JPS5956164A - Measuring method of amount of organic pollutant in water - Google Patents

Measuring method of amount of organic pollutant in water

Info

Publication number
JPS5956164A
JPS5956164A JP16638682A JP16638682A JPS5956164A JP S5956164 A JPS5956164 A JP S5956164A JP 16638682 A JP16638682 A JP 16638682A JP 16638682 A JP16638682 A JP 16638682A JP S5956164 A JPS5956164 A JP S5956164A
Authority
JP
Japan
Prior art keywords
water
amount
test water
ozone
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16638682A
Other languages
Japanese (ja)
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16638682A priority Critical patent/JPS5956164A/en
Publication of JPS5956164A publication Critical patent/JPS5956164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To take a stable on-line measurement of the amount of organic pollutant in water from the production amount of CO2 by oxidation, by oxidizing test water with ozone. CONSTITUTION:While air is supplied to the test water in a reaction tank 1, acid is injected from a supply source 6 to <=4pH and the CO2 concentration in the water is balanced with that in the air. Then, alkali is injected from a supply source 7 to about 11pH and an ozonizer 2 is powered on to supply ozone to the test water, starting the integration of a computing element 9. Then, the ozone supply is stopped at a reaction end point and acid is injected into the test water again to <=4pH. Consequently, CO2 carried into the test water by the injected air and CO2 produced by the oxidation are discharged together with discharge gas, so that the CO2 concentration in the test water becomes equal to the concentration in the start of the reaction eventually. Thus, the output of the computing element 9 reduced to the negative side during the oxidation turns positive by an extent corresponding to the amount of CO2, and the concentration of the pollutant is known from said value.

Description

【発明の詳細な説明】 本発明は検水をオゾンで酸化し、その酸化におけるCO
2生成量から水中の有機性汚濁量を測定する方法に関す
るJ 河川、湖沼あるいは閉鎖海域等における水質汚濁の進行
に伴い、これらの水質をオンライン測定する計測機器の
整備拡充が望まれている。水質汚濁の指標としては、好
気性微生物が水中の汚濁物質を酸化する際の酸素消費量
を測定するBOD、過マンガン酸カリで水中の無機物及
び有機物の一部を酸化してその酸素消費量を測定するC
ODMn、検水を解媒の存在下で燃焼し、その際に消費
される酸素量を測定するTOD等がある。さらに近年注
目されつつある技術として、検水の紫外線吸光度とCO
Dの間に一定の相関があることを利用して紫外線吸光度
を水質汚濁の指標とする方法((JV計)もある。これ
らのうちBODは通常測定に5日間を要しオンライン測
定には適さない。COD、n及びTODに関しては自動
化が試みられているが、前者は大量の試薬を必要とし、
後者は触媒の交換あるいは検水サンプリング系の保守が
煩雑であることなどから、オンライン計測機としての要
求を十分に満たすものとは言え、ない。一方UV計は上
記の方法とはまったく原理の異なる方法でオンライン測
定に適していると言える。しかるに周知のごとく、紫外
線の吸光度は物質によって大きく異なり、廃水の種類に
よっては汚濁物質の指標となり得ない場合も多い。
DETAILED DESCRIPTION OF THE INVENTION The present invention oxidizes sample water with ozone and
2. Methods for Measuring the Amount of Organic Pollution in Water Based on the Amount of Production J. As water pollution in rivers, lakes, closed sea areas, etc. progresses, it is desired to expand the provision of measuring equipment for online measurement of water quality. Indicators of water pollution include BOD, which measures the amount of oxygen consumed by aerobic microorganisms when they oxidize pollutants in water; C to measure
There are ODMn, TOD, which burns test water in the presence of a decomposition medium, and measures the amount of oxygen consumed during the combustion. Furthermore, as a technology that has been attracting attention in recent years, the ultraviolet absorbance of sample water and CO
There is also a method (JV meter) that uses ultraviolet absorbance as an index of water pollution by taking advantage of the certain correlation between D and D. Of these, BOD usually takes 5 days to measure and is not suitable for online measurement. No. Automation has been attempted for COD, n, and TOD, but the former requires large amounts of reagents;
The latter method cannot be said to fully meet the requirements of an online measuring device, as replacing the catalyst and maintaining the water sampling system are complicated. On the other hand, the UV meter can be said to be suitable for on-line measurement as it has a completely different principle from the above method. However, as is well known, the absorbance of ultraviolet rays varies greatly depending on the substance, and in many cases cannot be used as an indicator of pollutants depending on the type of wastewater.

これら従来の水質汚濁分析法に代るものとして、オゾン
を利用する方法が提案されている。これは強力な酸化剤
であるオゾンにより水中の汚濁物質、を酸化して化学的
酸素要求量(CODo3)をff111定するものであ
る。この方法は反応を促進するだめのアルカリ以外は試
薬を必要とせず、またガス分析が基本になっているため
従来の水質分析計では避けることのできなかった検出部
の汚染によるトラブルもないなど多くの利点がある。
A method using ozone has been proposed as an alternative to these conventional water pollution analysis methods. This method oxidizes pollutants in water using ozone, which is a strong oxidizing agent, and determines the chemical oxygen demand (CODo3). This method does not require any reagents other than the alkali that accelerates the reaction, and since it is based on gas analysis, there are many problems such as contamination of the detection part that could not be avoided with conventional water quality analyzers. There are advantages.

しかしC0Do、は無機化合物の酸化による酸素消費も
含むため、特に問題となる有機性汚濁量を必ずしも反映
しない。またこの方法では、大気の酸素含有量に比べて
オゾン酸化で消費される酸素の量が微少であるため、泪
1j定に高い精度が要求される。したがって酸素分析計
の自動校正などの手段も必要となり、装置が複雑化する
However, since CODo includes oxygen consumption due to oxidation of inorganic compounds, it does not necessarily reflect the amount of organic pollution, which is a particular problem. In addition, in this method, the amount of oxygen consumed by ozone oxidation is minute compared to the oxygen content of the atmosphere, so high accuracy is required in determining the temperature. Therefore, means such as automatic calibration of the oxygen analyzer are also required, which complicates the apparatus.

本発明は従来の水質汚濁測定方法の欠点に鑑みてなされ
たもので、オゾン酸化により生成する二酸化炭素の量を
測定することを特徴としており、その目的とするところ
は5水の有機性汚濁量を安定にオンライン測定する方法
を提供することにある。以下、本発明を実施例に基づき
詳細に説明する。
The present invention was developed in view of the shortcomings of conventional water pollution measuring methods, and is characterized by measuring the amount of carbon dioxide produced by ozone oxidation. The objective is to provide a method for stable online measurement of Hereinafter, the present invention will be explained in detail based on examples.

本発明の成否はオゾン酸化によって水中の汚濁物質に含
まれる有機性炭素のうちどれくらいの割領域で著しく促
進される点に着目し、I)l−1>11という条件で代
表的な14種類の基本物質を2時間オゾンで処理した場
合のTOC(Total OrganicCa−rbo
n)除去率を測定した。除去されたTOCは二酸化炭素
になったと考えてよいため、この値が有機性炭素がCo
2まで酸化される割合である。第1表にその結果を示す
。この結果が示すように14種類の物質の平均として約
80%のTOCがCO2まで酸化されることがわかる。
The success or failure of the present invention is determined by focusing on how much of the organic carbon contained in pollutants in water is significantly promoted by ozone oxidation. TOC (Total Organic Carbo) when basic substances are treated with ozone for 2 hours
n) Removal rate was measured. It can be assumed that the removed TOC has become carbon dioxide, so this value indicates that organic carbon is Co
The rate of oxidation is up to 2. Table 1 shows the results. As shown by these results, it can be seen that on average of the 14 types of substances, about 80% of TOC was oxidized to CO2.

このように多くの右筆  1  表 機性炭素がアルカリ性領域ではCO2′!で酸化される
ため、このような条件でオゾン酸化した際に生じるCO
2を計測することで水の汚濁度の指標を得ることができ
る。もちろん他のオゾン酸化反応促進手段例えば超音波
、触媒、紫外線、過酸化水素などが効果的な場合はそれ
らに適した方法を用いればよいし、汚濁物質の多くが酸
化されやすい物質である場合は上記のよう彦反応促進の
手段は必要ない。
In this way, many right-hand brushes 1 CO2' in the alkaline region of surface carbon! CO generated when ozone oxidizes under these conditions.
By measuring 2, an index of water pollution level can be obtained. Of course, if other means for promoting the ozone oxidation reaction are effective, such as ultrasound, catalysts, ultraviolet rays, or hydrogen peroxide, then the appropriate method may be used, and if many of the pollutants are easily oxidized, There is no need for the above-mentioned means of promoting the Hiko reaction.

次に本発明の一実施例を第1図に示す。第1図において
1は検水を採取してオゾン酸化するだめの反応槽、2は
オゾナイザ、3は反応槽1からの排出ガスと注入空気の
CO2の濃度差を測定するためのCO!濃度計、4は反
応槽1から排出されるガス中の水分を除くための除湿器
、5は注入ガスの水分を除くだめの除湿器、6は酸供給
源、7はアルカリ供給源、8は注入ガス流量を測定する
だめの流量計、9は流量計8で測定した注入ガス流量と
濃度計3で測定したC02a度差の積を積分するための
演算器、10は検水を反応+!!11へ供給するだめの
検水供給ポンプ% 11はオゾナイザ2へ空気を供給す
るだめのポンプ、12は反応槽1の検水を排出するだめ
の7(ルプである。
Next, an embodiment of the present invention is shown in FIG. In Figure 1, 1 is a reaction tank for collecting sample water and oxidizing it with ozone, 2 is an ozonizer, and 3 is a CO2 tank for measuring the difference in CO2 concentration between the exhaust gas from the reaction tank 1 and the injected air. densitometer, 4 a dehumidifier for removing moisture in the gas discharged from the reaction tank 1, 5 a dehumidifier for removing moisture from the injected gas, 6 an acid supply source, 7 an alkali supply source, 8 a dehumidifier for removing moisture from the gas discharged from the reaction tank 1; Flowmeter 9 is used to measure the injection gas flow rate; 9 is a calculator for integrating the product of the injection gas flow rate measured by flowmeter 8 and the C02a degree difference measured by concentration meter 3; 10 is a calculator for measuring the sample water reaction +! ! Sample water supply pump % 11 is a pump that supplies air to the ozonizer 2, and 12 is a pump that discharges sample water from the reaction tank 1.

この装置は以下のように運転される。The device operates as follows.

■検水中のCO□濃度のレベリング オゾンを発生させない状態で検水に空気を供給しながら
、p l−1が4以下になるように酸を注入する。この
状態では水中の炭酸成分はほとんどCO2として存在す
るため、炭酸イオンの影響は考慮しなくてよい。したが
ってしばらくばつ気を続けると水中のCO4度が大気中
のCO2濃度と平衡する。
■Leveling the CO□ concentration in the test water While supplying air to the test water without generating ozone, inject acid so that p l-1 becomes 4 or less. In this state, most of the carbonic acid components in the water exist as CO2, so there is no need to consider the influence of carbonate ions. Therefore, if you continue to be exposed to water for a while, the CO4 degree in the water will come into equilibrium with the CO2 concentration in the atmosphere.

とのばつ気により反応開始時における検水中のCO2濃
度を一定に設定できる。
By this exposure, the CO2 concentration in the test water at the start of the reaction can be set constant.

■酸化反応 アルカリを注入してpHを約11とした後、オゾンノー
イザに通電して検水にオゾンを供給するOこれと同時に
演算器9の積分を開始する。検水がアルカリ性であるた
め1反応により生成したC02とオゾン化した空気とと
もに槽内に持ち込まれた〇〇、はほとんどすべて炭酸イ
オンになる。しため(って排出ガス中にはCO2が含ま
れない。これに対し、注入空気中にはCO2が含まれる
ため、排出ガスと注入空気のC02濃度の差は負になり
、このC02濃度差と注入空気流量との積の積分値、す
なわち演算器9の出力は負側へ減少を続ける。反応終了
時点でこの値は注入空気中に含まれて反応槽に持ち込ま
れたCOlの量に比例する。
(2) Oxidation reaction After injecting alkali to bring the pH to about 11, the ozone noizer is energized to supply ozone to the test water. At the same time, the calculator 9 starts integrating. Since the sample water is alkaline, almost all of the 〇〇, which was brought into the tank along with the CO2 produced by the first reaction and the ozonized air, becomes carbonate ions. Therefore, the exhaust gas does not contain CO2. On the other hand, the injected air contains CO2, so the difference in the C02 concentration between the exhaust gas and the injected air is negative, and this C02 concentration difference The integral value of the product of and the injected air flow rate, that is, the output of the calculator 9, continues to decrease in the negative direction.At the end of the reaction, this value is proportional to the amount of CO1 contained in the injected air and brought into the reaction tank. do.

■CO,の放出 オゾナイザへの通電を停止して反応を終了する。■Release of CO, The reaction is terminated by stopping the power supply to the ozonizer.

この時点で検水中には注入空気中に含まれて持ち込まれ
たCO2と酸化反応により生成したCO2が炭酸イオン
として存在するため、これを排ガスとともに放出させる
ために検水に酸を注入しpHを4以下にする。この状態
でげっ気を続けると最終的には検水中の二酸化炭素濃度
は大気との平衡濃度。
At this point, the sample water contains carbonate ions produced by the oxidation reaction with the CO2 contained in the injected air, so in order to release this together with the exhaust gas, acid is injected into the sample water to adjust the pH. Set it to 4 or less. If you continue to ejaculate in this state, the carbon dioxide concentration in the sample water will eventually reach the equilibrium concentration with the atmosphere.

すなわち反応開始時点の濃度になる。酸化反応中に負側
へ減少した演算器9の出力はCO□の放出開始とともに
増加し、酸化により生じたCO2の量に相当する分だけ
正の値に転する。したがってこの値が汚濁物質濃度を表
わすことになる。
In other words, it becomes the concentration at the start of the reaction. The output of the calculator 9, which decreased to the negative side during the oxidation reaction, increases with the start of the release of CO□, and changes to a positive value by an amount corresponding to the amount of CO2 generated by the oxidation. Therefore, this value represents the pollutant concentration.

以上、本発明を実施例に基づき説明したが、CO2を利
用するこの方法は、 イ 空気中のCO22度が低いため酸化反応によるCo
、9度の変化量を検出し易い0 口 有機性汚濁物質濃度と1〜で化学的酸素要求値より
も適している。
The present invention has been explained above based on examples, but this method using CO2 has the following advantages: (a) Since the CO22 degree in the air is low, the CO2 caused by the oxidation reaction
It is more suitable than the chemical oxygen demand value at 0, which is easy to detect the change amount of 9 degrees, and the organic pollutant concentration at 1.

という点で優れている。したがって本発明による方法を
採用した水質自動分析装置はガス分析を基本にしている
ためトラブルが少なく、メンテナンスも容易であるため
、オン2イン用計測装置としての要求も十分に満すもの
である。
It is excellent in that respect. Therefore, since the automatic water quality analyzer employing the method according to the present invention is based on gas analysis, it has fewer troubles and is easy to maintain, so it fully satisfies the requirements for an on-2-in measuring device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図である。 FIG. 1 is a block diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1)反応容器に導入した検水にオゾンを供給し、前記検
水中の有機汚濁物質を前記オゾンで酸化することにより
、一定量の検水中で生成したCO2量を測定することを
特徴とする有機汚濁量測定方法。 2、特許請求の範囲第1項記載の方法において、検水を
あらかじめ空気でばっ気する前ばっ気工程と、前記検水
をオゾン化空気でばっ気する酸化工程と、前記検水を再
び空気でばっ気する後ばっ気工程とを有し、前記酸化工
程により反応容器に流入したCO2量と、前記後ばっ気
工程によシ前記反応容器から流出したCO2量との差を
測定することを特徴とする水中の有機汚濁量測定方法。 3)特許請求の範囲第2項に記載の方法において、前ば
っ気工程と後ばっ気工程では検水を酸性にし、酸化工程
では前記検水をアルカリ性にすることを特徴とする水中
の有機汚濁量測定方法。
[Claims] 1) Ozone is supplied to a test water introduced into a reaction vessel, and organic pollutants in the test water are oxidized by the ozone, thereby measuring the amount of CO2 generated in a certain amount of the test water. A method for measuring the amount of organic pollution characterized by the following. 2. The method according to claim 1, which includes a pre-aeration step of aerating the test water with air in advance, an oxidation step of aerating the test water with ozonized air, and aeration of the test water again with air. and a post-aeration step, and the method is characterized in that the difference between the amount of CO2 flowing into the reaction vessel during the oxidation step and the amount of CO2 flowing out from the reaction container during the post-aeration step is measured. A method for measuring the amount of organic pollution in water. 3) In the method according to claim 2, the sample water is made acidic in the pre-aeration step and the post-aeration step, and the sample water is made alkaline in the oxidation step. Quantity measurement method.
JP16638682A 1982-09-24 1982-09-24 Measuring method of amount of organic pollutant in water Pending JPS5956164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16638682A JPS5956164A (en) 1982-09-24 1982-09-24 Measuring method of amount of organic pollutant in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16638682A JPS5956164A (en) 1982-09-24 1982-09-24 Measuring method of amount of organic pollutant in water

Publications (1)

Publication Number Publication Date
JPS5956164A true JPS5956164A (en) 1984-03-31

Family

ID=15830451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16638682A Pending JPS5956164A (en) 1982-09-24 1982-09-24 Measuring method of amount of organic pollutant in water

Country Status (1)

Country Link
JP (1) JPS5956164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703669A (en) * 1984-08-27 1987-11-03 Toyota Jidosha Kabushiki Kaisha Support structure of steering column tube
EP1039294A2 (en) * 1999-03-23 2000-09-27 Analytical Developments Limited A method and apparatus for the analysis of a liquid carrying a suspension of organic matter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703669A (en) * 1984-08-27 1987-11-03 Toyota Jidosha Kabushiki Kaisha Support structure of steering column tube
EP1039294A2 (en) * 1999-03-23 2000-09-27 Analytical Developments Limited A method and apparatus for the analysis of a liquid carrying a suspension of organic matter

Similar Documents

Publication Publication Date Title
US3740320A (en) Apparatus and method for measuring the amount of gas absorbed or released by a substance
US5324666A (en) Process for determining oxidizable substances contained in an aqueous sample liquid
DE59910746D1 (en) METHOD AND DEVICE FOR DETERMINING THE ORGANIC CARBON (TOC) CONTENT IN LIQUIDS, IN PARTICULAR PURE WATER
JP3126273B2 (en) Method and apparatus for rapid biochemical oxygen demand (BOD) measurement
US4140487A (en) Method and apparatus for analysis of water
JPS5956164A (en) Measuring method of amount of organic pollutant in water
Young et al. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total oxygen demand (TOD)
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
JP3823357B2 (en) Nitrification activity measuring device and nitrification method
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
CN111470610B (en) Ozone water treatment technology evaluation system and method
JP2000046823A (en) Method and apparatus for measuring bod of water
JPS58205835A (en) Dissolved ozone measuring apparatus
JPH0323865B2 (en)
JPH0943226A (en) Ammonia measuring device
JP2005238089A (en) Reactivity evaluation method and device
JP2003080277A (en) Ozone treatment system and method of operating the same
JP3127776B2 (en) Apparatus and method for monitoring nitrogen removal performance of wastewater
Kerç et al. Computerized continuous monitoring and analysis of ozone in solution
JPS58202871A (en) Measurement of chemical oxygen demand by ozone oxidation
JPH03288596A (en) Method for controlling injection amount of methanol
JPS6153118B2 (en)
JPH0619326B2 (en) Method for quantifying inorganic nitrogen
JP2003169697A (en) Method of measurement for phosphoric acid in water and equipment for the same
RU2094799C1 (en) Device for determination of oxidized substances