JPS628947B2 - - Google Patents

Info

Publication number
JPS628947B2
JPS628947B2 JP1566480A JP1566480A JPS628947B2 JP S628947 B2 JPS628947 B2 JP S628947B2 JP 1566480 A JP1566480 A JP 1566480A JP 1566480 A JP1566480 A JP 1566480A JP S628947 B2 JPS628947 B2 JP S628947B2
Authority
JP
Japan
Prior art keywords
unit
capacitive element
capacitance
semiconductor
capacitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1566480A
Other languages
Japanese (ja)
Other versions
JPS56112750A (en
Inventor
Kazuo Ogasawara
Atsushi Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1566480A priority Critical patent/JPS56112750A/en
Publication of JPS56112750A publication Critical patent/JPS56112750A/en
Publication of JPS628947B2 publication Critical patent/JPS628947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体容量素子にかかり、とくに半導
体基板上に構成された、複数個の容量素子間の容
量比の誤差を少なくした半導体容量素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor capacitive element, and more particularly to a semiconductor capacitive element that reduces errors in capacitance ratio between a plurality of capacitive elements formed on a semiconductor substrate.

近年になり、金属・酸化膜・半導体(MOS)
技術は、製造技術および回路設計技術の長足の進
歩に伴ない、応用分野の拡大が急速に進んでい
る。その一例として、従来抵抗素子を用いたデジ
タル・アナログ変換器の分野において、容量を用
いたデジタル・アナログ変換器が発表されてい
る。例えばIEEE J.of SSC Vol.SC−10 No.6
pp371−379(Dec.1979)に開示されているJ.L.
McCREARY、P.R.GRAYにより“All−MOS
Charge RedistributionAnalog−to−Digital
Conversion Techniques−PartI”と題する論文
に示されている。
In recent years, metal/oxide film/semiconductor (MOS)
With the continuous progress in manufacturing technology and circuit design technology, the field of application is rapidly expanding. As an example, in the field of conventional digital-to-analog converters using resistive elements, a digital-to-analog converter using capacitance has been announced. For example, IEEE J.of SSC Vol.SC−10 No.6
JL disclosed in pp371-379 (Dec.1979)
“All-MOS” by McCREARY and PRGRAY
Charge RedistributionAnalog−to−Digital
Conversion Techniques-Part I”.

前記論文に開示されている如く、容量素子を用
いてデジタル・アナログ変換器またはアナログ・
デジタル変換器を構成することができる。このと
き、変換器の精度劣化の原因となるのは、容量素
子間の容量比の精度である。
As disclosed in the above paper, capacitive elements are used to convert digital to analog converters or analog to analog converters.
A digital converter can be configured. At this time, the cause of deterioration in the accuracy of the converter is the accuracy of the capacitance ratio between the capacitive elements.

従来、容量素子間の容量比精度を確保する方法
として単位容量素子を並列接続することがよくし
られている。
Conventionally, it has been well known to connect unit capacitive elements in parallel as a method of ensuring the accuracy of the capacitance ratio between capacitive elements.

単位容量素子をMOS技術を用いて製造する際
に考慮する点として、製造プロセスの変動に伴
う、単位容量素子間の誤差を少なくすることにあ
る。このため従来用いられていた手段として、単
位容量素子に第1図の如き円形の構造を用いてい
た。
A point to consider when manufacturing unit capacitance elements using MOS technology is to reduce errors between unit capacitance elements due to variations in the manufacturing process. For this reason, as a conventional means, a circular structure as shown in FIG. 1 was used for the unit capacitance element.

第1図aはMOS構造の単位容量素子5の平面
図であり、切断線XX′での断面図を同図bに示
す。第1図は、一導電形半導体基板4の主面に島
状に形成された反対導電形の拡散領域2を有し、
半導体基板5上には単位容量素子部の膜厚が薄く
なつた絶縁酸化膜3が形成されている。この膜厚
の制御は酸化膜を一旦全面に形成した後、領域2
上のMOS単位容量素子部分を選択エツチングし
た後、再び均一な絶縁酸化膜を形成して作成でき
る。絶縁酸化膜3上に薄く金属を被着した後、前
記拡散領域2に対応して金属電極1を選択的にエ
ツチングして残すことにより、領域1と3と2の
間にMOS容量素子5を形成する。
FIG. 1a is a plan view of a unit capacitance element 5 having a MOS structure, and FIG. 1b is a sectional view taken along cutting line XX'. FIG. 1 shows a diffusion region 2 of an opposite conductivity type formed in the form of an island on the main surface of a semiconductor substrate 4 of one conductivity type.
An insulating oxide film 3 is formed on the semiconductor substrate 5, and the thickness of the unit capacitor element portion is reduced. This film thickness can be controlled by forming the oxide film on the entire surface and then
After selectively etching the upper MOS unit capacitor element portion, a uniform insulating oxide film can be formed again. After depositing a thin layer of metal on the insulating oxide film 3, the metal electrode 1 is selectively etched and left in correspondence with the diffusion region 2, thereby forming the MOS capacitor element 5 between the regions 1, 3, and 2. Form.

以上、図面を用いて説明した単位容量素子5で
は以下に述べる利点があつた。
The unit capacitive element 5 described above with reference to the drawings has the following advantages.

選択エツチングの誤差(例えばオーバーエツ
チング、アンダーエツチング等)は各単位容量
素子間に均等に生ずると考えられるため、相対
精度の劣化が少ない。
Since errors in selective etching (for example, overetching, underetching, etc.) are considered to occur evenly between each unit capacitance element, there is little deterioration in relative accuracy.

選択エツチングに方向性がある場合にも幾何
学的形状が点対称のため相対精度の劣化が少な
い。
Even when selective etching has directionality, there is little deterioration in relative accuracy because the geometrical shape is point symmetric.

しかしながら、第1図の如き従来技術には、金
属電極の取り出し部において鋭角となる所が4個
所存在する。この鋭角となる所は選択エツチング
時に製造誤差が生じやすく、これが単位容量素子
間の相対精度の劣化原因となる場合が多かつた。
この影響をさけるためには、単位容量素子5の形
状を大きくすることが必要となる。更に、円形の
形状は同一長の一辺を有する正方形の単位容量素
子と比較してその容量値が3/4しかないため、幾
何学的形状が大きくなり、安価なMOS集積回路
を提供することができない。
However, in the prior art as shown in FIG. 1, there are four acute angle points in the lead-out portion of the metal electrode. At this acute angle, manufacturing errors are likely to occur during selective etching, which often causes deterioration in relative precision between unit capacitance elements.
In order to avoid this influence, it is necessary to increase the shape of the unit capacitive element 5. Furthermore, the capacitance value of a circular shape is only 3/4 that of a square unit capacitance element with one side of the same length, so the geometric shape becomes larger and it is difficult to provide an inexpensive MOS integrated circuit. Can not.

本発明はかかる欠点の大部分を改善し、安価な
MOS集積回路を単位容量素子を用いて実現する
有効な半導体容量素子を提供するものである。
The present invention ameliorates most of these drawbacks and provides an inexpensive
The present invention provides an effective semiconductor capacitive element for realizing a MOS integrated circuit using a unit capacitive element.

すなわち本発明は同一半導体基板上に形成され
た半導体容量素子において、単位容量素子の取り
出し部および単位容量素子の角を約45度とし、複
数個の単位容量素子を電気的導通手段で相互接続
して単一の容量素子を構成し、単一の容量素子の
容量と前記単位容量素子の容量との比を所定の値
としたことを特徴とする半導体容量素子である。
That is, the present invention provides semiconductor capacitive elements formed on the same semiconductor substrate, in which the take-out portion of the unit capacitive element and the angle of the unit capacitive element are approximately 45 degrees, and a plurality of unit capacitive elements are interconnected by an electrically conductive means. The semiconductor capacitive element is characterized in that a single capacitive element is formed by a plurality of capacitive elements, and a ratio of a capacitance of the single capacitive element to a capacitance of the unit capacitive element is set to a predetermined value.

以下図を用いて本発明の実施例を詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の第1の実施例の平面図を示し
たものであり、XX′断面における断面図は第1図
bと同様な構成となつている。
FIG. 2 shows a plan view of the first embodiment of the present invention, and the sectional view taken along the XX' section has the same configuration as FIG. 1b.

第2図は、第1図と同様な断面構造を有し、島
状に形成された一導電形半導体基板4と反対導電
形の拡散領域22を有し、前記拡散領域22の上
部に薄くなつた絶縁酸化膜3を介して金属電極2
1を形成してなる単位容量素子の第1の実施例の
説明図である。
FIG. 2 has a cross-sectional structure similar to that of FIG. 1, and has a semiconductor substrate 4 of one conductivity type formed in the form of an island and a diffusion region 22 of the opposite conductivity type, with a thin layer formed above the diffusion region 22. metal electrode 2 through insulating oxide film 3
FIG. 1 is an explanatory diagram of a first example of a unit capacitance element formed by forming a unit capacitor 1;

この本発明の第1の実施例を用いれば、金属電
極21の取り出し部をそれぞれ45度の傾きを用い
て取り出してあり、また各角部において45度の傾
きをつけてあるため、選択エツチング時の製造誤
差が各角部と、金属電極21の取り出し部で相殺
されるため、単位容量素子25間の相対精度の劣
化原因となる場合が非常に少ない。このため容量
素子間の相対精度を小さな単位容量素子を実現で
きる。更に、金属電極21の取り出し部の45度の
傾きの面積部と各角部の面積部を同一とすれば単
位容量素子の容量値は例えば正方形の面積と考え
られるため、幾何学的形状を小さくすることが可
能であり安価なMOS集積回路を提供することが
できる。
If this first embodiment of the present invention is used, the extraction portions of the metal electrodes 21 are taken out using an inclination of 45 degrees, and each corner is inclined at an angle of 45 degrees, so that during selective etching. Since the manufacturing errors are canceled out at each corner and the lead-out portion of the metal electrode 21, it is very rare that the relative accuracy between the unit capacitance elements 25 becomes a cause of deterioration. Therefore, it is possible to realize a unit capacitive element with small relative accuracy between capacitive elements. Furthermore, if the area of the 45-degree inclination of the metal electrode 21 and the area of each corner are the same, the capacitance value of the unit capacitive element can be considered to be, for example, the area of a square, so the geometric shape can be made smaller. It is possible to provide an inexpensive MOS integrated circuit.

本発明の第2の実施例の説明図を第3図に示
す。第3図は第1図における反対導電形の拡散領
域2として膜状導体32および絶縁酸化膜36を
用いた例であり、前記膜状導体として例えば多結
晶シリコン等を用いることは当業者では公知であ
る。第3図は膜状導体32と絶縁酸化膜33と金
属電極31間に形成された単位容量素子35の一
例であり、その有効性は本発明の第1の実施例と
断面図の構造が異なるだけであり、明らかであ
る。
An explanatory diagram of a second embodiment of the present invention is shown in FIG. FIG. 3 shows an example in which a film conductor 32 and an insulating oxide film 36 are used as the diffusion region 2 of the opposite conductivity type in FIG. It is. FIG. 3 is an example of a unit capacitance element 35 formed between a film conductor 32, an insulating oxide film 33, and a metal electrode 31, and its effectiveness differs from the first embodiment of the present invention in the structure of the cross-sectional view. It is obvious.

以上、図を用いて本発明を詳細に説明した如
く、本発明を実施すれば、小さな面積に相対精度
の優れた容量素子を単位容量素子を用いて実現で
き、安価なMOS集積回路が実現でき応用分野の
拡大に非常に有効である。
As described above in detail with reference to the figures, if the present invention is implemented, a capacitive element with excellent relative accuracy can be realized in a small area using a unit capacitive element, and an inexpensive MOS integrated circuit can be realized. It is very effective in expanding the field of application.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の金属・酸化膜・半導体構造の単
位容量素子のa平面図、b断面図、第2図は本発
明の第1の実施例の平面図、第3図aおよびbは
本発明の第2の実施例の平面図および断面図をそ
れぞれ示す。 尚、図において、1,21,31……金属電
極、2,22……島状の拡散領域、3,33,3
6……絶縁酸化膜、4,34……半導体基板、
5,25,35……単位容量素子、32……膜状
導体である。
FIG. 1 is a plan view and b sectional view of a unit capacitance element with a conventional metal/oxide film/semiconductor structure, FIG. 2 is a plan view of the first embodiment of the present invention, and FIGS. FIG. 6 shows a plan view and a cross-sectional view of a second embodiment of the invention, respectively. In the figure, 1, 21, 31...metal electrode, 2, 22... island-shaped diffusion region, 3, 33, 3
6... Insulating oxide film, 4, 34... Semiconductor substrate,
5, 25, 35...unit capacitance element, 32...membrane conductor.

Claims (1)

【特許請求の範囲】[Claims] 1 同一の半導体基板上に形成された複数個の単
位容量素子を相互接続して構成される半導体容量
素子において、前記単位容量素子の電極取り出し
部および角部には平面形状において約45゜のテー
パが設けられていることを特徴とする半導体容量
素子。
1. In a semiconductor capacitive element formed by interconnecting a plurality of unit capacitive elements formed on the same semiconductor substrate, the electrode lead-out portions and corners of the unit capacitive element have a taper of approximately 45° in plan view. A semiconductor capacitive element characterized by being provided with.
JP1566480A 1980-02-12 1980-02-12 Semiconductor capacitive element Granted JPS56112750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1566480A JPS56112750A (en) 1980-02-12 1980-02-12 Semiconductor capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1566480A JPS56112750A (en) 1980-02-12 1980-02-12 Semiconductor capacitive element

Publications (2)

Publication Number Publication Date
JPS56112750A JPS56112750A (en) 1981-09-05
JPS628947B2 true JPS628947B2 (en) 1987-02-25

Family

ID=11895000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1566480A Granted JPS56112750A (en) 1980-02-12 1980-02-12 Semiconductor capacitive element

Country Status (1)

Country Link
JP (1) JPS56112750A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199249A (en) * 1981-06-01 1982-12-07 Matsushita Electronics Corp Semiconductor device
US4527180A (en) * 1983-01-31 1985-07-02 Intel Corporation MOS Voltage divider structure suitable for higher potential feedback regulation
JPH0638466B2 (en) * 1986-12-04 1994-05-18 三菱電機株式会社 Semiconductor integrated circuit device
US5006480A (en) * 1988-08-08 1991-04-09 Hughes Aircraft Company Metal gate capacitor fabricated with a silicon gate MOS process

Also Published As

Publication number Publication date
JPS56112750A (en) 1981-09-05

Similar Documents

Publication Publication Date Title
US5838032A (en) Precision capacitor array
JPS61263251A (en) Semiconductor device
KR960011652B1 (en) Stack capacitor and the method
JPS61260656A (en) Semiconductor device and manufacture thereof
JPS628947B2 (en)
KR950006982B1 (en) Charge storaging node manufacturing method
JPH0573273B2 (en)
JPH0247862A (en) Semiconductor integrated circuit device
JPS626702Y2 (en)
JPS58137242A (en) Integrated circuit device
JPH0748549B2 (en) Method for manufacturing semiconductor device
JPS6252952B2 (en)
JPS62101073A (en) Charge transfer device and manufacture of the same
KR100204019B1 (en) Forming method for charge storage electrode of semiconductor device
JPH02133952A (en) Semiconductor device
JPH0113405Y2 (en)
KR920000384B1 (en) Semiconductor memory device and method of fabricating thereof
JPS5834757Y2 (en) Microwave integrated circuit device
JPH0294661A (en) Capacity element of integrated circuit
JPS61279166A (en) Substrate for hybrid integrated circuit
JPH04164364A (en) Semiconductor device
JPS61248458A (en) Semiconductor integrated circuit device
JPS61174663A (en) Semiconductor device
JPS61198660A (en) Mim capacitor of semiconductor ic
JPS603154A (en) Amplifying gate type thyristor