JPS5999353A - Method and apparatus for measuring bod - Google Patents

Method and apparatus for measuring bod

Info

Publication number
JPS5999353A
JPS5999353A JP20984382A JP20984382A JPS5999353A JP S5999353 A JPS5999353 A JP S5999353A JP 20984382 A JP20984382 A JP 20984382A JP 20984382 A JP20984382 A JP 20984382A JP S5999353 A JPS5999353 A JP S5999353A
Authority
JP
Japan
Prior art keywords
bod
dissolved oxygen
activated sludge
measuring
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20984382A
Other languages
Japanese (ja)
Other versions
JPH0377460B2 (en
Inventor
Yutaka Ishihara
豊 石原
Kazuhiko Tanaka
一彦 田中
Kunio Nakajima
中嶋 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20984382A priority Critical patent/JPS5999353A/en
Publication of JPS5999353A publication Critical patent/JPS5999353A/en
Publication of JPH0377460B2 publication Critical patent/JPH0377460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)

Abstract

PURPOSE:To enable a continuously automatic measurement repeatedly at each of a set time by automatically measuring the required time for biochemical oxidation until the dissolved oxygen density begins to increase rapidly from the time of adding sample water to determine the BOD from a relationship between a BOD value prepared beforehand and the required time for the biochemical oxidation. CONSTITUTION:An activated sludge is automatically sampled into a measuring tank 1 while the sampling level is sensed with a level meter. An agitator 2, a dissolved oxygen density measuring devices 3 and 8, automatic pH adjustors 4 and 7, activated sludge densitometers 3 and 9 and an aerator 5 are attached as fixed in a constant temperature water tank 6 automatically adjusted to 20+ or -1 deg.C. Measured values of pH, DO and activated sludge density are transmitted to an arithmetic section 11. Upon the addition of a sample water, the aeration process is put into operation and a timer 10 starts. As the BOD source added is treated biologically, the dissolved oxygen density increases. When a set value is reached, the timer and the aeration process are stopped and the time is transmitted to an arithmetic circuit which calculates BOD for conversion by an arithmetic expression and the results are displayed digitally 15 and recorded with a recorder 16. Subsequently, a measuring device is cleased up with a cleaning device 14 to complete one process.

Description

【発明の詳細な説明】 本発明は、産業廃水その他の被処理排水の生物化学的酸
素要求量(BOD)を迅速に測定する方法及びその装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for rapidly measuring the biochemical oxygen demand (BOD) of industrial wastewater and other wastewater to be treated.

活性汚泥法による排水処理においては、BODは重要な
管理指標でろって、その測定は適正かつ迅速な処理を行
うのに不可欠である。
In wastewater treatment using the activated sludge method, BOD is an important management index, and its measurement is essential for proper and prompt treatment.

とのBODを測定する標準的方法においては、初期の溶
存酸素量の40〜70%が利用されるので、それに見合
った低いBODの検水にはそのま\適用できるが、その
BOD測定範囲があまシにも狭く、高いBOD検水を測
定するには、水で希釈することが必要である。また、B
ODの測定範囲を広くするだめの対策として、再曝気法
、検圧方式、体積補償方式などが知られているが、いず
れもその測定に約5日間もの長時間を必要とし、その測
定値と5日経過後の全BODとの関係も変動して適正か
つ効率のよい汚水処理を行うことができないという欠陥
があった。またBODの測定を短期間に行うために、ク
ーロメl−I)一方式により、酸素摂取率の変曲点を記
録紙上よシ求める方法が提案されたが、この方法でも測
定結果が得られるまでに0.2〜2日間を要し、自動制
御用出力として利用するには不適である。連続的に排出
される産業廃水などを適正かつ迅速に浄化処理し、特に
自動制御によりこれを行うには、ネックであった上記の
ような]30Dの測定期間を大幅に短縮し、迅速かつ正
確に測定しうる方法を見出すことでアシ、そのような6
111定装置を開発することであった。
In the standard method for measuring BOD, 40-70% of the initial amount of dissolved oxygen is used, so it can be applied as is to water samples with a commensurately low BOD, but the BOD measurement range is To measure extremely narrow and high BOD water samples, it is necessary to dilute with water. Also, B
As countermeasures to widen the OD measurement range, the reaeration method, pressure detection method, and volume compensation method are known, but all of them require a long time of about 5 days to measure, and the measured value and The relationship with the total BOD after 5 days also fluctuated, making it impossible to perform proper and efficient sewage treatment. In addition, in order to measure BOD in a short period of time, a method was proposed in which the inflection point of the oxygen uptake rate was found on a recording paper using the Coulome l-I) equation, but even with this method, measurement results could not be obtained. It takes 0.2 to 2 days for this to occur, making it unsuitable for use as an output for automatic control. The measurement period of the 30D, which was a bottleneck for properly and quickly purifying industrial wastewater that is continuously discharged, and especially for doing so through automatic control, has been significantly shortened, making it quick and accurate. By finding a way to measure such 6
The goal was to develop a 111 constant system.

本発明者らは、このような社会的要望に沿ってBODを
極めて迅速に測定しうる方法について鋭意研究を重ねた
結果、10〜30分程度の短時間で精度よ< BODを
測定する望ましい方法及び装置を見出し、本発明をなす
に至った。
In line with such social demands, the present inventors have conducted intensive research on a method that can measure BOD extremely quickly, and as a result, we have discovered a desirable method for measuring BOD with high accuracy in a short time of about 10 to 30 minutes. and a device, leading to the present invention.

すなわち、本発明は、測定しようとする検水中の有機物
質(BOD成分)によく馴致した活性汚泥の懸濁液を測
定容器に入れ、一定速度でかきまぜながら懸濁液中の溶
存酸素濃度を連続的に計測し、内性呼吸による溶存酸素
濃度がほとんどOppmにあることを確認したのち、こ
の中に検水の一定itを添加して一定一件で曝気し、検
水添加時点から溶存酸素濃度が急激に増加しはじめるま
での生物化学的酸化所狭時間を自動計測し、あらかじめ
作成されたBOD量とその生物化学的酸化断裂時間との
関係からBOD濃度を求めることを特徴とする迅速にB
ODを測定する方法及びその測定に好適な装置として、
曝気装置及びかきまぜ機を備えたBOI)測定槽、pH
自動調節装置、該測定装置内に位置する端子と並列に連
結された溶存酸素濃度自動測定装置、活性汚泥濃度自動
測定装置及びタイマを介して連結された演算部、検水添
加装置、活性汚泥供給装置から成り、上記演算部には溶
存酸素移動効率、活性汚泥内性呼吸量及びJ■S測定値
換算補正係数があらかじめ挿入きれ、演算結果を電送し
て表示、記録するだめの記録部が連接された迅速BO’
D測定装置を提供するものである。
That is, in the present invention, a suspension of activated sludge that is well adapted to the organic substances (BOD components) in the test water to be measured is placed in a measurement container, and the dissolved oxygen concentration in the suspension is continuously measured while stirring at a constant speed. After confirming that the dissolved oxygen concentration due to endogenous respiration is almost at Oppm, a certain amount of sample water is added and aerated at one time, and the dissolved oxygen concentration is decreased from the time of addition of the sample water. B
As a method for measuring OD and a device suitable for the measurement,
BOI) measurement tank with aeration device and stirrer, pH
An automatic adjustment device, an automatic dissolved oxygen concentration measuring device connected in parallel with a terminal located in the measuring device, an automatic activated sludge concentration measuring device and a calculation section connected via a timer, a sample water addition device, and an activated sludge supply. Dissolved oxygen transfer efficiency, activated sludge endogenous respiration rate, and J■S measurement value conversion correction coefficient can be inserted in advance into the above-mentioned calculation section, and a recording section is connected to electronically transmit, display, and record the calculation results. Quick BO'
The present invention provides a D measuring device.

本発明の装置及びこれを用いるBOD測定方法によれば
検水の採取から、測定結果の表示まで、すべて自動化さ
れ、測定誤差も20%以内であり、設定された時間毎に
、連続的かつ自動的に測定を繰返し行うことができる。
According to the device of the present invention and the BOD measurement method using the same, everything from collecting the sample water to displaying the measurement results is automated, the measurement error is within 20%, and the BOD measurement method is performed continuously and automatically at each set time. Measurements can be made repeatedly.

本発明による迅速BOD測定結果に基いて、同様な排水
処理装置に適用し、この出力により各部を自動制御する
ことによシ、常に浄化された処理水がイ↓Iられ、環境
保全に貢献し得るものである。
Based on the rapid BOD measurement results obtained by the present invention, the present invention is applied to similar wastewater treatment equipment, and by automatically controlling each part based on this output, purified treated water is constantly being produced, contributing to environmental conservation. It's something you get.

次に、添付図面によシ本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は、一定量の活性汚泥を曝気しながら検水を加え
た場合のBOD濃度及び溶存酸素(DO)濃度と経過時
間との相関々係を示すグラフで、実線はDO濃度(pp
m )の時間的変化及び点線はBOD濃度の時間的変化
を示している。また図中のA点は、検水の一定量を活性
汚泥に江別した時点、B点は溶存酸素濃度が実質的に最
小となった時点、また0点は曝気処理において有機物の
生物処理が完了した時点で酸素の消費がなく溶存酸素の
濃度は急激に増大しはじめ、BOD濃度は最小となって
保持される時点を指示している。
Figure 1 is a graph showing the correlation between BOD concentration and dissolved oxygen (DO) concentration and elapsed time when a certain amount of activated sludge is aerated and sample water is added.The solid line is the DO concentration (pp.
m ) and the dotted line shows the temporal change in BOD concentration. In addition, point A in the figure is when a certain amount of sample water has been converted into activated sludge, point B is when the dissolved oxygen concentration has substantially reached its minimum, and point 0 is when biological treatment of organic matter is completed during aeration treatment. At this point, no oxygen is consumed and the concentration of dissolved oxygen begins to increase rapidly, indicating the point at which the BOD concentration reaches a minimum and is maintained.

図においては、例えばある一定量の活性汚泥懸濁液を測
定装置に入れ、これを例えばo、5t/m=の一定通気
量で曝気しながら検水一定量を加え(A点)、曝気処理
を継続する。検水添加以前においては、曝気による溶存
酸素の供給と活性汚泥の内性呼吸による溶存酸素の消費
速度との関係から、溶存酸素濃度は3〜7 ppmの範
囲内のある値で一定となる。もしこの範囲外の場合には
、活性汚泥濃度又は通気量を調節することが好ましい。
In the figure, for example, a certain amount of activated sludge suspension is put into a measuring device, and while aerating it at a constant aeration rate of, for example, 5 t/m, a certain amount of test water is added (point A), and the aeration process is performed. Continue. Before the sample water is added, the dissolved oxygen concentration is constant at a certain value within the range of 3 to 7 ppm due to the relationship between the supply of dissolved oxygen by aeration and the rate of consumption of dissolved oxygen by endogenous respiration of activated sludge. If it is outside this range, it is preferable to adjust the activated sludge concentration or aeration amount.

懸濁液が添加されると’I BODの生物処理のため溶
存酸素は消費式れ、はとんどOppmとなる。−万BO
D濃度はA点よシ一定速度で減少し、添加されたBOD
の生物処理が完了した約3時間後にはBOJJ濃度が最
小となり(0点)、その最小値に保たれるとともにDO
濃度は急激に増大しはじめる。このような操作において
は、A点から0点までのBOD濃度は一定速度で減少し
、BOD添加量の寡多はA点よpc点までの処理時間に
比例する。従って一定条件下の生物化学的酸化所要時間
は検水のBOD濃度と直線関係にあり、この関係をあら
かじめ求めでおけば、所要時間から容易にBODを測定
することができる。本発明はこの特定の現象を有効に利
用するものであり、検水のBOD濃度を希薄化して時間
を短縮できる。
When the suspension is added, dissolved oxygen is consumed due to the biological treatment of 'I BOD, and the amount becomes mostly Oppm. -10,000 BO
The D concentration decreases at a constant rate from point A, and the added BOD
Approximately 3 hours after the biological treatment of
The concentration begins to increase rapidly. In such an operation, the BOD concentration from point A to point 0 decreases at a constant rate, and the amount of BOD added is proportional to the processing time from point A to point pc. Therefore, the time required for biochemical oxidation under certain conditions has a linear relationship with the BOD concentration of the sample water, and if this relationship is determined in advance, BOD can be easily measured from the required time. The present invention effectively utilizes this specific phenomenon, and can shorten the time by diluting the BOD concentration of the sample water.

しかし、この方法においては、例えば第1図のグラフに
みられるように、検水添加時の活性汚泥懸濁液中の溶存
酸素濃度は約6.5ppmで、測定終了時点のそれは約
0.5ppmであシ、測定槽容量5tの場合では、約3
0■の溶存酸素量が負の誤差として測定される。この誤
差は測定精度を低下させるので極めて不都合である。し
かしこの誤差は、末 検水添加時まで曝気を停止し、活性汚泥をか舜るだけの
状態に保ってその内性呼吸により測定槽中の溶存酸素濃
度を実質的にOppmとし、これをスタート点とするこ
とにより小さくしうろことがわかった。すなわち、この
状態の活性汚泥に検水を添加し、同時に曝気を開始する
ときは、その開始時点(B点)から溶存酸素は最小値に
保たれ、このB点から0点までの時間を自動計測するこ
とにより、測定開始時点と終了時点における溶存酸素濃
度の差を減少させることができ、測定誤差を最小にする
ことができる。
However, in this method, for example, as shown in the graph of Figure 1, the dissolved oxygen concentration in the activated sludge suspension when the sample water is added is about 6.5 ppm, and at the end of the measurement it is about 0.5 ppm. In the case of a measuring tank capacity of 5 tons, approximately 3
A dissolved oxygen amount of 0 ■ is measured as a negative error. This error is extremely disadvantageous since it reduces measurement accuracy. However, this error can be solved by stopping aeration until the final test water is added, keeping the activated sludge in a state that only covers it, and bringing the dissolved oxygen concentration in the measurement tank to substantially Oppm through internal respiration. It was found that by making it a dot, it became smaller. In other words, when adding test water to activated sludge in this state and starting aeration at the same time, dissolved oxygen is kept at the minimum value from the starting point (point B), and the time from point B to point 0 is automatically set. By measuring, the difference in dissolved oxygen concentration between the start and end of the measurement can be reduced, and measurement errors can be minimized.

まだ、第2図は、本発明の測定方法を実施するための装
置の構成を示す系統図で、BOD測定槽1にはかきまぜ
機2、及び各種検出端3,4が取り付けられ、底部には
曝気装置5から送られる空気を放出する多数の小穴を有
する部材が設置され、測定槽1は恒温槽6中に配置され
ている。また、])H自動調節装置7は上記検出端4に
連結され、他の検出端3は溶存酸素濃度測定装置8、活
性汚泥濃度計9及びタイマー10にパラレルに連結され
て、これら8,9及び10はさらに演算部11に水 連結されている。また検瑳添加装置12、活性汚泥採取
装置13及び測定槽洗浄装置14は、測定装置1内に開
放口を有する管に連結され、測定装置への活性汚泥懸濁
液、検水、洗浄水の供給がこの管で行いうるように設計
されている。
Still, FIG. 2 is a system diagram showing the configuration of an apparatus for carrying out the measurement method of the present invention, in which a stirrer 2 and various detection ends 3 and 4 are attached to the BOD measurement tank 1, and a A member having a large number of small holes for releasing air sent from the aeration device 5 is installed, and the measurement tank 1 is placed in a constant temperature tank 6. ])H automatic adjustment device 7 is connected to the detection end 4, and the other detection end 3 is connected in parallel to a dissolved oxygen concentration measuring device 8, an activated sludge concentration meter 9, and a timer 10. and 10 are further water-coupled to the calculation unit 11. The slag addition device 12, activated sludge collection device 13, and measurement tank cleaning device 14 are connected to a pipe having an open port inside the measurement device 1, and are used to supply activated sludge suspension, sample water, and washing water to the measurement device. It is designed so that the supply can take place through this tube.

演算部11には、酸素移動効率、活性汚泥内性呼吸量、
測定槽容量、検水採取量、本測定値をJIS測定値に換
算するだめの補正係数などがあらかじめ人為的に入力さ
れていて、演算部は下記式により演算を行い、得られた
BODはデジタル表示装置15及び記録計16に表示さ
れ記録される。
The calculation unit 11 calculates oxygen transfer efficiency, activated sludge internal respiration rate,
The measurement tank capacity, the amount of water sampled, the correction coefficient for converting the actual measurement value to the JIS measurement value, etc. are artificially input in advance, and the calculation section performs calculations according to the following formula, and the obtained BOD is digitalized. It is displayed and recorded on the display device 15 and recorder 16.

演算式は次のとおりである。The calculation formula is as follows.

((TXDyづ1xS−WxB))x−F−BOD(p
pm)T ; BOD添加より処理完了迄の時間(秒)
D ;酸素移動効率(”t Oz / see )SW
;活性汚泥量Cj> B;活性汚泥12が1秒間に消費する溶存酸素量(り0
2/θθc/MLSS−2) 11本測定値をJIS測定値に換算するだめの補正係数 S、検水採取量(Kq) 次に、このような構成の測定装置を用いて検水のBOD
を測定する方法の概要を説明する。
((TXDyzu1xS-WxB))x-F-BOD(p
pm)T; Time from BOD addition to completion of treatment (seconds)
D; Oxygen transfer efficiency (tOz/see)SW
; Activated sludge amount Cj>B; Dissolved oxygen amount consumed by activated sludge 12 per second (R0
2/θθc/MLSS-2) Correction coefficient S for converting the 11 measured values to JIS measured values, amount of sampled water (Kq) Next, use the measuring device with this configuration to calculate the BOD of the sampled water.
This section provides an overview of how to measure .

内容5tの測定槽1に、活性汚泥の約3000ppm懸
濁液5tを自動採取し12、採取量はレベ/L、計にて
感知し、攪拌機2(例えば新来化学、スリーワン、モー
ター、600G )、溶存酸素濃度測定装置3.8 (
DKK−7610型)、pH自動調節装置4゜7 (D
KK−6040型)、活性汚泥濃度計3,9(DKK−
3EtD−20)、曝気装置5(世晃産業。
Approximately 3,000 ppm suspension of activated sludge (5 tons) is automatically collected into a measuring tank 1 with a content of 5 tons (12), and the amount collected is detected by a meter at level/L. , dissolved oxygen concentration measuring device 3.8 (
DKK-7610 model), pH automatic regulator 4°7 (D
KK-6040 model), activated sludge concentration meter 3,9 (DKK-
3EtD-20), aeration device 5 (Seiko Sangyo).

MD−ao)を附設して、20℃±1℃に自動調節され
た恒温水槽6(クールニツクス、0TR−3型)中に固
定する。PH、Do 、活性汚泥濃度の各測定値は、演
算部11に電送される。10−〜itの検水添加12と
同時に曝気工程となり、タイマー10(オムロン、デジ
タル、115A−4D)が稼動する。添加されたBOD
源が生物処理されると、溶存酸素濃度が増加する。設定
値(第1図、0点)に達すると、タイマー及び曝気工程
は停止し、この時間(秒)が演算回路に電送され、上記
演算式によ、!7BODが換昇され、デジタル表示15
及び記せ計16に記録される。続いて、洗浄装置14に
よシ測定槽が洗浄され、一工程は終る。
MD-ao) and fixed in a constant temperature water bath 6 (Coolnics, 0TR-3 type) automatically adjusted to 20°C ± 1°C. The measured values of PH, Do, and activated sludge concentration are electronically transmitted to the calculation unit 11. At the same time as the test water addition 12 from 10 to 12, the aeration process begins, and the timer 10 (Omron, Digital, 115A-4D) is activated. Added BOD
When the source is biologically treated, the dissolved oxygen concentration increases. When the set value (Fig. 1, point 0) is reached, the timer and aeration process are stopped, and this time (seconds) is electronically transmitted to the calculation circuit, and according to the above calculation formula, ! 7BOD has been converted and digital display 15
and recorded in a total of 16 notes. Subsequently, the measuring tank is cleaned by the cleaning device 14, and one process is completed.

次に、上記のような構成の本発明の装置を用いた実施例
により本発明をさらに詳細に説明する。
Next, the present invention will be explained in more detail with reference to an example using the apparatus of the present invention configured as described above.

実施例1 各種設定条件として、BOD測定の温度は、JIS−に
−0102工場排水試験方法に準じ、20℃の恒温水槽
中で実験した。また、測定槽の容量は5Lとし、活性汚
泥濃度は2000 ppm以下においては、測定槽中の
溶存酸素濃度をOppmに保つことが困難であシ、まだ
、5000p1)m以上では内性呼吸によるブランク値
が高くなるため、約3000ppmとした。pHは、7
.0〜7.5の範囲に自動中和した。
Example 1 As various setting conditions, the temperature for BOD measurement was conducted in a constant temperature water tank at 20° C. according to the JIS-0102 factory wastewater test method. In addition, the capacity of the measurement tank is 5L, and when the activated sludge concentration is below 2000 ppm, it is difficult to maintain the dissolved oxygen concentration in the measurement tank at Oppm, and when it is above 5000p1)m, it is blank due to endogenous respiration. Since the value becomes high, it was set at about 3000 ppm. pH is 7
.. Automatically neutralized to a range of 0 to 7.5.

内性呼吸量の測定は、内容2Lの密閉容器を用い常法に
より測定した。実験結果は、10〜20my02 /H
r・活性汚泥17の範囲にあった。酸素移動効率の測定
は、亜硫酸水素ナトリウムの一定量を、pH7−7,5
,水温20’C,測定槽答t5t、通気速度O,SZ/
=の条件で行い、その効率は0.09〜0.11 my
02 / secの範囲にめった。
The internal respiration rate was measured by a conventional method using a sealed container with a content of 2 L. The experimental results are 10~20my02/H
r.activated sludge was in the range of 17. To measure oxygen transfer efficiency, a certain amount of sodium bisulfite was added to pH 7-7,5.
, water temperature 20'C, measurement tank answer t5t, ventilation rate O, SZ/
The efficiency was 0.09 to 0.11 my
02/sec range.

用いた活性汚泥は都市下水処理場の返送汚泥を各槽に分
取し、BoD基質として酢酸、メタノール。
The activated sludge used was returned sludge from a municipal sewage treatment plant, separated into each tank, and acetic acid and methanol were used as BoD substrates.

フェノール、グルコース、グルタミン酸の各々1%溶液
をそれぞれ別の水槽に添加し溶存酸素濃度を連続計測し
、BODの生物処理完了にともなう溶存酸素濃度の増加
後、さらに追加して約1が月間馴致したものである。
1% solutions of phenol, glucose, and glutamic acid were each added to separate aquariums, and the dissolved oxygen concentration was continuously measured. After the dissolved oxygen concentration increased with the completion of biological treatment of BOD, additional water was added and the water was acclimatized for about 1 month. It is something.

各有機化合物及びグルタミン酸とグルコースとの等景況
合物のそれぞれ1%水溶液についてのBOD測定結果を
次表にまとめて示す。
The following table summarizes the BOD measurement results for 1% aqueous solutions of each organic compound and the equivalent compound of glutamic acid and glucose.

この表には、有機化合物のBODを、本発明の方法で測
定し、文献などで公表されている従来法と対比して示し
である。容易に生物分解される酢酸・メタノールは、従
来法に近い測定値が得られたがグルタミン酸等は、低い
測定値が得られた。しかし、これらの化合物も再現性ア
シ、補正することによシ真のBODに近い測定値が短時
間に得られることが理解されよう。
This table shows the BOD of organic compounds measured by the method of the present invention in comparison with conventional methods published in literature. For acetic acid and methanol, which are easily biodegradable, measurement values close to those obtained using conventional methods were obtained, but for glutamic acid and other substances, lower measurement values were obtained. However, it will be understood that these compounds also have poor reproducibility, and by making corrections, measured values close to the true BOD can be obtained in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、BOD濃度と溶存酸素濃度と処理時間との相
関々係を示すものであり、図中Aは検水添加点であり、
Bは測定時における検水添加点であり、CはBOD生物
処理完了点を示す。 第2図は、迅速BOD測定装置の構成を示す系統図であ
る。図中の符号は1−測定槽、2−攪拌機、3.4−各
種検出端、5−曝気装置、6−恒温水槽、7−pH自動
調節装置、8−溶存酸素濃度測定装置、9−活性汚泥濃
度計、10−タイマー、11−演算部、12−検水添加
装置、13−活性汚泥採取装置、14−測定槽洗浄装置
、15−デジタル表示装置、16−記録計である。
Figure 1 shows the correlation between BOD concentration, dissolved oxygen concentration, and treatment time, and A in the figure is the test water addition point;
B is the point at which the test water was added at the time of measurement, and C is the point at which BOD biological treatment is completed. FIG. 2 is a system diagram showing the configuration of the rapid BOD measuring device. The symbols in the diagram are 1-Measurement tank, 2-Agitator, 3.4-Various detection ends, 5-Aeration device, 6-Thermostatic water tank, 7-Automatic pH adjustment device, 8-Dissolved oxygen concentration measuring device, 9-Activity These are a sludge concentration meter, 10-timer, 11-computation unit, 12-sample water addition device, 13-activated sludge sampling device, 14-measuring tank cleaning device, 15-digital display device, and 16-recorder.

Claims (1)

【特許請求の範囲】 1 測定しようとする検水中の有機物質によく馴致した
活性汚泥の懸濁液を測定容器に入れ、一定速度でかきま
ぜながら懸濁液中の溶存酸素濃度を連続的に計測し、内
性呼吸による溶存酸素濃度がほとんどOppmにあるこ
とを確認したのち、この中に検水の一定量を添加して一
定条件で曝気し、検水添加時点から溶存酸素濃度が急微
に増加しはじめるまでの生物化学的酸化所要時間を自動
計測し、めらかしめ作成されだBODitとその生物化
学的酸化所要時間との関係からBOD濃度を求めること
を特徴とする迅速にBODを測定する方法。 2 曝気装置及びかきまぜ機を備えたBOD測定槽、p
H自動調節装置、該測定装置内に位置する端子と並列に
連結された溶存酸素濃度自動測定装置、活性汚泥濃度自
動測定装置及びタイマを介して連結された演算部、検水
添加装置、活性汚泥供給装置から成シ、上記演算部には
溶存酸素移動効率、活性汚泥内性呼吸量及びJIS測定
値換算補正係数があらかじめ挿入され、演算結果を電送
して表示記録するだめの記録部が連結された迅速BOD
測定装置。
[Scope of Claims] 1. A suspension of activated sludge that is well adapted to the organic substances in the sample water to be measured is placed in a measurement container, and the dissolved oxygen concentration in the suspension is continuously measured while stirring at a constant speed. After confirming that the dissolved oxygen concentration due to internal respiration is almost at Oppm, a certain amount of sample water is added to the sample water and aerated under certain conditions, and from the time the sample water is added, the dissolved oxygen concentration sharply decreases. Rapid BOD measurement characterized by automatically measuring the time required for biochemical oxidation until it begins to increase, and determining the BOD concentration from the relationship between the smoothed BODit and the time required for biochemical oxidation. Method. 2 BOD measuring tank equipped with an aeration device and a stirrer, p
H automatic adjustment device, automatic dissolved oxygen concentration measuring device connected in parallel with terminals located in the measuring device, automatic activated sludge concentration measuring device and calculation unit connected via a timer, test water addition device, activated sludge It consists of a supply device, dissolved oxygen transfer efficiency, activated sludge internal respiration rate, and JIS measurement value conversion correction coefficient are inserted in advance into the calculation section, and a recording section is connected to electronically transmit and display and record the calculation results. Quick BOD
measuring device.
JP20984382A 1982-11-30 1982-11-30 Method and apparatus for measuring bod Granted JPS5999353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20984382A JPS5999353A (en) 1982-11-30 1982-11-30 Method and apparatus for measuring bod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20984382A JPS5999353A (en) 1982-11-30 1982-11-30 Method and apparatus for measuring bod

Publications (2)

Publication Number Publication Date
JPS5999353A true JPS5999353A (en) 1984-06-08
JPH0377460B2 JPH0377460B2 (en) 1991-12-10

Family

ID=16579534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20984382A Granted JPS5999353A (en) 1982-11-30 1982-11-30 Method and apparatus for measuring bod

Country Status (1)

Country Link
JP (1) JPS5999353A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111759A (en) * 1989-09-27 1991-05-13 Agency Of Ind Science & Technol Method and apparatus for measuring bod
EP0537210A1 (en) * 1990-07-04 1993-04-21 Commw Scient Ind Res Org Continuous rbcod measurement.
US5702951A (en) * 1990-07-04 1997-12-30 Commonwealth Scientific And Industrial Research Organisation Continuous RBCOD measurement
US5976888A (en) * 1998-12-07 1999-11-02 Biochem Technology, Inc. Method for measuring NOx in biochemical processes
US6106718A (en) * 1998-07-01 2000-08-22 Biochem Technology, Inc. Enhanced denitrification process by monitoring and controlling carbonaceous nutrient addition
US6143246A (en) * 1998-08-18 2000-11-07 Biochem Technology, Inc. Apparatus for measuring ammonia in biochemical processes
KR100437662B1 (en) * 2001-10-24 2004-06-30 조승호 System, having multiple functions, for agitating, measuring and analyzing solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953896A (en) * 1972-09-25 1974-05-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953896A (en) * 1972-09-25 1974-05-25

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111759A (en) * 1989-09-27 1991-05-13 Agency Of Ind Science & Technol Method and apparatus for measuring bod
EP0537210A1 (en) * 1990-07-04 1993-04-21 Commw Scient Ind Res Org Continuous rbcod measurement.
US5702951A (en) * 1990-07-04 1997-12-30 Commonwealth Scientific And Industrial Research Organisation Continuous RBCOD measurement
US6106718A (en) * 1998-07-01 2000-08-22 Biochem Technology, Inc. Enhanced denitrification process by monitoring and controlling carbonaceous nutrient addition
US6143246A (en) * 1998-08-18 2000-11-07 Biochem Technology, Inc. Apparatus for measuring ammonia in biochemical processes
US6416652B1 (en) 1998-08-18 2002-07-09 Bio Chem Technology, Inc. Method for measuring ammonia in biochemical processes
US5976888A (en) * 1998-12-07 1999-11-02 Biochem Technology, Inc. Method for measuring NOx in biochemical processes
US6248595B1 (en) 1998-12-07 2001-06-19 Biochem Technology, Inc. Method of measuring a nitrification rate for liquids
KR100437662B1 (en) * 2001-10-24 2004-06-30 조승호 System, having multiple functions, for agitating, measuring and analyzing solution

Also Published As

Publication number Publication date
JPH0377460B2 (en) 1991-12-10

Similar Documents

Publication Publication Date Title
EP0828157A1 (en) Continuous quick measurement of biochemical oxygen demand and apparatus therefor
JP3126273B2 (en) Method and apparatus for rapid biochemical oxygen demand (BOD) measurement
JPS5999353A (en) Method and apparatus for measuring bod
CN102288653A (en) Online biochemical oxygen demand (BOD) detector and detection method of same
TW425477B (en) Apparatus and method for measuring ammonia in biochemical processes
JP3664888B2 (en) BOD biosensor measuring device
US5702951A (en) Continuous RBCOD measurement
JP2001255319A (en) Test method for wastewater treatment
JPWO2007020675A1 (en) BOD measuring method and apparatus
JP2006084240A (en) Wastewater treatment measuring method
EP0537210B1 (en) Continuous rbcod measurement
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
CA2171473C (en) Quick biochemical oxygen demand test and apparatus for the same
JPH0735741A (en) Bod measuring equipment
JP3567453B2 (en) Activity evaluation test equipment
JP3030955B2 (en) BOD measuring device
TWI773233B (en) Method and apparatus for real-time monitoring activity of nitrifying bacteria
JPS62155996A (en) Device for controlling injection of organic carbon source in biological denitrification process
JPS5815027B2 (en) Method and device for detecting and controlling BOD value in wastewater based on wastewater turbidity
JP4695177B2 (en) Control method of excess sludge volume reduction treatment
JPH03111759A (en) Method and apparatus for measuring bod
JPS5852558A (en) Ammonia densitometer
JPH0224342B2 (en)
JPS58221158A (en) Bod measuring device
JP3127776B2 (en) Apparatus and method for monitoring nitrogen removal performance of wastewater