement example, FIG. 2 is an explanatory diagram of a respiration rate converter according to the present invention, and FIG. 3 is a dissolved oxygen consumption curve diagram.
Fig. 4 is an explanatory diagram of a conventional respiration measurement device, Fig. 5 is a diagram of the Fi respiration measurement process, Fig. 6 is a detailed view of the h-plane of the main body of the detection unit, and Figs. 7 and 8 are the detection curve of dissolved oxygen concentration. It is a figure which shows two examples. 7i...Respiration rate converter, Kob...A/D conversion circuit, Core...Central processing circuit, Koto...Memory circuit, Kot...
...Output circuit, 30...Dissolved oxygen concentration signal, 31...
・Respiration rate mountain force, 3 pieces...Measurement process signal. Figure 4 1.15 ■ 5 Su・1 Meal - Tsuki to the Moon ■ 4 Beak Higi ■
Bow; Fu λ■ Degassing ■3s・1 momme ■Tracks 4( ■TS ■TE ■L hill 2i N
J.
Lj East Anal Taku 27 --- Naka 2ξ Su 3 T circuit 28
--Ittoki 11, Katsudoro 29---! #e outside
3o ---;
iji, zh 32-i・s・'iei=
Section % @ 1 Figure Reject Acid Eshi to Friend [1 2Il -shi1 wo, 1 Figure 5 Figure 6 ■Chi1 Ward Showa ■Adoption ■I゛7ki ■Dehumanization ■3i'・1ta ■ Block ■Dot ■DO2■T1 [Phase] T2 ■Sacred \ Tadagachi ■4-year water entry ■4゛ division■To cook
■〕Housen ■Water collection ■Dot ■O○2 ■T3 [Phase] Work 4 ■T5 Figure 7 S Figure ■ ■[Phase] Haruhi

Claims (1)

【特許請求の範囲】[Claims] (1)活性汚泥による下水処理システムのごとき好気的
条件下での微生物の呼吸速度を、呼吸速度変換器を用い
て溶存酸素消費曲線より呼吸速度を演算する呼吸速度測
定方法において、呼吸速度変換器により溶存酸素消費曲
線の屈曲点を検出して直線近似可能な範囲を設定し、そ
の範囲の溶存酸素消費データを用いて近似直線式を計算
し、その傾きにより呼吸速度を演算することを特徴とす
る呼吸速度測定方法。
(1) In a respiration rate measurement method in which the respiration rate of microorganisms under aerobic conditions, such as in a sewage treatment system using activated sludge, is calculated from a dissolved oxygen consumption curve using a respiration rate converter, respiration rate conversion is performed. The device detects the bending point of the dissolved oxygen consumption curve, sets the range where a straight line can be approximated, calculates the approximate linear equation using the dissolved oxygen consumption data in that range, and calculates the respiration rate from the slope. A method for measuring respiration rate.
JP60238950A 1985-10-25 1985-10-25 Respiration rate measurement method Expired - Lifetime JPH0731189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238950A JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238950A JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Publications (2)

Publication Number Publication Date
JPS6298256A true JPS6298256A (en) 1987-05-07
JPH0731189B2 JPH0731189B2 (en) 1995-04-10

Family

ID=17037695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238950A Expired - Lifetime JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Country Status (1)

Country Link
JP (1) JPH0731189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441642A (en) * 1993-06-24 1995-08-15 The Commonwealth Industrial Gases Limited Method and apparatus for controlled biological treatment of waste water
JP2016211971A (en) * 2015-05-08 2016-12-15 シスメックス株式会社 Specimen analyzer, blood coagulation analyzer, specimen analysis method and computer program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223823A (en) * 1975-08-18 1977-02-23 Wenger Corp Portable staircase
JPS5821544A (en) * 1981-07-31 1983-02-08 Japan Spectroscopic Co Measuring method for chemical reaction rate
JPS58131519A (en) * 1982-10-18 1983-08-05 Hitachi Ltd Supervising method of vibration of rotating body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223823A (en) * 1975-08-18 1977-02-23 Wenger Corp Portable staircase
JPS5821544A (en) * 1981-07-31 1983-02-08 Japan Spectroscopic Co Measuring method for chemical reaction rate
JPS58131519A (en) * 1982-10-18 1983-08-05 Hitachi Ltd Supervising method of vibration of rotating body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441642A (en) * 1993-06-24 1995-08-15 The Commonwealth Industrial Gases Limited Method and apparatus for controlled biological treatment of waste water
JP2016211971A (en) * 2015-05-08 2016-12-15 シスメックス株式会社 Specimen analyzer, blood coagulation analyzer, specimen analysis method and computer program

Also Published As

Publication number Publication date
JPH0731189B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
US9328004B2 (en) Determining biofilm thickness in a membrane supported biofilm reactor
CN107207301B (en) Method for controlling aeration amount in activated sludge
CN102866196B (en) Method for measuring sample using electrochemical sensor chip
JPS6298256A (en) Method for measuring respiration speed
US5518893A (en) Quick biochemical oxygen demand test and apparatus for the same
DK1144319T3 (en) Sludge density measurement for controlling a sludge treatment step
JPS5999353A (en) Method and apparatus for measuring bod
JP2513157B2 (en) Respiration rate measurement method
JP2952282B1 (en) Wastewater treatment control method
JP3467905B2 (en) How to measure respiration rate
JPS63193064A (en) Method and apparatus for measuring oxygen utilizing speed
JP2006007132A (en) Apparatus for treating sewage
KR100193784B1 (en) Oxygen Transfer Coefficient Measurement in Pure Oxygen Activated Sludge Process
DK0537210T3 (en) Continuous RBCOD measurement
JPS5814836B2 (en) Device for measuring dynamic properties of activated sludge
Onken et al. Measurement of hydrodynamics and dissolved oxygen with a polarographic microelectrode
JPS54127154A (en) Automatic control system for activated sludge process
JPS58183914A (en) Apparatus for controlling waste sludge of concentration tank
SU1101733A1 (en) Measuring device for determination of biological oxygen demand of sewage
JPH0224342B2 (en)
JPS58183989A (en) Apparatus for controlling discharge of sludge in precipitating pool
JPS5956164A (en) Measuring method of amount of organic pollutant in water
CN117645369A (en) Method and device for real-time online in-situ determination of heterotrophic bacteria yield coefficient
AU7351394A (en) Quick biochemical oxygen demand test and apparatus for the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term