JPS58131519A - Supervising method of vibration of rotating body - Google Patents

Supervising method of vibration of rotating body

Info

Publication number
JPS58131519A
JPS58131519A JP18345682A JP18345682A JPS58131519A JP S58131519 A JPS58131519 A JP S58131519A JP 18345682 A JP18345682 A JP 18345682A JP 18345682 A JP18345682 A JP 18345682A JP S58131519 A JPS58131519 A JP S58131519A
Authority
JP
Japan
Prior art keywords
vibration
rate
amplitude
area
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18345682A
Other languages
Japanese (ja)
Inventor
Sadanori Shintani
新谷 定則
Masaharu Hanatsumi
花摘 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18345682A priority Critical patent/JPS58131519A/en
Publication of JPS58131519A publication Critical patent/JPS58131519A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To attain the early detection and quick processing of abnormal phenomena by using past data for the rate of variation for vibration of a turbine generator to forecast the abnormal phenomena by the method of least square. CONSTITUTION:Each vibration detector 5 detects respective shaft vibration and generates an oscillating signal. The signal is transmitted to a vibration supervising and forecasting device 7 through an amplifier 6. An input scanning part 9 scans the oscillation signal of each sahft at a fixed period and converts the signal into a digital value. The digital value is inputted to a rate of vibration calculating part 10. The rate of variation for amplitude is obtained by primarily approximating ten data in total consisting of nine amplitude values found for the past nine seconds in each second and an amplitude value entered at that time by the method of least square and finding the gradient i.e., the rate of variation. A pattern discriminating part 11 discriminates whether the combination of the rate of variation for amplitude and the amplitude values is located in a safety area, a caution area or a stop area, and outputs an alarm meassage to a display device 14 in case of the safety or caution area and a turbine stop command in case of the stop area.

Description

【発明の詳細な説明】 本発明はタービン発電機などの回転体の振動監視方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring vibrations of a rotating body such as a turbine generator.

一般にタービン発電機等の回転体の振動を監視する場合
は、該回転体の振動を検出し、該検出された振動信号の
振111g値があらかじめ定められた値を越えたとき異
常とみなし、警報を発するなどの方法で監視をおこなう
Generally, when monitoring the vibration of a rotating body such as a turbine generator, the vibration of the rotating body is detected, and when the vibration 111g value of the detected vibration signal exceeds a predetermined value, it is regarded as abnormal and an alarm is issued. Monitoring is carried out by means such as emitting a message.

また上記のような撮動振幅の監視に加え振動振幅の変化
率本監視する方法もある。
In addition to monitoring the imaging amplitude as described above, there is also a method of monitoring the rate of change in vibration amplitude.

回転体において振動現象を回避することはほとんど不可
能で、振動振幅の大小の差はあるにして本はとんどの場
合振動が検出される。したがって検出される振動信号か
らできるだけ早く、回転体の異常が分れば、大事に至ら
ずに済ませることができる。また異常現象の多くはある
時点で突発的に発生することは少なく、事前に何らかの
徴候が表われることも事実である。
It is almost impossible to avoid vibration phenomena in a rotating body, and although there are differences in the magnitude of vibration amplitude, vibrations are almost always detected in books. Therefore, if an abnormality in the rotating body can be detected as soon as possible from the detected vibration signal, the problem can be avoided. It is also true that most abnormal phenomena rarely occur suddenly at a certain point in time, and that some symptoms appear in advance.

しかし従来の振動監視方法ではある時点の振動振幅値、
あるいはある時点での振動振幅値を監視し、それぞれの
ために独立に設定され九所定値を越えたかどうかによっ
て回転体の振動を監視する方法に過ぎなかった。
However, with conventional vibration monitoring methods, the vibration amplitude value at a certain point,
Alternatively, it was simply a method of monitoring the vibration amplitude value at a certain point in time, and monitoring the vibration of the rotating body based on whether it exceeded nine predetermined values set independently for each.

したがって場合によってはその対応処置が間に合わない
でしまうことがおった。そのために振動振幅信号あるい
はその変化率の所定値の設定値を低めに設定するという
ことも考えられるが、アくまでも当該時点における監視
結果でしかあり得なかったつ そしてこのような監視は運転員に対する警報表示等のコ
ミニケーション、異常早期発見の点からも改善が必要で
あり、また、予測的な警報出力をも必要である。
Therefore, in some cases, the countermeasures could not be taken in time. For this reason, it may be possible to set the predetermined value of the vibration amplitude signal or its rate of change to a low value, but this could only be the result of monitoring at that point in time, and such monitoring would be of great concern to the operator. Improvements are needed in terms of communication such as warning displays and early detection of abnormalities, and predictive warning output is also required.

本発明は以上の点に鑑みなされたもので、タービン発電
機の奈動の変化率に関し過去のデータを用いて最小二乗
法により予測をし、異常現象の早期発見、早期処理がで
きるタービン発電機の振動監視方法を提供することにあ
る。
The present invention has been made in view of the above points, and is a turbine generator that can predict the rate of change of the turbine generator's turbulence by the least squares method using past data, and can detect and treat abnormal phenomena early. The object of the present invention is to provide a vibration monitoring method.

以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.

第1図は回転体の軸受振動を検出し、その振動振幅値と
振動振幅変化率の2要因を2次元平面上で判断して警報
を出している場合を示している。横軸に振幅変化率、縦
軸に振動振幅値をとり、この平面で設定された安全域S
1注意域A1停止域Tの例である。この平面の点が、A
に入れば注意警報、Tに入ればタービン停止をするよう
になっている。
FIG. 1 shows a case where bearing vibration of a rotating body is detected, and an alarm is issued by determining two factors, the vibration amplitude value and the vibration amplitude change rate, on a two-dimensional plane. The horizontal axis is the amplitude change rate, the vertical axis is the vibration amplitude value, and the safety range S is set on this plane.
This is an example of 1 caution area A1 stop area T. The point on this plane is A
If it goes into T, a caution warning will be issued, and if it goes into T, the turbine will be stopped.

これは撮動撮幅と振動振幅変化率との相関においてそれ
ぞれ安全領域、警報領域、トリップ領域を設定している
ことに特徴がある。この方法は各各単独に限界値を設定
するよりも、監視精度がよい。
This is characterized by setting a safety area, a warning area, and a trip area, respectively, based on the correlation between the imaging width and the vibration amplitude change rate. This method provides better monitoring accuracy than setting limit values for each individual item.

第2図は、タービン発電機及び振動監視装置のブロック
構成図を示している。
FIG. 2 shows a block diagram of the turbine generator and vibration monitoring device.

タービン発電機は、低圧タービン1、中圧タービン2、
高圧タービン3及び発電機4がら構成されている。
The turbine generator includes a low pressure turbine 1, an intermediate pressure turbine 2,
It is composed of a high pressure turbine 3 and a generator 4.

振動監視装置は、振動検出器5、増幅器6、振動監視予
測装置7及びタービン制御装置8がら構成されている。
The vibration monitoring device includes a vibration detector 5, an amplifier 6, a vibration monitoring and prediction device 7, and a turbine control device 8.

振動検出器5は、低圧、中圧及び高圧タービン1.2.
3並びに発電機4の各々の軸部に2個ずつ配設されてい
る。
The vibration detector 5 detects the low pressure, intermediate pressure and high pressure turbines 1.2.
Two of them are disposed on each shaft of the generator 3 and the generator 4.

振動監視予測装置7は、人力走査部9、変化率計算部1
0、パターン判定部11、パターン表示部12、予測計
算部13、及び表示装置14がら構成されている。表示
装置13は、現状のデジタル表示器では表示能力が不足
するので、CRTを用いている。
The vibration monitoring and prediction device 7 includes a human power scanning section 9 and a rate of change calculation section 1.
0, a pattern determination section 11, a pattern display section 12, a prediction calculation section 13, and a display device 14. The display device 13 uses a CRT because the current digital display lacks display capability.

つぎに作用を説明する。Next, the effect will be explained.

振動検出器5は、各軸の軸振動を検出して振動信号を発
生する。この振動信号は、増幅器6を経て振動監視予測
装置7に伝送される。
The vibration detector 5 detects shaft vibration of each axis and generates a vibration signal. This vibration signal is transmitted to a vibration monitoring and prediction device 7 via an amplifier 6.

入力走査部9は、各軸の振動信号を一定周期で走査しデ
ジタル値に変換する。このデジタル値は変化率計算部l
Oに入力される。
The input scanning section 9 scans the vibration signals of each axis at regular intervals and converts them into digital values. This digital value is calculated by the rate of change calculation section l.
It is input to O.

振幅変化率の計算は、1秒間隔で取り込んだ過去9秒間
の9個の振幅値X+(i=1.2・・・・・・9)と今
取り込んだ振幅値Xsoの10個の振幅値デ=−タを用
いている。具体的には振幅変化率は、各データを最小二
乗法を用いて一次近似し、勾配すなわち変化率を求めて
いる。
The amplitude change rate is calculated using 10 amplitude values: 9 amplitude values X + (i = 1.2...9) for the past 9 seconds captured at 1-second intervals and the currently captured amplitude value Xso. Data is used. Specifically, the amplitude change rate is determined by first-order approximation of each data using the least squares method to obtain the slope, that is, the change rate.

データの表示は、各軸受の振幅値表示、各軸受の振幅変
化率表示、振幅振動値の軸受毎周期的表示及び振幅変化
率の軸受毎周期的宍示その他の表示がある。各表示は選
択によってデジタル的に表示されるっ 変化率計算部10は、次のような方式で変化率を計算す
る。
Data displays include amplitude value display for each bearing, amplitude change rate display for each bearing, periodic display of amplitude vibration value for each bearing, periodic display of amplitude change rate for each bearing, and other displays. Each display is digitally displayed depending on the selection.The rate of change calculating section 10 calculates the rate of change in the following manner.

第3図に示すように、振動信号は、1つの軸振動に対し
得られ、TO秒間隔で、走査されかつデジタル変換され
た過去N−1個の値Xt  (i=t。
As shown in FIG. 3, a vibration signal is obtained for one shaft vibration, scanned and digitally converted from the past N-1 values Xt (i=t) at intervals of TO seconds.

2.3・・・・・・、N−1)と、現時点で得られた値
Xwの計N個の振幅値X+(1=1.2・・・・・・N
)がある。これらの振幅値から最小二乗法を用いて、次
式により一次近似し、勾配すなわち、変化率が計算され
る。
A total of N amplitude values X+(1=1.2...N
). Using the least squares method from these amplitude values, linear approximation is performed using the following equation, and the slope, that is, the rate of change is calculated.

t I= tt+ (11)To       −(2
)パターン判定部11は、こうして得られ死損幅変化率
Xにと振幅値XNとの組PM(XN 、XN )が安全
域S1注意域人、停止域Tのいずれの領域にあるかの判
定を行う。各領域は、第1図に示している。このパター
ンは、タービン1,2.3(7)回転数に応じて数種類
に自動的に切替えられるようになっている。パターン判
定部11は、判定の結果安全域S又は注意域Aにるる場
合にはアラームメツセージ出力を表示装置14に入力し
、停止域TK6れば、タービン停止指令を発する。この
タービン停止指令は、タービン制御装置8に入力される
t I= tt+ (11) To −(2
) The pattern determination unit 11 determines whether the set PM (XN, XN) of the death loss width change rate X obtained in this way and the amplitude value XN is in the safety range S1, the caution range, or the stop range T. I do. Each region is shown in FIG. This pattern can be automatically switched to several types depending on the rotation speed of the turbines 1, 2.3 (7). The pattern determination unit 11 inputs an alarm message output to the display device 14 if the determination results in the safety range S or the caution range A, and if the result is the stop range TK6, issues a turbine stop command. This turbine stop command is input to the turbine control device 8.

タービン制御装置8は、この指令に基づいてタービンを
制御する。
Turbine control device 8 controls the turbine based on this command.

振動現象は瞬間的に発生するものではなく、除徐に現わ
れてるのが普通である。この傾向を早く察知することが
重要である。
Vibration phenomena do not occur instantaneously, but usually appear gradually. It is important to detect this trend early.

このため、パターン表示部12は過去n点の振幅変化率
XNと蚤幅値XNとの組PHI 、 PwzないしPM
、を記憶している。この記憶出力は第4図に示すように
表示装置14にプロットされる。変化率の計算は、走査
周期To秒毎に行われるので、プロットもTo秒毎に更
新されることとなる。
For this reason, the pattern display unit 12 displays the set PHI, Pwz or PM of the amplitude change rate XN and the flea width value XN of the past n points.
, is remembered. This stored output is plotted on display 14 as shown in FIG. Since the calculation of the rate of change is performed every scanning period To seconds, the plot is also updated every To seconds.

今、n個の点がプロットされているとする。Suppose that n points are now plotted.

lllo秒後に新しい点p*、n+1が計算されると、
表示されている最も古い点p+Hが消去され、この結果
p112ないしPM、。lが表示される。
When a new point p*, n+1 is calculated after llo seconds,
The oldest displayed point p+H is deleted, resulting in p112 to PM. l is displayed.

つぎに予測計算について説明する。Next, prediction calculation will be explained.

今、パターン表示部12は、n個のデータPHI(XN
I 、 Xwt ) 、 Pwz (X’N2 、 X
N2 )ないしPMII(X’)l−、XN、)を記憶
しているとする。
Now, the pattern display section 12 displays n data PHI (XN
I, Xwt), Pwz (X'N2, X
Suppose that N2) to PMII(X')l-,XN,) are stored.

予測計算部13は、以上のデータを用いてその変化傾向
を赦小二乗法を用いて1次式で近似する。
The prediction calculation unit 13 uses the above data to approximate its change tendency using a linear equation using the method of small squares.

この近似を次式に示す。This approximation is shown in the following equation.

X= aX+b             ・・・(5
)b=(Xs)  a(、l(J          
・”(7)こうして過去の振動状態を1次式で近似し、
今後この1次式に従って振動状態が持続すると仮定し、
何秒後に注意域Aあるいは停止域Tに達し得るかを予測
する。この1次式について−ベる。式(5)は次式のよ
うに書き換えられる。
X=aX+b...(5
) b=(Xs) a(, l(J
・”(7) In this way, the past vibration state is approximated by a linear equation,
Assuming that the vibration state will continue according to this linear equation,
It is predicted how many seconds it will take to reach the caution area A or the stop area T. Regarding this linear equation, -be. Equation (5) can be rewritten as the following equation.

dX(t) X(t) = a −+ b          −(
10t この微分方程式を解くとつぎの解が得られる。
dX(t) X(t) = a −+ b −(
10t Solving this differential equation yields the following solution.

定数cld積分定数であり、この積分定数は次のように
して決定する。
The constant cld is an integral constant, and this integral constant is determined as follows.

式(11)の時間原点1=0を現時点にとると、t=0
における初期条件はX N* HXNmで与えられる。
If we take the time origin 1=0 of equation (11) at the present moment, t=0
The initial condition in is given by X N* HXNm.

厳密には一次近似をしているので、初期榮件はXNmH
Xw@と一致しないが、十分な近似で代用できる。
Strictly speaking, since it is a first-order approximation, the initial value is XNmH
Although it does not match Xw@, it can be substituted with a sufficient approximation.

従って、式(11)にt = O、X(t)=Xs−と
おくことにより、積分定数Cは次のようになる。
Therefore, by setting t=O and X(t)=Xs- in equation (11), the integral constant C becomes as follows.

C=XN、−b            ・・0ゆえに
、式(11jは となる。
C=XN, -b...0 Therefore, the formula (11j becomes).

以上説明したように、本発明によれば、振動振幅変化率
の予測が可能となり安全性の向上が期待できる。
As described above, according to the present invention, it is possible to predict the rate of change in vibration amplitude, and an improvement in safety can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は安全域、注意域及び停止域の各領域に規定した
パターンの説明図、第2図は本発明のタービン発電機の
振動保I!装置、第3図は振幅変化率の算出を説明する
説明図、第4図は予測計算の説明図である。 1・・・低圧タービン、4・・・発電機、5・・・振動
検出器、7・・・振動監視予測装置、訃・・タービン制
御装置、9・・・入力走査部、10・・・変化率計算部
、11・・・)くターン判定部、12・・・パターン表
示部、13・・・予測計算部、14・・・表示装置。
Fig. 1 is an explanatory diagram of the patterns defined in each area of safety area, caution area, and stop area, and Fig. 2 is an illustration of the vibration protection I! of the turbine generator of the present invention. FIG. 3 is an explanatory diagram for explaining the calculation of the amplitude change rate, and FIG. 4 is an explanatory diagram for the prediction calculation. DESCRIPTION OF SYMBOLS 1... Low pressure turbine, 4... Generator, 5... Vibration detector, 7... Vibration monitoring and prediction device, Death... Turbine control device, 9... Input scanning part, 10... Change rate calculation unit, 11...) Turn determination unit, 12... Pattern display unit, 13... Prediction calculation unit, 14... Display device.

Claims (1)

【特許請求の範囲】[Claims] 1、回転体の振動を監視する方法において、該回転体の
振動を検出し、該検出された振動信号をサンプリングし
、現時点からさかのほるあらかじめ定めたサンプル数の
振動振幅値から最小二乗法により一次近似直線を演算し
、該−次近似直線の勾配から現時点の振動振幅変化率を
順次推定し、該推定された振動振幅変化率に基づいて該
回転体の振動監視をおこなうことを特徴とする回転体の
振動監視方法。
1. In a method of monitoring the vibration of a rotating body, the vibration of the rotating body is detected, the detected vibration signal is sampled, and the vibration amplitude values of a predetermined number of samples are calculated by the least squares method from the current point onward. A linear approximation straight line is calculated, a current vibration amplitude change rate is sequentially estimated from the slope of the -order approximation straight line, and the vibration of the rotating body is monitored based on the estimated vibration amplitude change rate. Vibration monitoring method for rotating bodies.
JP18345682A 1982-10-18 1982-10-18 Supervising method of vibration of rotating body Pending JPS58131519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18345682A JPS58131519A (en) 1982-10-18 1982-10-18 Supervising method of vibration of rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18345682A JPS58131519A (en) 1982-10-18 1982-10-18 Supervising method of vibration of rotating body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49131055A Division JPS5817328B2 (en) 1974-11-15 1974-11-15 Vibration monitoring method for rotating bodies

Publications (1)

Publication Number Publication Date
JPS58131519A true JPS58131519A (en) 1983-08-05

Family

ID=16136088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18345682A Pending JPS58131519A (en) 1982-10-18 1982-10-18 Supervising method of vibration of rotating body

Country Status (1)

Country Link
JP (1) JPS58131519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298256A (en) * 1985-10-25 1987-05-07 Meidensha Electric Mfg Co Ltd Method for measuring respiration speed
CN105043770A (en) * 2015-05-13 2015-11-11 北京天源科创风电技术有限责任公司 Wind turbine generator abnormal vibration judging method and apparatus thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298256A (en) * 1985-10-25 1987-05-07 Meidensha Electric Mfg Co Ltd Method for measuring respiration speed
CN105043770A (en) * 2015-05-13 2015-11-11 北京天源科创风电技术有限责任公司 Wind turbine generator abnormal vibration judging method and apparatus thereof

Similar Documents

Publication Publication Date Title
JPS56130634A (en) Method and device for monitoring oscillation of rotary machine
KR960008584A (en) Integrated sonic leak detection processing system
JPS55138634A (en) Fault diagnosis apparatus of apparatus
GB1471302A (en) Apparatus for the detection of vibration in rotating machinery
JPS58131519A (en) Supervising method of vibration of rotating body
JPS5817328B2 (en) Vibration monitoring method for rotating bodies
KR101829137B1 (en) Device abnormality early alarm method including decision for device improtance and alarm validation, and system using thereof
KR100312014B1 (en) Earthquake monitoring system
JPS5690220A (en) Abnormal oscillation diagnostic device
JPS643220A (en) Cooling water system abnormality alarm device for engine
SU729458A1 (en) Device for automatic balancing of grinding disks
US4310877A (en) Monitoring device for regulating any sequence of automatic operations in an industrial plant
JP4842547B2 (en) Gas detector
JPS5476000A (en) Process alarm unit
JPS6216789B2 (en)
JPH1179076A (en) Hull motion monitoring device with hull oscillation predicting function
CN109032022B (en) Intelligent seamless connection operation method for alarm second connection program of test box
JPH05172625A (en) Failure detection method in plant
JPH02212722A (en) Handy diagnostic apparatus for construction
JPS5644907A (en) Anomaly monitor device
JPH07159544A (en) Neutron flux monitoring device
SE9302075D0 (en) CONTROL SYSTEM FOR CONTINUOUS ALIGNMENT OF PROPELLER SHAFT IN VESSELS
JP2002186281A (en) Motor controller
JPH09218272A (en) Earthquake detecting apparatus
RU7757U1 (en) VIBRATION PROTECTION SYSTEM OF TECHNOLOGICAL EQUIPMENT