JPH10177954A - Method for manufacturing polycrystalline silicon thin film - Google Patents

Method for manufacturing polycrystalline silicon thin film

Info

Publication number
JPH10177954A
JPH10177954A JP35256196A JP35256196A JPH10177954A JP H10177954 A JPH10177954 A JP H10177954A JP 35256196 A JP35256196 A JP 35256196A JP 35256196 A JP35256196 A JP 35256196A JP H10177954 A JPH10177954 A JP H10177954A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
amorphous silicon
insulating substrate
hydrogenated amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP35256196A
Other languages
Japanese (ja)
Inventor
Katsuhiko Morosawa
克彦 両澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP35256196A priority Critical patent/JPH10177954A/en
Publication of JPH10177954A publication Critical patent/JPH10177954A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To dehydrogenate an amorphous silicon hydride thin film at a lower temperature. SOLUTION: An amorphous silicon hydride thin film 2 is deposited on an insulating board 1 by plasma CVD, the amorphous silicon hydride thin film 2 on the insulating board 1 is irradiated with carbon monoxide laser beams with a wavelength of approximately 5μm for dehydrogenation. In this case, most of the applied carbon monoxide laser beams are absorbed by the amorphous silicon thin film 2 and the laser beams do not easily reach the insulating board 1. Furthermore, the temperature of the amorphous silicon hydride thin film 2 is relatively low at approximately 300-350 deg.C, and the amorphous silicon hydride thin film 2 can be dehydrogenated at a lower temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は多結晶シリコン薄
膜の製造方法に関する。
The present invention relates to a method for manufacturing a polycrystalline silicon thin film.

【0002】[0002]

【従来の技術】アモルファスシリコン薄膜を多結晶化し
て例えば薄膜トランジスタを製造する方法には、ガラス
基板等からなる絶縁基板上にプラズマCVDにより水素
化アモルファスシリコン薄膜を堆積し、この水素化アモ
ルファスシリコン薄膜を有する絶縁基板を窒素雰囲気中
において450℃程度の温度で1時間程度の熱処理を行
うことにより脱水素処理を行った後、絶縁基板上のアモ
ルファスシリコン薄膜にエキシマレーザを照射すること
によりアモルファスシリコン薄膜を多結晶化して多結晶
シリコン薄膜とし、以下所定の工程を経てこの多結晶シ
リコン薄膜を半導体層とした薄膜トランジスタを製造す
る方法がある。この場合、熱処理を行うことによりアモ
ルファスシリコン薄膜を脱水素処理するのは、エキシマ
レーザ照射時に水素が突沸して欠陥が生じるのを回避す
るためである。
2. Description of the Related Art In a method of producing a thin film transistor by polycrystallizing an amorphous silicon thin film, for example, a hydrogenated amorphous silicon thin film is deposited on an insulating substrate such as a glass substrate by plasma CVD, and the hydrogenated amorphous silicon thin film is deposited. After performing a dehydrogenation process by performing a heat treatment at a temperature of about 450 ° C. for about 1 hour in a nitrogen atmosphere, the amorphous silicon thin film on the insulating substrate is irradiated with an excimer laser to excite the amorphous silicon thin film. There is a method of manufacturing a thin film transistor using the polycrystalline silicon thin film as a semiconductor layer through a predetermined process after polycrystallization to form a polycrystalline silicon thin film. In this case, the reason why the amorphous silicon thin film is dehydrogenated by performing the heat treatment is to avoid occurrence of defects due to bumping of hydrogen at the time of excimer laser irradiation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような多結晶シリコン薄膜の製造方法では、水素化
アモルファスシリコン薄膜を有する絶縁基板を450℃
程度の高温で熱処理を行うことにより脱水素処理するの
で、絶縁基板に縮みや歪みが生じたり、絶縁基板からナ
トリウムイオン等の不純物が漏れ出し、これらが原因し
て薄膜トランジスタの特性を劣化させることがあるとい
う問題があった。この発明の課題は、より低温で水素化
アモルファスシリコン薄膜を脱水素処理することができ
るようにすることである。
However, in such a conventional method of manufacturing a polycrystalline silicon thin film, an insulating substrate having a hydrogenated amorphous silicon thin film is heated at 450 ° C.
Since the dehydrogenation treatment is performed by performing heat treatment at a high temperature, shrinkage or distortion may occur in the insulating substrate, or impurities such as sodium ions may leak from the insulating substrate, which may deteriorate the characteristics of the thin film transistor. There was a problem. An object of the present invention is to enable a hydrogenated amorphous silicon thin film to be dehydrogenated at a lower temperature.

【0004】[0004]

【課題を解決するための手段】この発明は、絶縁基板上
にプラズマCVDにより水素化アモルファスシリコン薄
膜を堆積し、前記絶縁基板上の前記水素化アモルファス
シリコン薄膜に対してSi−H結合の伸縮モードに相当
するエネルギーのレーザを照射して脱水素処理を行った
後、前記絶縁基板上のアモルファスシリコン薄膜に対し
てエキシマレーザを照射することによりアモルファスシ
リコン薄膜を多結晶化して多結晶シリコン薄膜とするも
のである。
According to the present invention, a hydrogenated amorphous silicon thin film is deposited on an insulating substrate by plasma CVD, and the hydrogenated amorphous silicon thin film on the insulating substrate is subjected to a stretching mode of Si-H bond. After dehydrogenation treatment is performed by irradiating a laser having an energy corresponding to the above, the amorphous silicon thin film on the insulating substrate is irradiated with an excimer laser to polycrystallize the amorphous silicon thin film into a polycrystalline silicon thin film. Things.

【0005】この発明によれば、絶縁基板上の水素化ア
モルファスシリコン薄膜に対してSi−H結合の伸縮モ
ードに相当するエネルギーのレーザを照射して脱水素処
理を行っているので、照射されたレーザの大半がアモル
ファスシリコン薄膜に吸収され、絶縁基板の温度はさほ
ど上がらず、しかもその際の水素化アモルファスシリコ
ン薄膜の温度は300〜350℃程度と比較的低温であ
り、より低温で水素化アモルファスシリコン薄膜を脱水
素処理することができる。
According to the present invention, the hydrogenated amorphous silicon thin film on the insulating substrate is irradiated with the laser having the energy corresponding to the expansion mode of the Si—H bond to perform the dehydrogenation treatment. Most of the laser is absorbed by the amorphous silicon thin film, the temperature of the insulating substrate does not rise so much, and the temperature of the hydrogenated amorphous silicon thin film at that time is relatively low, about 300 to 350 ° C. The silicon thin film can be dehydrogenated.

【0006】[0006]

【発明の実施の形態】以下、図1(A)〜(C)を参照
しながら、この発明の一実施形態における多結晶シリコ
ン薄膜の製造方法について説明する。まず、図1(A)
に示すように、ガラス基板等からなる絶縁基板1の上面
にSiH4とH2との混合ガスを用いたプラズマCVDに
より厚さ500Å程度の水素化アモルファスシリコン薄
膜2を堆積する。この場合、絶縁基板1の温度を350
℃以下とする。次に、後の工程でエキシマレーザ照射に
より高エネルギを与えたとき水素が突沸して欠陥が生じ
るのを回避するために、脱水素処理を行う。すなわち、
図1(B)に示すように、水素化アモルファスシリコン
薄膜2に対してSi−H結合の伸縮モードに相当するエ
ネルギーのレーザ、例えば波長5μm程度の一酸化炭素
レーザを照射し、水素化アモルファスシリコン薄膜2中
のSi−H結合を振動させ、水素化アモルファスシリコ
ン薄膜2を加熱させると同時にSi−H結合を切断し、
水素化アモルファスシリコン薄膜2中の水素を離脱さ
せ、水素含有量を数atomic%以下とする。この場
合、水素化アモルファスシリコン薄膜2の温度は300
〜350℃程度である。また、一酸化炭素レーザ照射の
際、一酸化炭素レーザの大半はSi−H結合と共振する
ことにより、アモルファスシリコン薄膜2に吸収される
ので、絶縁基板1の温度はさほど上がらず、絶縁基板1
に縮みや歪みが生じにくく、絶縁基板1から不純物が漏
れ出しにくい。次に、図1(C)に示すように、アモル
ファスシリコン薄膜2にエキシマレーザを照射すること
により、アモルファスシリコン薄膜2を多結晶化して多
結晶シリコン薄膜3とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a polycrystalline silicon thin film according to an embodiment of the present invention will be described below with reference to FIGS. First, FIG.
As shown in FIG. 1, a hydrogenated amorphous silicon thin film 2 having a thickness of about 500 ° is deposited on the upper surface of an insulating substrate 1 made of a glass substrate or the like by plasma CVD using a mixed gas of SiH 4 and H 2 . In this case, the temperature of the insulating substrate 1 is set to 350
It should be below ° C. Next, a dehydrogenation process is performed in order to avoid occurrence of defects due to bumping of hydrogen when high energy is applied by excimer laser irradiation in a later step. That is,
As shown in FIG. 1 (B), the hydrogenated amorphous silicon thin film 2 is irradiated with a laser having an energy corresponding to the stretching mode of the Si—H bond, for example, a carbon monoxide laser having a wavelength of about 5 μm. By vibrating the Si—H bond in the thin film 2 and heating the hydrogenated amorphous silicon thin film 2, the Si—H bond is cut at the same time,
Hydrogen in the hydrogenated amorphous silicon thin film 2 is released, and the hydrogen content is reduced to several atomic% or less. In this case, the temperature of the hydrogenated amorphous silicon thin film 2 is 300
About 350 ° C. In addition, at the time of carbon monoxide laser irradiation, most of the carbon monoxide laser resonates with the Si—H bond and is absorbed by the amorphous silicon thin film 2, so that the temperature of the insulating substrate 1 does not rise so much.
And the impurities hardly leak out from the insulating substrate 1. Next, as shown in FIG. 1C, the amorphous silicon thin film 2 is polycrystallized by irradiating the amorphous silicon thin film 2 with an excimer laser to form a polycrystalline silicon thin film 3.

【0007】このように、絶縁基板1上の水素化アモル
ファスシリコン薄膜2に対してSi−H結合の伸縮モー
ドに相当するエネルギーのレーザ、例えば波長5μm程
度の一酸化炭素レーザを照射して脱水素処理を行ってい
るので、照射された一酸化炭素レーザの大半がアモルフ
ァスシリコン薄膜2に吸収され、絶縁基板1の温度はさ
ほど上がらず、しかもその際の水素化アモルファスシリ
コン薄膜2の温度は300〜350℃程度と比較的低温
であり、より低温で水素化アモルファスシリコン薄膜2
を脱水素処理することができる。したがって、絶縁基板
1に縮みや歪みが生じにくく、絶縁基板1から不純物が
漏れ出しにくく、薄膜トランジスタの特性を劣化させに
くくすることができる。
As described above, the hydrogenated amorphous silicon thin film 2 on the insulating substrate 1 is irradiated with a laser having an energy corresponding to the stretching mode of the Si—H bond, for example, a carbon monoxide laser having a wavelength of about 5 μm to dehydrogenate. Since the treatment is performed, most of the irradiated carbon monoxide laser is absorbed by the amorphous silicon thin film 2, the temperature of the insulating substrate 1 does not rise so much, and the temperature of the hydrogenated amorphous silicon thin film 2 at that time is 300 to A relatively low temperature of about 350 ° C., and at a lower temperature, hydrogenated amorphous silicon thin film 2
Can be dehydrogenated. Therefore, shrinkage and distortion hardly occur in the insulating substrate 1, impurities hardly leak from the insulating substrate 1, and characteristics of the thin film transistor are hardly deteriorated.

【0008】ここで、図1(C)に示す多結晶シリコン
薄膜を用いて構成した薄膜トランジスタの構造の一例に
ついて図2を参照しながら説明する。まず、多結晶シリ
コン薄膜3を周知の如く素子分離した後、ゲート絶縁膜
11およびゲート電極12を形成し、ゲート電極12を
マスクとして多結晶シリコン薄膜3に不純物を拡散し、
層間絶縁膜13およびこの層間絶縁膜13に形成したコ
ンタクトホール14を介して不純物拡散層に接続される
ソース・ドレイン電極15を形成すると、薄膜トランジ
スタが完成する。この薄膜トランジスタでは、特性を劣
化させにくくすることができる。
Here, an example of a structure of a thin film transistor formed using the polycrystalline silicon thin film shown in FIG. 1C will be described with reference to FIG. First, after the polycrystalline silicon thin film 3 is subjected to element isolation as is well known, a gate insulating film 11 and a gate electrode 12 are formed, and impurities are diffused into the polycrystalline silicon thin film 3 using the gate electrode 12 as a mask.
When a source / drain electrode 15 connected to the impurity diffusion layer via the interlayer insulating film 13 and the contact hole 14 formed in the interlayer insulating film 13 is formed, a thin film transistor is completed. In this thin film transistor, characteristics can be hardly deteriorated.

【0009】なお、上記実施形態では、絶縁基板1上の
水素化アモルファスシリコン薄膜2に波長5μm程度の
一酸化炭素レーザを照射することにより脱水素処理を行
ったが、これに限らず、赤外線ランプ等を併用して水素
化アモルファスシリコン薄膜2を加熱しながら波長5μ
m程度の一酸化炭素レーザを照射するようにしてもよ
い。この場合、より効率良く脱水素を行うことができ
る。さらに、ヒータを用いて絶縁基板1を加熱しながら
波長5μm程度の一酸化炭素レーザを照射するようにし
てもよい。
In the above embodiment, the dehydrogenation treatment is performed by irradiating the hydrogenated amorphous silicon thin film 2 on the insulating substrate 1 with a carbon monoxide laser having a wavelength of about 5 μm. While heating the hydrogenated amorphous silicon thin film 2 with a wavelength of 5 μm.
Irradiation with a carbon monoxide laser of about m may be performed. In this case, dehydrogenation can be performed more efficiently. Further, a carbon monoxide laser having a wavelength of about 5 μm may be irradiated while heating the insulating substrate 1 using a heater.

【0010】[0010]

【発明の効果】以上説明したように、この発明によれ
ば、絶縁基板上の水素化アモルファスシリコン薄膜に対
してSi−H結合の伸縮モードに相当するエネルギーの
レーザを照射して脱水素処理を行っているので、照射さ
れたレーザの大半がアモルファスシリコン薄膜に吸収さ
れ、絶縁基板の温度はさほど上がらず、しかもその際の
水素化アモルファスシリコン薄膜の温度は300〜35
0℃程度と比較的低温であり、より低温で水素化アモル
ファスシリコン薄膜を脱水素処理することができる。
As described above, according to the present invention, the hydrogenated amorphous silicon thin film on the insulating substrate is irradiated with a laser having an energy corresponding to the stretching mode of the Si-H bond to perform the dehydrogenation treatment. Most of the irradiated laser is absorbed by the amorphous silicon thin film, the temperature of the insulating substrate does not rise so much, and the temperature of the hydrogenated amorphous silicon thin film at that time is 300 to 35.
The temperature is relatively low at about 0 ° C., and the hydrogenated amorphous silicon thin film can be dehydrogenated at a lower temperature.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態における多結晶シリコン
薄膜の製造方法を説明するために示すもので、(A)は
絶縁基板上に水素化アモルファスシリコン薄膜を堆積し
た状態の断面図、(B)は一酸化炭素レーザを照射する
ことにより水素化アモルファスシリコン薄膜を脱水素処
理した状態の断面図、(C)はエキシマレーザを照射す
ることによりアモルファスシリコン薄膜を多結晶化して
多結晶シリコン薄膜とした状態の断面図。
1A and 1B are views for explaining a method of manufacturing a polycrystalline silicon thin film according to an embodiment of the present invention, in which FIG. 1A is a cross-sectional view showing a state in which a hydrogenated amorphous silicon thin film is deposited on an insulating substrate, and FIG. ) Is a cross-sectional view showing a state in which a hydrogenated amorphous silicon thin film is dehydrogenated by irradiating a carbon monoxide laser, and (C) is a polycrystalline silicon thin film obtained by irradiating an excimer laser to polycrystallize the amorphous silicon thin film. FIG.

【図2】図1(C)に示す多結晶シリコン薄膜を用いて
構成した薄膜トランジスタの構造の一例を示す断面図。
FIG. 2 is a cross-sectional view illustrating an example of a structure of a thin film transistor including the polycrystalline silicon thin film illustrated in FIG.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 アモルファスシリコン薄膜 3 多結晶シリコン薄膜 DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Amorphous silicon thin film 3 Polycrystalline silicon thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上にプラズマCVDにより水素
化アモルファスシリコン薄膜を堆積し、前記絶縁基板上
の前記水素化アモルファスシリコン薄膜に対してSi−
H結合の伸縮モードに相当するエネルギーのレーザを照
射して脱水素処理を行った後、前記絶縁基板上のアモル
ファスシリコン薄膜に対してエキシマレーザを照射する
ことによりアモルファスシリコン薄膜を多結晶化して多
結晶シリコン薄膜とすることを特徴とする多結晶シリコ
ン薄膜の製造方法。
A hydrogenated amorphous silicon thin film is deposited on an insulating substrate by plasma CVD, and the hydrogenated amorphous silicon thin film on the insulating substrate is
After dehydrogenation treatment is performed by irradiating a laser having an energy corresponding to the stretching mode of the H bond, the amorphous silicon thin film on the insulating substrate is irradiated with an excimer laser to polycrystallize the amorphous silicon thin film. A method for producing a polycrystalline silicon thin film, wherein the method is a crystalline silicon thin film.
【請求項2】 前記Si−H結合の伸縮モードに相当す
るエネルギーのレーザは波長5μm程度のレーザである
ことを特徴とする請求項1記載の多結晶シリコン薄膜の
製造方法。
2. The method for producing a polycrystalline silicon thin film according to claim 1, wherein the laser having an energy corresponding to the stretching mode of the Si—H bond is a laser having a wavelength of about 5 μm.
【請求項3】 前記水素化アモルファスシリコン薄膜を
脱水素処理する際の前記水素化アモルファスシリコン薄
膜の温度は350℃以下程度であることを特徴とする請
求項1記載の多結晶シリコン薄膜の製造方法。
3. The method according to claim 1, wherein the temperature of the hydrogenated amorphous silicon thin film when the hydrogenated amorphous silicon thin film is dehydrogenated is about 350 ° C. or less. .
JP35256196A 1996-12-16 1996-12-16 Method for manufacturing polycrystalline silicon thin film Abandoned JPH10177954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35256196A JPH10177954A (en) 1996-12-16 1996-12-16 Method for manufacturing polycrystalline silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35256196A JPH10177954A (en) 1996-12-16 1996-12-16 Method for manufacturing polycrystalline silicon thin film

Publications (1)

Publication Number Publication Date
JPH10177954A true JPH10177954A (en) 1998-06-30

Family

ID=18424910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35256196A Abandoned JPH10177954A (en) 1996-12-16 1996-12-16 Method for manufacturing polycrystalline silicon thin film

Country Status (1)

Country Link
JP (1) JPH10177954A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327925A (en) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd Method for manufacturing polycrystalline silicon film
CN110970287A (en) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 Method for preparing amorphous silicon thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327925A (en) * 2004-05-14 2005-11-24 Dainippon Printing Co Ltd Method for manufacturing polycrystalline silicon film
CN110970287A (en) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 Method for preparing amorphous silicon thin film
CN110970287B (en) * 2018-09-28 2022-12-02 长鑫存储技术有限公司 Method for preparing amorphous silicon thin film

Similar Documents

Publication Publication Date Title
JP2623276B2 (en) Method for manufacturing thin film semiconductor device
JPH03292741A (en) Manufacture of thin film semiconductor device
JPH06333823A (en) Manufacture of polycrystalline silicon film, manufacture of thin film transistor and remote plasma device
JP2917388B2 (en) Method for manufacturing semiconductor device
JPH10177954A (en) Method for manufacturing polycrystalline silicon thin film
JP2534980B2 (en) Method for manufacturing crystalline semiconductor thin film
JP2001093853A (en) Semiconductor device and manufacturing method therefor
JPH09307116A (en) Insulated-gate type field-effect semiconductor device and manufacture thereof
JP2005340827A (en) Polycrystalline silicon film structure and manufacturing method of the same, and mafanucturing method of tft using the same
JP2000068518A (en) Manufacture of thin-film transistor
JP3211340B2 (en) Method for manufacturing thin film transistor
JP3221129B2 (en) Semiconductor device manufacturing method
JPH08148692A (en) Manufacture of thin-film semiconductor device
JP3512547B2 (en) Method for manufacturing thin film transistor
JPH06291039A (en) Amorphous-semiconductor formation substrate and manufacture of polycrystalline-semiconductor formation substrate using it
JPH0773094B2 (en) Method for manufacturing crystalline semiconductor thin film
JPH034564A (en) Manufacture of semiconductor device
JP2001036078A (en) Mos-type transistor and manufacture thereof
JPH08139331A (en) Method of manufacturing thin film transistor
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JP3063018B2 (en) Method for manufacturing thin film transistor
JPH0677250A (en) Manufacture of thin film transistor
JPH0845837A (en) Production process of polycrystalline semiconductor film
JP3493160B2 (en) Method for manufacturing semiconductor device
JPH03284831A (en) Forming method for semiconductor thin-film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A131

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060808