JPH0731189B2 - Respiration rate measurement method - Google Patents

Respiration rate measurement method

Info

Publication number
JPH0731189B2
JPH0731189B2 JP60238950A JP23895085A JPH0731189B2 JP H0731189 B2 JPH0731189 B2 JP H0731189B2 JP 60238950 A JP60238950 A JP 60238950A JP 23895085 A JP23895085 A JP 23895085A JP H0731189 B2 JPH0731189 B2 JP H0731189B2
Authority
JP
Japan
Prior art keywords
respiratory rate
dissolved oxygen
oxygen consumption
measurement
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60238950A
Other languages
Japanese (ja)
Other versions
JPS6298256A (en
Inventor
広一 秋山
薫 豊田
茂雄 佐藤
Original Assignee
株式会社明電舍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舍 filed Critical 株式会社明電舍
Priority to JP60238950A priority Critical patent/JPH0731189B2/en
Publication of JPS6298256A publication Critical patent/JPS6298256A/en
Publication of JPH0731189B2 publication Critical patent/JPH0731189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、例えば活性汚泥法による下水処理システムの
ような好気的条件下での微生物を用いる衛生工学や発酵
工学等の分野において、その所望の目的に適合した運転
管理を行なうための微生物の呼吸速度測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to fields such as sanitary engineering and fermentation engineering using microorganisms under aerobic conditions such as a sewage treatment system by an activated sludge method. The present invention relates to a method for measuring a respiration rate of microorganisms for performing operation management suitable for a desired purpose.

B.発明の概要 本発明は活性汚泥による下水処理システムのごとき好気
的条件下での微生物の呼吸速度を、呼吸速度変換器を用
いて溶存酸素消費曲線より呼吸速度を演算する呼吸速度
測定方法において、呼吸速度変換器により溶存酸素消費
曲線の屈曲点を検出し、直線近似可能な範囲を設定し、
その範囲の溶存酸素消費データを用いて近似直線式を計
算し、その傾きにより呼吸速度を演算することを特徴と
し、これにより屈曲線をもつ溶存酸素消費曲線を与える
ような水質でも正確な呼吸速度を算出し、出力すること
ができるものである。
B. SUMMARY OF THE INVENTION The present invention is a respiratory rate measuring method for calculating a respiratory rate of microorganisms under aerobic conditions such as a sewage treatment system using activated sludge from a dissolved oxygen consumption curve using a respiratory rate converter. At, the respiration rate converter detects the inflection point of the dissolved oxygen consumption curve and sets the range that can be approximated to a straight line.
The approximate linear equation is calculated using the dissolved oxygen consumption data in that range, and the respiratory rate is calculated by its slope, which makes it possible to obtain an accurate respiratory rate even with water quality that gives a dissolved oxygen consumption curve with a bending line. Can be calculated and output.

C.従来の技術 活性汚泥法を用いた下水処理システムの場合を例として
説明すると、活性汚泥微生物は、流入下廃水中の基質お
よび細胞内に蓄積された貯蔵物質を酸化分解する過程で
酸素を消費する。この消費酸素は微生物の増殖と生命維
持に必要なエネルギーを供給するために利用されるの
で、その酸素消費量つまり呼吸速度を正確に把握するこ
とは、活性汚泥プロセスを適正に運転,管理するうえで
きわめて重要なことである。
C. Conventional technology Taking the case of a sewage treatment system using the activated sludge method as an example, activated sludge microorganisms generate oxygen during the process of oxidative decomposition of the stored substances accumulated in the substrate and cells in the inflowing wastewater. Consume. Since this oxygen consumption is used to supply the energy necessary for the growth and life support of microorganisms, it is necessary to accurately grasp the oxygen consumption, that is, the respiration rate, in order to properly operate and manage the activated sludge process. Is very important in.

次に、活性汚泥の呼吸速度を自動的に測定する従来の装
置について第4図を参照して説明する。呼吸測定装置は
第4図に示すようにばつ気槽1中に浸漬された検出部3
と第5図に示す呼吸速度測定工程とからなつている。検
出部本体3aは第5図に示すように、下端に検水吸込口4
を上端に検出吐出口5を有している。さらに本体の周胴
部には、その周壁を内外に貫通して設けた溶存酸素濃度
を測定する電極(以下DO(dissolned oxygen)電極とい
う)16と回転軸25が本体周壁を貫通しており、その先端
に回転翼24を有する攪拌機17と駆動空気管8を設けてい
る。駆動空気管8は、ばつ気用空気管21と上部ピンチバ
ルブ用空気管20と下部ピンチバル用空気管22とからなつ
ている。さらに、検出部本体3a内には測定槽23が形成さ
れると共に、測定槽23の上下部には空気管20,22によつ
て作動する上部,下部の2つのピンチバルブ19,18を具
備している。なお6はDO信号ケーブル、7は攪拌機用ケ
ーブルである。
Next, a conventional device for automatically measuring the respiration rate of activated sludge will be described with reference to FIG. As shown in FIG. 4, the respiration measuring device has a detecting unit 3 immersed in a gas chamber 1.
And the respiratory rate measuring step shown in FIG. As shown in FIG. 5, the detection unit main body 3a has a water intake port 4 at its lower end.
Has a detection discharge port 5 at the upper end. Further, an electrode (hereinafter referred to as a DO (dissolned oxygen) electrode) 16 and a rotating shaft 25, which penetrates the peripheral wall of the main body inside and outside, for measuring the dissolved oxygen concentration, and a rotary shaft 25 penetrate the main body peripheral wall, and the tip thereof. An agitator 17 having a rotary blade 24 and a drive air pipe 8 are provided in the. The drive air pipe 8 is composed of an aeration air pipe 21, an upper pinch valve air pipe 20, and a lower pinch bar air pipe 22. Further, a measuring tank 23 is formed in the detection unit body 3a, and upper and lower measuring tanks 23 are provided with two pinch valves 19 and 18 which are operated by air pipes 20 and 22, respectively. ing. 6 is a DO signal cable and 7 is a stirrer cable.

また、検出部3に接続する制御部15は第4図に示すよう
にDO電極16からの信号を増幅するDO増幅器9と、DO増幅
器9のDO信号より呼吸速度を演算する呼吸速度変換器11
と、演算した結果を出力する指示・出力部12と、測定の
工程を制御するシーケンス制御回路10と、シーケンス制
御回路10よりの制御信号を空気圧信号に変換する電/空
変換部13と、電/空変換部13および検出部3のばつ気用
空気管8に空気を供給する空気源14とから構成されてい
る。
Further, as shown in FIG. 4, the control unit 15 connected to the detection unit 3 includes a DO amplifier 9 that amplifies a signal from the DO electrode 16, and a respiratory rate converter 11 that calculates a respiratory rate from the DO signal from the DO amplifier 9.
An instruction / output unit 12 for outputting the calculation result, a sequence control circuit 10 for controlling the measurement process, an electric / pneumatic conversion unit 13 for converting a control signal from the sequence control circuit 10 into a pneumatic signal, The air / air conversion unit 13 and the air source 14 for supplying air to the aeration air tube 8 of the detection unit 3.

つぎに、第5図の工程図に従つて各部の動作を説明す
る。
Next, the operation of each part will be described with reference to the process chart of FIG.

(1)採水工程では、上部,下部のピンチバルブ19,18
を開き、検出部本体3aのばつ気用空気管21より検水中に
ばつ気し、気泡ポンプ作用(エアリフトポンプ)により
検水が、検水吸込口4より採水されて、検水吐出口5よ
り排水される。
(1) In the water sampling process, upper and lower pinch valves 19 and 18
Open, and the test water is aerated by the aeration air tube 21 of the detection unit main body 3a, and the test water is taken from the test water suction port 4 by the bubble pump action (air lift pump), and the test water discharge port 5 Better drained.

(2)ばつ気工程では、上部ピンチバルブ19は開いたま
まで、下部ピンチバルブ18を閉じ、攪拌機17で測定槽23
内の検水を攪拌しながらばつ気し、検水の溶存酸素濃度
が所定の濃度(例えば5mgO2/l)に達したら次の脱気工
程にうつる。
(2) In the aeration process, the upper pinch valve 19 remains open, the lower pinch valve 18 is closed, and the agitator 17 is used to measure the measuring tank 23.
The test water inside is aerated while stirring, and when the dissolved oxygen concentration of the test water reaches a predetermined concentration (for example, 5 mgO 2 / l), the next degassing step is performed.

(3)脱気工程では、上部ピンチバルブ19は開,下部ピ
ンチバルブ18は閉のままで、ばつ気と攪拌を停止し、測
定槽12内に残留する気泡を抜く。
(3) In the degassing step, the upper pinch valve 19 is kept open and the lower pinch valve 18 is kept closed to stop the aeration and stirring and remove the bubbles remaining in the measuring tank 12.

(4)測定工程では、上下部のピンチバルブ19,18を閉
じ、ばつ気を停止したままで、測定槽12内の検水を攪拌
しながら、その溶存酸素濃度の減少をDO電極16で検出す
る。
(4) In the measurement process, the DO electrode 16 detects the decrease in the dissolved oxygen concentration while the pinch valves 19 and 18 at the upper and lower parts are closed and the aeration is stopped while stirring the test water in the measuring tank 12. To do.

上記測定工程において検出される溶存酸素濃度の検出曲
線の例を第7図に示す。同図において、符号で示す区
間が測定工程の溶存酸素消費曲線であり、ほぼ直線的に
減少すると仮定すれば、あらかじめ設定した2つの溶存
酸素濃度DO1(符号で示す)とDO2(符号で示す)の
時間T1(符号で示す)とT2(符号で示す)を測定す
れば、呼吸速度は次式で与えられる。
An example of the detection curve of the dissolved oxygen concentration detected in the above measurement step is shown in FIG. In the same figure, the section indicated by the reference numeral is the dissolved oxygen consumption curve in the measurement process, and assuming that it decreases almost linearly, two preset dissolved oxygen concentrations DO1 (shown by the reference numeral) and DO2 (shown by the reference numeral) are set. If the time T1 (indicated by a sign) and T2 (indicated by a sign) of is measured, the respiration rate is given by the following equation.

(ただし、DO1とDO2の単位はmgO2/l、T1,T2の単位はh
とする。) 以上が従来の呼吸速度測定装置の動作で、測定工程の溶
存酸素曲線をDO電極16で検出し、DO増幅器16で増幅し、
呼吸速度変換器11において、前記の(1)式によつて呼
吸速度を演算するものである。なお、このような呼吸速
度測定装置については、本出願人が先に実願昭56−1084
39号として出願している。
(However, the units of DO1 and DO2 are mgO 2 / l, and the units of T1, T2 are h
And ) The above is the operation of the conventional respiration rate measurement device, the dissolved oxygen curve in the measurement process is detected by the DO electrode 16, and amplified by the DO amplifier 16.
The respiration rate converter 11 calculates the respiration rate according to the above equation (1). Regarding such a respiratory rate measuring device, the applicant of the present invention has previously filed Japanese Patent Application No. 56-1084.
I am applying for No. 39.

D.発明が解決しようとする問題点 従来の呼吸速度測定装置の問題点は呼吸速度変換器11に
ある。すなわち、従来の呼吸速度変換器11は測定工程で
の溶存酸素消費曲線(第7図)がほぼ直線的に減少す
ると仮定して(1)式を適用している。しかし、溶存酸
素消費曲線は常に直線的に減少するとは限らず、ばつ気
槽1の水質によつては第8図に示したように溶存酸素消
費曲線の途中に屈曲点をもつ場合がある。ここで、従来
の呼吸速度変換器11で呼吸速度を求めると、 (但し、第8図においてはT3は符号で、T4は符号
で、T5は符号で示す) となるが、本当の呼吸速度は、溶存酸素消費曲線(第8
図の)の最初の直線区間の傾きとするのが正しいの
で、本当の呼吸速度は となる。しかし、従来の呼吸速度変換器では、屈曲線が
あつても無視されてしまうので、屈曲線をもつ溶存酸素
消費曲線を与えるような水質では、測定される呼吸速度
は常に真の呼吸速度よりも小さい値となる。すなわち、 である。
D. Problems to be Solved by the Invention The problem of the conventional respiratory rate measuring device lies in the respiratory rate converter 11. That is, the conventional respiratory rate converter 11 applies the equation (1) on the assumption that the dissolved oxygen consumption curve (FIG. 7) in the measurement process decreases almost linearly. However, the dissolved oxygen consumption curve does not always decrease linearly, and depending on the water quality of the aeration tank 1, there may be a bending point in the middle of the dissolved oxygen consumption curve as shown in FIG. Here, when the respiratory rate is calculated by the conventional respiratory rate converter 11, (However, in FIG. 8, T3 is a code, T4 is a code, and T5 is a code), but the true respiration rate is the dissolved oxygen consumption curve (8
Since it is correct to use the slope of the first straight line segment (in the figure), the true respiration rate is Becomes However, in the conventional respiration rate converter, even if there is a bending line, it is ignored, so in the water quality that gives a dissolved oxygen consumption curve with a bending line, the measured respiration rate is always higher than the true respiration rate. It will be a small value. That is, Is.

本発明は、従来の呼吸速度測定方法において、溶存酸素
消費曲線より呼吸速度を演算する呼吸速度変換器の問題
点を解決すべく発明された呼吸速度変換器を備えた新し
い測定方法を提案することを目的とする。
The present invention proposes a new measuring method provided with a respiratory rate converter invented in order to solve the problems of the conventional respiratory rate measuring method, in which the respiratory rate is calculated from the dissolved oxygen consumption curve. With the goal.

E.問題点を解決するための手段 まず、本発明に用いられる呼吸速度変換器の要点を述べ
ると、 (1)本呼吸速度変換器は第1図のに示したような屈
曲点をもつ溶存酸素消費曲線に対して、その屈曲点を検
出し直線で近似可能な範囲の起点(第1図の)TSと終
点(第1図の)TEを決定する機能を持つている。
E. Means for Solving the Problems First, the main points of the respiratory rate converter used in the present invention will be described. (1) This respiratory rate converter is dissolved with a bending point as shown in FIG. The oxygen consumption curve has a function of detecting its inflection point and determining a starting point (Fig. 1) TS and an ending point (Fig. 1) TE within a range that can be approximated by a straight line.

(2)同じく本呼吸速度変換器は上記直線近似可能範囲
TS〜TE間の溶存酸素消費データを用いて最小二乗法によ
り近似直線(第1図の)を求める機能をもつている。
近似直線を式で表わすと、 DO=A+BT …(5) となる。ただし DO:溶存酸素濃度(mgO2/l) A :定数(mgO2/l) B :直線の傾き(mgO2/l.h) T :時間(h) ここで、溶存酸素消費曲線の呼吸速度は、近似曲線(第
1図)の傾きそのものであるから、 呼吸速度(mgO2/l.h)=-B …(6) となり、これは第8図の例でいえば、式(3)に相当す
る。したがつて、本発明の呼吸速度変換器によれば、溶
存酸素消費曲線が屈曲点をもつ場合でも、真の呼吸速度
を求めることができる。
(2) Similarly, this breathing rate converter has the above linear approximation range
It has a function to obtain an approximate straight line (in Fig. 1) by the least squares method using the dissolved oxygen consumption data between TS and TE.
If the approximate straight line is expressed by an equation, DO = A + BT (5). However, DO: dissolved oxygen concentration (mgO 2 / l) A: constant (mgO 2 / l) B: linear slope (mgO 2 / lh) T: time (h) Here, the respiration rate of the dissolved oxygen consumption curve is since the slope itself approximation curve (FIG. 1), respiration rate (mgO 2 / lh) = - B ... (6) next, which in the example of FIG. 8, corresponding to formula (3). Therefore, according to the respiratory rate converter of the present invention, the true respiratory rate can be obtained even when the dissolved oxygen consumption curve has a bending point.

しかして、本発明は活性汚泥による下水処理システムの
ごとき好気的条件下での微生物の呼吸速度を、呼吸速度
変換器を用いて溶存酸素消費曲線より呼吸速度を演算す
る呼吸速度測定方法において、呼吸速度変換器により溶
存酸素消費曲線の屈曲点を検出し、直線近似可能な範囲
を設定し、その範囲の溶存酸素消費データを用いて近似
直線式を計算し、その傾きにより呼吸速度を演算するこ
とを特徴とする呼吸速度測定方法である。
Therefore, the present invention, the respiration rate of microorganisms under aerobic conditions such as a sewage treatment system by activated sludge, in the respiration rate measurement method of calculating the respiration rate from the dissolved oxygen consumption curve using a respiration rate converter, Detect the inflection point of the dissolved oxygen consumption curve with a respiratory rate converter, set a range that can be approximated to a straight line, calculate an approximate linear equation using the dissolved oxygen consumption data in that range, and calculate the respiratory rate from the slope. It is a respiratory rate measuring method characterized by the above.

G.実施例 本発明の実施例を第1図〜第3図にもとづいて説明す
る。
G. Example An example of the present invention will be described with reference to FIGS.

第2図に示す呼吸速度変換器11において、測定工程に入
るとシーケンス制御回路10より測定工程信号32がマイク
ロコンピユータより成る中央処理回路27に入り、測定動
作を開始する。測定動作は次のような順序で行なわれ
る。
In the respiratory rate converter 11 shown in FIG. 2, when the measurement process is started, the measurement process signal 32 from the sequence control circuit 10 enters the central processing circuit 27 composed of a microcomputer to start the measurement operation. The measurement operation is performed in the following order.

(1)中央処理回路27はDO増幅器9からの溶存酸素濃度
信号30を所定時間間隔(一般には0.1秒から10秒毎)で
読み込み、A/D変換回路26でデジタル信号にしてから記
憶回路28に記憶させる。また、読み込み時の時間データ
も記憶させる。この処理を測定工程が終了するまでくり
かえしつづけ、溶存酸素消費曲線のデータを記憶回路に
記憶させる。
(1) The central processing circuit 27 reads the dissolved oxygen concentration signal 30 from the DO amplifier 9 at a predetermined time interval (generally every 0.1 to 10 seconds), converts it into a digital signal by the A / D conversion circuit 26, and then the storage circuit 28. To memorize. Also, the time data at the time of reading is stored. This process is repeated until the measurement step is completed, and the dissolved oxygen consumption curve data is stored in the memory circuit.

(2)測定工程が終了したら、中央処理回路27は、記憶
したデータより直線で近似可能な範囲を決定する。
(2) When the measurement process is completed, the central processing circuit 27 determines a range that can be approximated by a straight line from the stored data.

(3)次に中央処理回路27は直線近似可能範囲の溶存酸
素消費データより、最小二乗法の計算により、近似直線
の式を求め、この傾きから呼吸速度を決定し、出力回路
29より出力する。
(3) Next, the central processing circuit 27 obtains the equation of the approximate straight line from the dissolved oxygen consumption data in the linear approximation possible range by the calculation of the least squares method, determines the respiratory rate from this slope, and outputs the output circuit.
Output from 29.

次に、直線近似可能な範囲の決定方法と近似直線の計算
方法を第3図を参照して説明する。第3図は測定工程の
部分の溶存酸素消費曲線を示したもので、直線近似可能
範囲の起点DOsとすると、DOsの溶存酸素濃度をYs
その時の時間をXsとする。同様に終点DOeの溶存酸
素濃度をYe、時間をXe、さらに曲線上の任意の点を
DOnその前後のデータをそれぞれDOn-1DOn+1とす
ると、溶存酸素濃度はそれぞれYnYn-1Yn+1とな
り、時間はそれぞれXnXn-1Xn+1となる。ここで、
DOnが直線近似可能範囲内にある時の条件は、 となる。ここで、Lは任意の点DOnの前後の曲線の傾き
の比であり、L=1の時はDOn-1,DO,DOn+1の3点は直線
にあることになる。しかし、実際の溶存酸素消費曲線は
直線近似可能範囲でも完全な直線ではないから、本実施
例に係る呼吸速度変換器11では、 を使用している。ここで、αは許容誤差で、呼吸速度測
定では経験上α=0.01からα=0.50の間に設定すると良
好である。したがつて、測定工程で、記憶回路28に記憶
した全データに対して測定開始から測定終了まで、一つ
ずつデータをずらしながら(8)式を適用すると、
(8)式が連続して成立する区間が直線近似可能範囲で
ある。
Next, a method of determining a range where straight lines can be approximated and a method of calculating approximate straight lines will be described with reference to FIG. Fig. 3 shows the dissolved oxygen consumption curve in the measurement process part. If the starting point DOs in the linear approximation range is the dissolved oxygen concentration of DOs,
The time at that time is Xs. Similarly, the dissolved oxygen concentration at the end point DOe is Ye, the time is Xe, and any point on the curve is
If the data before and after DOn are DOn -1 DOn +1 respectively, the dissolved oxygen concentration will be YnYn -1 Yn +1 and the time will be XnXn -1 Xn +1 respectively. here,
The condition when DOn is within the linear approximation range is Becomes Here, L is the ratio of the slopes of the curves before and after the arbitrary point DOn, and when L = 1, the three points DOn −1 , DO, DOn +1 are on a straight line. However, since the actual dissolved oxygen consumption curve is not a perfect straight line even in the linear approximate range, in the respiratory rate converter 11 according to the present embodiment, Are using. Here, α is a permissible error, and it is empirically preferable to set it between α = 0.01 and α = 0.50 in the measurement of respiratory rate. Therefore, in the measurement process, if the formula (8) is applied while shifting the data one by one from the start of measurement to the end of measurement for all the data stored in the memory circuit 28,
The section in which the equation (8) is continuously satisfied is the linear approximation possible range.

そこで、本実施例に係る呼吸速度変換器11では測定開始
のデータから(8)式を適用して最初に(8)式を満足
する点のDOnを起点DOsとして決めている。さらに終点DO
eは直線近似範囲に入つてから最初に次式を満足する点
の1つ前のデータをDOeと決めている。すなわち、 である。
Therefore, in the respiratory rate converter 11 according to the present embodiment, the equation (8) is applied from the measurement start data, and the point DOn that satisfies the equation (8) is first determined as the starting point DOs. Further end point DO
For e, the data immediately before the point that satisfies the following equation after entering the linear approximation range is determined as DOe. That is, Is.

以上の方法によつて定めたDOsからDOeの間のデータを用
いて、次に最小二乗法を用いて、近似直線の式を求め
る。すなわち、DOsからDOe間の溶存酸素濃度のデータを
Yi,時間をXi,データ数をM個とすると、それぞれの平均
値は次式で与えられる。
Using the data between DOs and DOe determined by the above method, the least squares method is then used to find the equation of the approximate straight line. That is, the data of dissolved oxygen concentration between DOs and DOe
When Yi, time is Xi, and the number of data is M, the average value of each is given by the following equation.

次にXi,Yiの積和Sxyを計算する。 Next, the product sum Sxy of Xi and Yi is calculated.

次にXiの平方和Sxxを計算する。 Next, calculate the sum of squares Sxx of Xi.

すると、傾きBは、 B=Sxy/Sxx …(14) となり、Aは A=−B …(15) で与えられる。ここで、(6)式より呼吸速度は、次式
で算出される。
Then, the slope B becomes B = Sxy / Sxx (14), and A is given by A = -B (15). Here, the respiration rate is calculated by the following equation from the equation (6).

呼吸速度(mgO2/l.h)=−B=−(Sxy/Sxx) …(16) H.発明の効果 以上の説明から明らかなように、従来の呼吸速度変換方
法では、測定した溶存酸素消費曲線が屈曲点を持つよう
な水質の検水を測定した場合には正確な呼吸速度を演算
することはできなかつたが、本発明による呼吸速度変換
方法によれば、屈曲点を検出し、直線近似可能な範囲を
定め、その範囲の近似直線を計算して、その傾きより、
呼吸速度を演算するので、常に正確な呼吸速度を算出
し、出力することができるものである。
Respiration rate (mgO 2 / lh) = - B = - (Sxy / Sxx) ... (16) As is apparent from H. effect the above description of the invention, the conventional respiration rate conversion method, the dissolved oxygen consumption curves measured Although it was not possible to calculate an accurate respiratory rate when measuring a water quality test water having a bending point, according to the respiratory rate conversion method of the present invention, the bending point is detected and a linear approximation is performed. Determine the possible range, calculate an approximate straight line in that range, and from the slope,
Since the respiration rate is calculated, an accurate respiration rate can always be calculated and output.

【図面の簡単な説明】[Brief description of drawings]

第1図は呼吸測定例の説明図、第2図は本発明に係る呼
吸速度変換器の説明図、第3図は溶存酸素消費曲線図、
第4図は従来の呼吸測定装置の説明図、第5図は呼吸測
定工程図、第6図は検出部本体の断面詳細図、第7図と
第8図は溶存酸素濃度の検出曲線の2つの例を示す図で
ある。 11…呼吸速度変換器、26…A/D変換回路、27…中央処理
回路、28…記憶回路、29…出力回路、30…溶存酸素濃度
信号、31…呼吸速度出力、32…測定工程信号。
FIG. 1 is an explanatory diagram of an example of respiration measurement, FIG. 2 is an explanatory diagram of a respiratory rate converter according to the present invention, FIG. 3 is a dissolved oxygen consumption curve diagram,
FIG. 4 is an explanatory view of a conventional respiration measuring device, FIG. 5 is a respiration measuring process diagram, FIG. 6 is a detailed sectional view of the main body of the detecting portion, and FIGS. 7 and 8 are detection curves of dissolved oxygen concentration 2 It is a figure which shows two examples. 11 ... Respiratory rate converter, 26 ... A / D conversion circuit, 27 ... Central processing circuit, 28 ... Memory circuit, 29 ... Output circuit, 30 ... Dissolved oxygen concentration signal, 31 ... Respiratory rate output, 32 ... Measuring process signal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−21544(JP,A) 特開 昭58−131519(JP,A) 特公 昭52−23823(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-21544 (JP, A) JP-A-58-131519 (JP, A) JP-B-52-23823 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】活性汚泥による下水処理システムのごとき
好気的条件下での呼吸速度を、呼吸速度変換器を用いて
溶存酸素消費曲線より呼吸速度を演算する呼吸速度測定
方法において、 前記呼吸速度変換器により溶存酸素消費曲線を得る際
に、呼吸速度変換器内に設けられた中央処理回路に測定
工程信号が入力されると溶存酸素濃度信号を読み込み、
その信号を記憶回路に読み込み時の時間データとともに
測定工程が終了するまで記憶させ、その記憶データの全
データに対して測定開始から測定終了まで、一つずつデ
ータをずらしながら曲線の傾きの比を表す式の1±α
(α:許容誤差)が連続して成立する直線近似可能範囲
を決定した後、その範囲の溶存酸素消費データを用いて
近似直線式を計算し、その傾きにより呼吸速度を演算す
ることを特徴とする呼吸速度測定方法。
1. A respiratory rate measuring method for calculating a respiratory rate under an aerobic condition such as a sewage treatment system using activated sludge from a dissolved oxygen consumption curve using a respiratory rate converter, wherein the respiratory rate is When obtaining the dissolved oxygen consumption curve by the converter, when the measurement process signal is input to the central processing circuit provided in the respiratory rate converter, the dissolved oxygen concentration signal is read,
The signal is stored in the memory circuit together with the time data at the time of reading until the measurement process is completed, and the ratio of the slope of the curve is shifted from the start of the measurement to the end of the measurement with respect to all the data in the stored data. 1 ± α of the expression
(Α: permissible error) After determining the linear approximation possible range that is continuously established, the approximate linear equation is calculated using the dissolved oxygen consumption data in that range, and the respiratory rate is calculated from the slope. Respiratory rate measurement method.
JP60238950A 1985-10-25 1985-10-25 Respiration rate measurement method Expired - Lifetime JPH0731189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60238950A JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60238950A JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Publications (2)

Publication Number Publication Date
JPS6298256A JPS6298256A (en) 1987-05-07
JPH0731189B2 true JPH0731189B2 (en) 1995-04-10

Family

ID=17037695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60238950A Expired - Lifetime JPH0731189B2 (en) 1985-10-25 1985-10-25 Respiration rate measurement method

Country Status (1)

Country Link
JP (1) JPH0731189B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69405165T2 (en) * 1993-06-24 1998-01-02 Boc Gases Australia Ltd Method and device for controlled biological wastewater treatment
JP6563681B2 (en) * 2015-05-08 2019-08-21 シスメックス株式会社 Sample analyzer, blood coagulation analyzer, sample analysis method, and computer program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974894A (en) * 1975-08-18 1976-08-17 Wenger Corporation Portable riser
JPS5821544A (en) * 1981-07-31 1983-02-08 Japan Spectroscopic Co Measuring method for chemical reaction rate
JPS58131519A (en) * 1982-10-18 1983-08-05 Hitachi Ltd Supervising method of vibration of rotating body

Also Published As

Publication number Publication date
JPS6298256A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
US4330385A (en) Dissolved oxygen measurement instrument
CN107207301B (en) Method for controlling aeration amount in activated sludge
US4314969A (en) Submersible respirometer
JPH0731189B2 (en) Respiration rate measurement method
US5518893A (en) Quick biochemical oxygen demand test and apparatus for the same
JPS62254897A (en) Biomass oxygen treatment apparatus
JP2513157B2 (en) Respiration rate measurement method
JP4208154B2 (en) BOD measuring method and apparatus
CN211620509U (en) Activated sludge aerobic respiration rate on-line detection equipment in sewage treatment system
JPS5999353A (en) Method and apparatus for measuring bod
JP3687233B2 (en) Toxicity evaluation method for activated sludge
CN111744366A (en) Device and method for testing oxygen transfer performance of MABR (moving active biofilm reactor) membrane
JP2952282B1 (en) Wastewater treatment control method
JP3467905B2 (en) How to measure respiration rate
JPH11513791A (en) Method and apparatus for calculating biological oxygen demand of wastewater
CN117645369A (en) Method and device for real-time online in-situ determination of heterotrophic bacteria yield coefficient
JPH0224342B2 (en)
JP3567453B2 (en) Activity evaluation test equipment
JP3637819B2 (en) Waste water nitrification method
JP2870906B2 (en) Nitrification activity measurement method
CN220650641U (en) Biochemical pool oxygen consumption detection device
JP3814936B2 (en) Method for evaluating nitrification inhibition of activated sludge
CN117969062A (en) Method and system for measuring oxygenation performance of aerator
EP0721512A1 (en) Quick biochemical oxygen demand test and apparatus for the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term