JPS6297318A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6297318A
JPS6297318A JP23800285A JP23800285A JPS6297318A JP S6297318 A JPS6297318 A JP S6297318A JP 23800285 A JP23800285 A JP 23800285A JP 23800285 A JP23800285 A JP 23800285A JP S6297318 A JPS6297318 A JP S6297318A
Authority
JP
Japan
Prior art keywords
silicon film
film
amorphous silicon
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23800285A
Other languages
Japanese (ja)
Inventor
Katsuji Hattori
服部 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23800285A priority Critical patent/JPS6297318A/en
Publication of JPS6297318A publication Critical patent/JPS6297318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the quality degradation of semiconductor elements to be formed due to the temperature by a method wherein during forming an amorphous silicon film by the electron cyclotron resonance CVD, the amorphous silicon film is recrystallized with a laser being repeatedly applied to generate a silicon film, and semiconductor elements are formed in the silicon film. CONSTITUTION:On a substrate 1 such as glass or silicon, an insulating film 2 such as silicon oxide film or silicon nitride film is formed. Then, onto the insulating film 2, an ECR plasma stream 6 such as hydrogen gas of very high activity generated by an electron cyclotron resonance (ECR)-CVD ion source or an argon gas is introduced simultaneously with a reaction gas 7 such as silane gas or disilane gas at the substrate temperature around a room temperature, and they are made to react with each other, thus generating an amorphous silicon film 8 on the insulating film 2. Simultaneously therewith, a laser beam 9 is repeatedly applied to the predetermined pattern of the generated amorphous silicon film 8, thereby recrystallizing the film 8 simultaneously with the generation thereof. And a recrystallized silicon film 10 is eventually obtained, the crystal grain diameter of which has remarkably increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は絶縁基板上で膜形成中に再結晶したシリコン膜
による半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device using a silicon film recrystallized during film formation on an insulating substrate.

従来の技術 近年、非結晶質シリコンの再結晶化は例えば絶縁基板上
あるいは基板上の絶縁膜(以下これらを基板という)上
の非晶質シリコン膜をCWアルゴンレーザビームで必要
な通路面上を走査照射してその照射部位を加熱溶融冷却
することにより再結晶化させる(第32回応用物理m合
講演会予稿集P477.30P−C−4)1どtD方法
がとられており、これによって得られたシリコン膜を使
った半導体装置が研究されている。
Conventional technology In recent years, recrystallization of amorphous silicon has been achieved by, for example, recrystallizing an amorphous silicon film on an insulating substrate or an insulating film on a substrate (hereinafter referred to as a substrate) using a CW argon laser beam on a necessary passage surface. The tD method is used to perform scanning irradiation and heat, melt, and cool the irradiated area to recrystallize it (Proceedings of the 32nd Applied Physics Joint Conference P477.30P-C-4). Semiconductor devices using the obtained silicon film are being researched.

以下図面を参照しながら従来の上記半導体装置を製造す
る手順の一例について説明する。第2図は従来の半導体
装置の基板構造を示す断面図である。第2図において、
1はガラス、シリコンなどの基板、2はこの基板1上に
形成した酸化シリコン膜などの絶縁膜、3はこの絶縁膜
2上にデポジット後、所定のパターンに形成したアモル
ファスシリコン膜、4はこのアモルファスシリコン膜3
のアニールに使用するレーザビーム、6は再結晶化した
シリコン膜である。
An example of a conventional procedure for manufacturing the above semiconductor device will be described below with reference to the drawings. FIG. 2 is a sectional view showing the substrate structure of a conventional semiconductor device. In Figure 2,
1 is a substrate made of glass or silicon, 2 is an insulating film such as a silicon oxide film formed on this substrate 1, 3 is an amorphous silicon film formed in a predetermined pattern after being deposited on this insulating film 2, and 4 is this Amorphous silicon film 3
A laser beam 6 is used for annealing the recrystallized silicon film.

まず、ガラス、シリコンなどの基板1上に酸化シリコン
膜、窒化シリコン膜などの絶縁膜2を形成する。次にこ
の絶縁膜2上にプラズマCVD法などにより基板温度3
00″C程度でアモルファスシリコン膜3を所定の厚み
だけデポジットしこnを所望のパターン状にエツチング
などの方法により加工した後、基板温度2oO〜300
″Cでアモルファスシリコン膜3にレーザビーム4を照
射スる。この際必要とあらば、同様のレーザビーム照射
によりアモルファスシリコン膜3から水素ガスを取り去
る工程を上記レーザビーム4の照射工程の前に記入する
。レーザビーム4をアモルファスシリコン膜3に照射す
ると瞬間的に溶融、再固化して再結晶化が起り結晶粒径
1〜10μm程度のシリコン膜5が得られる。そしてこ
のシリコン膜中に薄膜トランジスタ〜あるいはMO8屋
トランジスタなどの半導体素子を形成する半導体装置が
作製できる。
First, an insulating film 2 such as a silicon oxide film or a silicon nitride film is formed on a substrate 1 made of glass, silicon, or the like. Next, on this insulating film 2, a substrate temperature of 3 is applied using a plasma CVD method or the like.
After depositing the amorphous silicon film 3 to a predetermined thickness at a temperature of about 0.00°C and processing it into a desired pattern by a method such as etching, the substrate temperature is set at 2°C to 300°C.
The amorphous silicon film 3 is irradiated with the laser beam 4 at step C. At this time, if necessary, a step of removing hydrogen gas from the amorphous silicon film 3 by similar laser beam irradiation may be performed before the laser beam 4 irradiation step. When the amorphous silicon film 3 is irradiated with the laser beam 4, it instantaneously melts, re-solidifies, and recrystallizes, resulting in a silicon film 5 with a crystal grain size of about 1 to 10 μm.Then, a thin film transistor is formed in this silicon film. Alternatively, a semiconductor device forming a semiconductor element such as an MO8 transistor can be manufactured.

発明が解決しようとする問題点 しかしながら従来の半導体装置においてはアモルファス
シリコン膜を形成した後レーザビーム照射する為、アモ
ルファスシリコン膜の厚さ方向全体が瞬時に再結晶化す
る為、再結晶化が難かしく、かつ基板温度200〜30
0’Cを必要とするなどの問題点を有していた。
Problems to be Solved by the Invention However, in conventional semiconductor devices, since an amorphous silicon film is formed and then irradiated with a laser beam, the entire thickness of the amorphous silicon film recrystallizes instantly, making recrystallization difficult. and substrate temperature 200~30
It had problems such as requiring 0'C.

本発明は上記問題点に鑑みアモルファスシリコン膜形成
と同時にレーザビーム照射して再結晶化を容易にし、か
つ、この工程を室温付近で行って得られるシリコン膜に
よる半導体装置を提供するものである。
In view of the above-mentioned problems, the present invention provides a semiconductor device using a silicon film obtained by irradiating an amorphous silicon film with a laser beam to facilitate recrystallization at the same time as forming the amorphous silicon film, and performing this process at around room temperature.

問題点を解決するための手段 上記問題点を解決するために本発明の半導体装置は絶縁
基板上あるいは絶縁膜上にエレクトロンサイクロトロン
レゾナンスCVD(以下ECR−CVDと呼ぶ)による
アモルファスシリコン膜を形成中に所定のパターンにレ
ーザを繰り返し照射しつつ上記アモルファスシリコン膜
を再結晶化してその結晶粒径を著しく大きくしたシリコ
ン膜を生成し、このシリコン膜中に半導体素子を形成す
るものである。
Means for Solving the Problems In order to solve the above problems, the semiconductor device of the present invention uses an amorphous silicon film formed on an insulating substrate or an insulating film by electron cyclotron resonance CVD (hereinafter referred to as ECR-CVD). The amorphous silicon film is recrystallized while repeatedly irradiating a laser beam in a predetermined pattern to produce a silicon film with significantly enlarged crystal grain size, and a semiconductor element is formed in this silicon film.

作  用 本発明は上記した構成によって、E CR−CVpによ
って室温付近の基板温度で基板上にアモルファスシリコ
ン膜を生成中にそのアモルファスシリコン膜の所定のパ
ターンにレーザビームを繰り返し照射して再結晶化を繰
り返えすことにより、室温付近で膜生成と同時に再結晶
を完了し、著しく大きな結晶粒径のシリコン膜を得るこ
とができるものである。
According to the above-described structure, the present invention recrystallizes an amorphous silicon film by repeatedly irradiating a laser beam onto a predetermined pattern of the amorphous silicon film while it is being formed on a substrate at a substrate temperature near room temperature by ECR-CVp. By repeating this process, film formation and recrystallization are completed at around room temperature, and a silicon film with a significantly large crystal grain size can be obtained.

実施例 以下本発明の一実施例の半導体装置について図面を参照
しながら説明する。
Embodiment Hereinafter, a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例における半導体装置の基板構
造を示す断面図である0第1図において、6は水素ガス
あるいはアルゴンガスなどのECRプラズマ流、7はシ
ランガスあるいはジシランガスなどの反応用ガス、8は
生成されたアモルファスシリコン膜、9は所定のパター
ンで繰り返し照射されるレーザビーム、10は再結晶化
したシリコン膜である。
FIG. 1 is a cross-sectional view showing the substrate structure of a semiconductor device according to an embodiment of the present invention. In FIG. 8 is a generated amorphous silicon film, 9 is a laser beam repeatedly irradiated with a predetermined pattern, and 10 is a recrystallized silicon film.

次に上記構成の半導体装置の基板構造を用いて、半導体
装置を製造する手順について説明する。まずガラス、シ
リコンなどの基板1上に酸化シリコン膜、窒化シリコン
膜などの絶縁膜2を形成する0次に絶縁膜2上に室温付
近の基板温度でECR−CVDイオン源により生成する
活性度の非常に高い水素ガスあるいはアルゴンガスなど
のECRプラズマ流6と、シランガス(S iH4)あ
るいはジシランガスなどの反応用ガス7を同時に導入し
、相互反応を行なわしめ、絶縁膜2上にアモルファスシ
リコン膜8を生成して行く。これと同時に、生成された
アモルファスシリコン膜8の所定のパターンにレーザビ
ーム9を繰り返し照射することにより、生成と同時に再
結晶化され、最終的に結晶粒径が著しく増大した再結晶
化したシリコン膜10を得る。この場合、レーザビーム
90強度は生成されるアモルファスシリコン膜8の厚み
に応じて変えても良い。
Next, a procedure for manufacturing a semiconductor device using the substrate structure of the semiconductor device having the above configuration will be described. First, an insulating film 2 such as a silicon oxide film or a silicon nitride film is formed on a substrate 1 made of glass or silicon. An ECR plasma flow 6 such as extremely high hydrogen gas or argon gas and a reaction gas 7 such as silane gas (SiH4) or disilane gas are simultaneously introduced to cause a mutual reaction and form an amorphous silicon film 8 on the insulating film 2. I will generate it. At the same time, by repeatedly irradiating a predetermined pattern of the generated amorphous silicon film 8 with a laser beam 9, the resulting amorphous silicon film 8 is recrystallized at the same time as it is generated, and finally a recrystallized silicon film with a significantly increased crystal grain size is formed. Get 10. In this case, the intensity of the laser beam 90 may be changed depending on the thickness of the amorphous silicon film 8 to be produced.

以上のように本実施例によれば、エレクトロンサイクロ
ト・ロンレゾナンスCVDによるアモルファスシリコン
膜形成中にレーザビームを繰り返し照射して再結晶化を
繰り返すため、最終的に結晶粒径を従来より著しく増大
させやすく、室温付近の基板温度で形成と同時に再結晶
化が完了するシリコン膜を得ることができ、このように
して生成された結晶粒径の大きいシリコン膜中にトラン
ジスタなどの半導体素子を低温で形成できるものである
As described above, according to this embodiment, recrystallization is repeated by repeated laser beam irradiation during the formation of an amorphous silicon film by electron cycloresonance CVD, so that the final crystal grain size is significantly increased compared to the conventional method. It is possible to obtain a silicon film that is completely recrystallized at the same time as it is formed at a substrate temperature near room temperature. It is something that can be formed.

なお、以上の実施例では基板として絶縁膜を用いたが、
ガラスなどの絶縁基板そのものでも良い。
Note that in the above embodiments, an insulating film was used as the substrate, but
The insulating substrate itself, such as glass, may also be used.

また、アモルファスシリコン膜の膜厚はレーザビームの
強度あるいは形成する素子に応じて決める必要があるが
通常は0.2〜1μm程度である。また、使用ガスは形
成する素子に応じてジボランガス、フォスフインガスな
どが混入されることは勿論である。
Further, the thickness of the amorphous silicon film needs to be determined depending on the intensity of the laser beam or the element to be formed, but is usually about 0.2 to 1 μm. Furthermore, it goes without saying that diborane gas, phosphine gas, or the like may be mixed into the gas used depending on the element to be formed.

発明の効果 以上のように本発明は、エレクトロンレゾナンスCVD
によるアモルファスシリコン膜形成中にレーザビームを
繰り返し照射してアモルファスシリコン膜の再結晶化を
容易に行うことができるとともに、低温で膜生成と同時
に再結晶化が完了できるので、形成さnる半導体素子の
温度による品質劣化が防げるものである。
Effects of the Invention As described above, the present invention provides electron resonance CVD.
It is possible to easily recrystallize the amorphous silicon film by repeatedly irradiating the laser beam during the formation of the amorphous silicon film, and the recrystallization can be completed at the same time as the film is formed at low temperature, so that the semiconductor device that is formed can be easily recrystallized. This prevents quality deterioration due to temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体装置の基板構
造を示す断面図、第2図は従来の半導体装置の基板構造
を示す断面図である。 1・・・・・・基板、2・・・・・・絶縁膜、6・・・
・・・ECRプラズマル流、7・・・・・・反応用ガス
、8・・・・・・アモルファスシリコン膜、9・・・・
・・レーザビーム、10・・・・・・シリコン膜。
FIG. 1 is a sectional view showing the substrate structure of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the substrate structure of a conventional semiconductor device. 1...Substrate, 2...Insulating film, 6...
... ECR plasmal flow, 7 ... Reaction gas, 8 ... Amorphous silicon film, 9 ...
...Laser beam, 10...Silicon film.

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上あるいは絶縁膜上にエレクトロンサイクロト
ロンレゾナンスCVDによるアモルファスシリコン膜を
形成中に所定のパターンにレーザビームを繰り返し照射
しつつ上記アモルファスシリコン膜を再結晶化したシリ
コン膜と、上記シリコン膜によって形成した半導体素子
を具備することを特徴とする半導体装置。
A silicon film formed by recrystallizing the amorphous silicon film while repeatedly irradiating a laser beam in a predetermined pattern while forming an amorphous silicon film on an insulating substrate or an insulating film by electron cyclotron resonance CVD, and a silicon film formed by the above silicon film. A semiconductor device comprising a semiconductor element.
JP23800285A 1985-10-24 1985-10-24 Semiconductor device Pending JPS6297318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23800285A JPS6297318A (en) 1985-10-24 1985-10-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23800285A JPS6297318A (en) 1985-10-24 1985-10-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6297318A true JPS6297318A (en) 1987-05-06

Family

ID=17023671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23800285A Pending JPS6297318A (en) 1985-10-24 1985-10-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6297318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326064B1 (en) 1991-05-17 2001-12-04 Lam Research Corporation Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6326064B1 (en) 1991-05-17 2001-12-04 Lam Research Corporation Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content

Similar Documents

Publication Publication Date Title
JP2001035806A (en) Manufacture of semiconductor thin film
JP3182893B2 (en) Method for manufacturing thin film transistor
KR19980086477A (en) Semiconductor device manufacturing method and semiconductor device
JPH11145056A (en) Semiconductor material
JP2004140326A (en) Planarization method of thin-film surface
JPH0729823A (en) Fabrication of semiconductor device
JPS5918196A (en) Preparation of thin film of single crystal
JPH0360026A (en) Manufacture of crystalline silicon film
JPS6297318A (en) Semiconductor device
JPH0411722A (en) Forming method of semiconductor crystallized film
JPH0824184B2 (en) Method for manufacturing thin film transistor
JPH01248511A (en) Formation of polycrystal film
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JPH0361335B2 (en)
JPH03284831A (en) Forming method for semiconductor thin-film
JPH0810669B2 (en) Method of forming SOI film
JPH03178124A (en) Manufacture of semiconductor device
JPS60164316A (en) Formation of semiconductor thin film
JPS63224318A (en) Manufacture of substrate for semiconductor device
JP3332645B2 (en) Method for manufacturing polycrystalline semiconductor
JPH0344968A (en) Semiconductor device and manufacture thereof
JPH02187035A (en) Manufacture of semiconductor device
JPH10177954A (en) Method for manufacturing polycrystalline silicon thin film
JPH04373171A (en) Forming method of semiconductor crystal article
JP2771667B2 (en) Method for manufacturing semiconductor device