JPS6287242A - Stable metal oxide sol composition - Google Patents

Stable metal oxide sol composition

Info

Publication number
JPS6287242A
JPS6287242A JP28098985A JP28098985A JPS6287242A JP S6287242 A JPS6287242 A JP S6287242A JP 28098985 A JP28098985 A JP 28098985A JP 28098985 A JP28098985 A JP 28098985A JP S6287242 A JPS6287242 A JP S6287242A
Authority
JP
Japan
Prior art keywords
metal
sol
metal oxide
particles
chelating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28098985A
Other languages
Japanese (ja)
Other versions
JPH0585481B2 (en
Inventor
Takeshi Satake
剛 佐竹
Tadahiro Yoneda
忠弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPS6287242A publication Critical patent/JPS6287242A/en
Publication of JPH0585481B2 publication Critical patent/JPH0585481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)

Abstract

PURPOSE:To prevent the growth of particles due to flocculation of said particles by incorporating a chelating agent or a metal chelate to the sol contg. the condensate of a metal oxide or a metal hydroxide having <=0.1mum mean particle size. CONSTITUTION:The titled sol is prepared by using the particles which are made of the condensate of the metal oxide or the metal hydroxide having <=0.1mum mean particle size. The stable metal oxide type sol composition is obtd. by incorporating the chelating agent and/or the metal chelate to the obtd. sol. A beta-dicarbonyl compd. is used to the chelating agent, and a beta- dicarbonylmetal chelate is preferably used as the metal chelate. The molar content of the chelated molecule contd. in the chelating agent and/or the metal chelating is preferably 0.05-2.0 times of the metallic element which constitutes the prescribed particles.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は新規な金屈酸化物系ゾル組成物に関する。詳し
く述べると本発明は金属酸化物系ゾルを構成する粒子が
金属酸化物または金属水酸化拘縮合体微粒子でありかつ
その平均径が0.1μm以下であるゾルにキレート化剤
および/または金属キレートを共存せしめてなる安定な
金属酸化物系ゾル組成物を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a novel gold-containing oxide-based sol composition. Specifically, the present invention provides a metal oxide sol in which the particles constituting the sol are fine particles of a metal oxide or metal hydroxide condensate, and the average diameter thereof is 0.1 μm or less, and a chelating agent and/or a metal chelate are added to the sol. The object of the present invention is to provide a stable metal oxide-based sol composition comprising the following.

プラスティックス、セラミックス、金属などの基板上に
均一な金属酸化物または金属水酸化物薄膜を形成させる
ことは、光関連デバイス、記憶材料、圧電材料、センサ
、制電材料、防蝕、耐摩耗材料などに幅広い用途が期待
され一部実用化もなされている。
Forming uniform metal oxide or metal hydroxide thin films on substrates such as plastics, ceramics, and metals can be used for optical-related devices, storage materials, piezoelectric materials, sensors, antistatic materials, corrosion-resistant, wear-resistant materials, etc. It is expected to have a wide range of applications, and some have even been put into practical use.

また酸化物または水酸化物の微粒子は表面活性も大きく
、易焼結性の膜形成材料として特にセラミックス分野で
その安価な製法が求められている。
In addition, fine particles of oxides or hydroxides have a high surface activity, and as an easily sinterable film-forming material, an inexpensive manufacturing method is required, especially in the ceramics field.

(従来の技術) カチオン性の金属イオンまたはオキシ金属単量体がキレ
ート化剤とキレート錯体をつくることは公知である。例
えば錫アセチルアセトナート、蓚酸チタンア廿チルアセ
トナート(特開昭56−26896号公報明細書)、メ
チル・ステアロイルアセトン・ビス(イソオクタノイル
)・ジルコネート(特開昭59−196368号公報明
細書)などが掲げられる。しかしながらこれらは金属単
量体を単位とする化合物で、キレート化するには金属に
対してキレート化剤が当量以上必要であったり、固形粒
子状で含有されていないために薄膜状に塗工処理した後
乾燥、焼成工程を経て金属水酸化物または酸化物膜とす
る際収縮が大きくクラックが入り易い等の問題がある。
(Prior Art) It is known that cationic metal ions or oxymetal monomers form chelate complexes with chelating agents. For example, tin acetylacetonate, titanium oxalate acetylacetonate (Japanese Unexamined Patent Publication No. 56-26896), methyl stearoyl acetone bis(isooctanoyl) zirconate (Japanese Unexamined Patent Publication No. 59-196368), etc. It is raised. However, these are compounds whose units are metal monomers, and chelating agents require an equivalent amount or more of the chelating agent to the metal, or they are not contained in the form of solid particles, so they are coated in a thin film. After that, when a metal hydroxide or oxide film is formed through drying and firing steps, there are problems such as large shrinkage and easy cracking.

一方、金属酸化物薄膜原料として有機金属化合物、特に
金属アルコキシドが原料純度が比較的良いという理由で
多用されてきている。しかし金属アルコキシドは非常に
加水分解され易く、薄膜化する際微妙な湿度の調整が必
要であったり液のポットライフが短いという問題がある
。それらの問題を避ける方法として金属アルコキシドま
たはその重合物(この場合末端はアルコキシ基が残存す
る)のアルコール溶液中にキレート化剤または金属キレ
ートを添加せしめる方法が提案されている。
On the other hand, organic metal compounds, particularly metal alkoxides, have been frequently used as raw materials for metal oxide thin films because of their relatively high raw material purity. However, metal alkoxides are very easily hydrolyzed, and there are problems in that delicate humidity adjustment is required when forming a thin film and that the pot life of the liquid is short. As a method to avoid these problems, a method has been proposed in which a chelating agent or a metal chelate is added to an alcoholic solution of a metal alkoxide or its polymer (in this case, an alkoxy group remains at the terminal).

たとえば、特開昭59−195504号、特開昭59−
213602号、特開昭59−213603号、特開昭
59−196368@、特公昭60−6299号各公報
明細書などがある。これらはいずれも有機金属化合物を
金属酸化物源として用いるので金属原子に加水分解を受
けていないアルコキシ基が残存結合したものであり、キ
レート化剤を耐加水分解性改良剤として用いているもの
である。
For example, JP-A-59-195504, JP-A-59-
213602, JP-A-59-213603, JP-A-59-196368@, and JP-A-60-6299. All of these use organometallic compounds as the metal oxide source, so alkoxy groups that have not undergone hydrolysis remain bonded to metal atoms, and chelating agents are used as hydrolysis resistance improvers. be.

また、特公昭59−46268号公報明細書には酸化カ
ルシウム、酸化マグネシウムまたは酸化亜鉛と酸化アル
ミニウム、二酸化チタンまたは二酸化硅素との複合酸化
物粒子の表面にβ−ジカルボニル化合物であるβ−ジケ
トン類の錯体を存在せしめた塩化ビニル樹脂用熱安定剤
が提案されているが、該発明の要旨は塩素含有樹脂用安
定剤として効果のある無機酸化物粒子にβ−ジケトン類
を複合化させて相乗的効果を期待したもので、該酸化物
の粒子径は0.5〜50μmの範囲と比較的大きく、本
発明が目的とする無機酸化物または無機水酸化物微粒子
(平均粒子径0.1μm以下)の凝集防止剤としてβ−
ジカルボニル化合物を用いることに関しては何も示唆し
ていない。
Furthermore, in the specification of Japanese Patent Publication No. 59-46268, it is stated that β-diketones, which are β-dicarbonyl compounds, are added to the surface of composite oxide particles of calcium oxide, magnesium oxide, or zinc oxide and aluminum oxide, titanium dioxide, or silicon dioxide. A heat stabilizer for vinyl chloride resin has been proposed in which a complex of The particle size of the oxide is relatively large in the range of 0.5 to 50 μm, and the inorganic oxide or inorganic hydroxide fine particles targeted by the present invention (average particle size of 0.1 μm or less) ) as an anti-aggregation agent for β-
There is no suggestion regarding the use of dicarbonyl compounds.

また、特公昭60−4552号公報明細書には銅、銀ま
たは銅合金粉末の酸化防止剤としてアセチルアセトンが
有効であることが示されているが、本発明とは粒子成分
およびβ−ジカルボニル化合物の一種であるアセチルア
セトンの使用目的において異なるものである。
In addition, the specification of Japanese Patent Publication No. 60-4552 shows that acetylacetone is effective as an antioxidant for copper, silver, or copper alloy powder, but the present invention does not apply to particle components and β-dicarbonyl compounds. They differ in the purpose of use of acetylacetone, which is a type of acetylacetone.

従来、液体中での無機酸化物または無機水酸化拘縮合体
微粒子の分散体(以下金属酸化物系ゾルとよぶ)のゲル
化および凝集を防止する方法として、粒子表面のゼータ
電位の絶対値を大きくして電気的反発力を利用する安定
化法が公知である。
Conventionally, as a method to prevent gelation and aggregation of a dispersion of inorganic oxide or inorganic hydroxide condensate fine particles (hereinafter referred to as metal oxide sol) in a liquid, the absolute value of the zeta potential of the particle surface has been calculated. A stabilization method that uses electrical repulsion to increase the size is known.

具体的にはpHを調節したり粒子表面に原子価の異なる
金属化合物を存在させることによりある程度その目的は
達せられる。本発明に開示する安定化された金属酸化物
系ゾル組成物はこれら従来公知の方法とはまったく異な
る新規なものである。
Specifically, this objective can be achieved to some extent by adjusting the pH or by making metal compounds with different valences exist on the particle surface. The stabilized metal oxide-based sol composition disclosed in the present invention is novel and completely different from these conventionally known methods.

(発明が解決しようとする問題点) 金属酸化物系ゾルにおいて粒子径が小さくなればなる程
、同一濃度における粒子数および粒子表面積が大きくな
る結果粒子分散体を安定に保つことが従来技術のみでは
困難になってきている。
(Problem to be solved by the invention) As the particle size becomes smaller in a metal oxide-based sol, the number of particles and the particle surface area at the same concentration increase.As a result, it is difficult to maintain a stable particle dispersion using conventional techniques alone. It's getting difficult.

本発明は粒子径が0.1μm以下、特に数10オングス
トローム(入)程度の微粒子においても高濃度下で経時
的、熱的および化学的に安定な金属酸化物系ゾルを提供
するものである。かくして本発明の目的は薄膜製造用と
して安定な金属酸化物系ゾル組成物と、該ゾル中の酸化
物または水酸化物微粒子を易焼結性のセラミックス製造
原料として利用する際、凝集による粒子成長を防止しう
るゾル組成物を提供することであり、さらにこのゾルか
ら高分散性の微粒子を取得することを提供するものであ
る。
The present invention provides a metal oxide sol which is stable over time, thermally and chemically at high concentrations even in the case of fine particles having a particle diameter of 0.1 μm or less, particularly about several tens of angstroms. Thus, the object of the present invention is to provide a metal oxide sol composition that is stable for thin film production, and to prevent particle growth due to agglomeration when using the oxide or hydroxide fine particles in the sol as a raw material for producing easily sinterable ceramics. It is an object of the present invention to provide a sol composition that can prevent this, and to obtain highly dispersible fine particles from this sol.

(問題点を解決するための手段) 本発明は種々の金属元素を含むゾルおよび平均粒子径が
小さいゾルの工業的製法および使用における従来技術の
欠点を克服するため鋭意検討した結果見い出されたもの
で、その特徴とするところはゾルを構成する粒子が金属
酸化物または金属水酸化物縮合体の微粒子でありかつそ
の平均径が0゜1μm以下であるゾルにキレート化剤、
とくにβ−ジカルボニル化合物および/または金属キレ
ートを共存せしめた安定な金属酸化物系ゾル組成物の取
得にある。
(Means for Solving the Problems) The present invention was discovered as a result of intensive studies to overcome the drawbacks of conventional techniques in the industrial production and use of sols containing various metal elements and sols with small average particle diameters. The characteristics of this sol are that the particles constituting the sol are fine particles of a metal oxide or metal hydroxide condensate, and the average diameter thereof is 0.1 μm or less, and a chelating agent,
In particular, the objective is to obtain a stable metal oxide-based sol composition in which a β-dicarbonyl compound and/or a metal chelate coexist.

(作   用) 本発明で用いられるキレート化剤としては、カテコール
、ピロガロールなどのオキシフェノール類、ジェタノー
ルアミン、トリエタノールアミンなどのアミノアルコー
ル類、グリコール酸、乳酸、ヒドロキシアクリル酸など
のオキシ酸およびそれらのメチル、エチル、ヒドロキシ
エチルなどのエステル類、グリコールアルデヒドなどオ
キジアルデヒド類、グリシン、アラニンなどのアミノ酸
類、アセチルアセトン、ベンゾイルアセトン、ステアロ
イルアセトン、ステアロイル・ベンゾイルメタン、ジベ
ンゾイルメタンなどのβ〜ジケトン類、アセト酢酸、プ
ロピオニル酢酸、ベンゾイル酢酸などのβ−ケトン酸お
よびそれらのメチル、エチル、n−プロピル、1so−
プロピル、n−ブチル、tert−ブチルなどのエステ
ル類が掲げられるが、好ましくはβ−ジケトン類または
β−ケト酸およびそのエステル類の如きβ−ジカルボニ
ル化合物が用いられる。また金属キレートとしてはアル
ミニウム、バリウム、ベリリウム、カルシウム、カドミ
ウム、コバルト、クロム、銅、鉄、ガリウム、ハフニウ
ム、水銀、インジウム、イリジウム、カリウム、リチウ
ム、マグネシウム、マンガン、モリブデン、ナトリウム
、ニッケル、鉛、白金、パラジウム、ロジウム、ルテニ
ウム、スカンジウム、シリコン、錫、ストロンチウム、
トリウム、チタン、タリウム、タンタル、タングステン
、ウラニウム、バナジウム、イツトリウム、亜鉛、ジル
コニウム、ランタノイド系の金属またはそれらの部分酸
化物の上記キレート化剤とのキレートが掲げられる。
(Function) The chelating agents used in the present invention include oxyphenols such as catechol and pyrogallol, amino alcohols such as jetanolamine and triethanolamine, oxyacids such as glycolic acid, lactic acid, and hydroxyacrylic acid. Their esters such as methyl, ethyl, and hydroxyethyl, oxydialdehydes such as glycolaldehyde, amino acids such as glycine and alanine, and β-diketones such as acetylacetone, benzoylacetone, stearoyl acetone, stearoyl/benzoylmethane, and dibenzoylmethane. β-ketonic acids such as acetoacetic acid, propionyl acetic acid, benzoylacetic acid and their methyl, ethyl, n-propyl, 1so-
Examples include esters such as propyl, n-butyl, and tert-butyl, but preferably β-dicarbonyl compounds such as β-diketones or β-keto acids and their esters are used. Metal chelates include aluminum, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, gallium, hafnium, mercury, indium, iridium, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, and platinum. , palladium, rhodium, ruthenium, scandium, silicon, tin, strontium,
Examples include chelates of thorium, titanium, thallium, tantalum, tungsten, uranium, vanadium, yttrium, zinc, zirconium, lanthanoid metals, or partial oxides thereof with the above chelating agent.

一方、金属酸化物系ゾルを構成する粒子中の金属成分と
しては上述の金属の単一または複合酸化物、または水酸
化物縮合体であるが、好ましくはチタニウム、ジルコニ
ウム、セリウム、バナジウム、ニオブ、タンタル、アル
ミニウム、ガリウム、インジウム、錫、マンガン、ニッ
ケル、コバルトおよび鉄群より選ばれた少くとも一種の
金属を主成分とする。
On the other hand, the metal components in the particles constituting the metal oxide sol are single or composite oxides or hydroxide condensates of the above-mentioned metals, preferably titanium, zirconium, cerium, vanadium, niobium, The main component is at least one metal selected from the group of tantalum, aluminum, gallium, indium, tin, manganese, nickel, cobalt, and iron.

キレート化剤および/または金属キレート中のキレート
他剤分子の添加量は粒子中の金属原子に対し当り以下で
良く、好ましくは0.05〜2.0倍の範囲とすれば良
い。0.05倍に満たない場合その効果が小さく、2.
0倍を越えて添加しても量的効果は小さく経済的ではな
い。
The amount of the chelating agent and/or the chelating agent molecules in the metal chelate may be less than or equal to the amount of metal atoms in the particles, preferably in the range of 0.05 to 2.0 times. If it is less than 0.05 times, the effect is small; 2.
Even if it is added in excess of 0 times, the quantitative effect is small and it is not economical.

本発明に適応しうる金属酸化物系ゾルの製法は特に制限
されるものではなく、いがなる公知の方法も用いること
ができる。例えば金属の塩化物、硝酸塩、硫酸塩などの
無機塩、蓚酸、酢酸などの有機酸塩を水中でアルカリ加
水分解、熱加水分解、イオン交換などの方法で金属酸化
物または金属水酸化物縮合体の微粒子とする方法あるい
はまた金属アルコキシドなどの有機金属化合物またはそ
のアルコール溶液を水中に添加して完全にアルコキシド
を加水分解して水酸化物縮合体としたり、金属微粒子を
加水分解して水酸化物ゾルとする方法もとりうる。又、
他の具体例としては金属塩類のアルカリ加水分解、熱加
水分解又はイオン交換の際に分散媒として含酸素有機化
合物の1種または2種以上を用いるか又はそれらの水と
の混合溶液を用いることによっても安定な金属酸化物系
ゾルを製造することができる。この場合、水分散媒のみ
の場合に比べて無機塩の対イオンである塩素イオン、硝
酸イオン、硫酸イオン等の量を減少させても安定な金属
酸化物系ゾルが製造できる点で高純度なゾルを製造する
際には特に有利となる。例えば、チタニアゾルの場合水
溶媒系での安定性は、チタニア濃度やキレート化剤の種
類、量と密接な関係を有する。すなわち、TiO2換算
濃度10%、アセチルアセトン(モル数)/Ti(原子
数)=0.6で、塩素イオン(原子数)/Ti(原子数
)= 0.05以下のゾル組成では、3ケ月経過後増粘
してくるが、分散媒を含酸素有機化合物の1種であるメ
タノールとした場合、同じTlO2換算濃度、同じキレ
ート化剤の種類、量で、塩素イオン(原子fi) /T
 i (原子数)=0.005程度のゾルを製造しても
、該ゾルは6ケ月経過後も安定である。このような傾向
は他の金属酸化物系ゾルにもみられ、該含酸素有機化合
物の効果を実証することができた。又、分散媒中の含酸
素有機化合物の割合は多いほど効果的であるが、全体の
ff1fflに対して10%以上、好ましくは20%以
上あれば効果が顕著にあられれる。この含酸素有機化合
物の共存効果は上述の加水分解によるゾル形成の途中で
も、形成後または分別添加時等いずれにおいても認めら
れる。該含酸素有機化合物としては、メタノール、エタ
ノール、プロパツール、ブタノール等のアルコール類、
アセトン、メチルエチルケトン等のケトン類、メチルエ
チルエーテル、ジオキサン等のエーテル類、ギ酸メチル
、酢酸メチル等のエステル類等が好適に使用できる。
The method for producing the metal oxide sol applicable to the present invention is not particularly limited, and any known method may be used. For example, inorganic salts such as metal chlorides, nitrates, and sulfates, and organic acid salts such as oxalic acid and acetic acid are converted into metal oxides or metal hydroxide condensates by alkaline hydrolysis, thermal hydrolysis, ion exchange, etc. in water. Alternatively, an organometallic compound such as a metal alkoxide or its alcohol solution may be added to water to completely hydrolyze the alkoxide to form a hydroxide condensate, or metal fine particles may be hydrolyzed to form a hydroxide. A method of making it into a sol is also possible. or,
Other specific examples include using one or more oxygen-containing organic compounds as a dispersion medium during alkaline hydrolysis, thermal hydrolysis, or ion exchange of metal salts, or using a mixed solution of these with water. A stable metal oxide-based sol can also be produced by In this case, compared to the case where only an aqueous dispersion medium is used, a stable metal oxide-based sol can be produced even if the amount of counter ions of inorganic salts such as chlorine ions, nitrate ions, sulfate ions, etc. This is particularly advantageous when producing a sol. For example, in the case of titania sol, the stability in an aqueous solvent system has a close relationship with the titania concentration and the type and amount of the chelating agent. That is, with a TiO2 equivalent concentration of 10%, acetylacetone (number of moles)/Ti (number of atoms) = 0.6, and a sol composition of chlorine ion (number of atoms)/Ti (number of atoms) = 0.05 or less, 3 months have passed. The viscosity increases afterward, but when methanol, which is a type of oxygen-containing organic compound, is used as the dispersion medium, with the same TlO2 equivalent concentration and the same type and amount of chelating agent, chlorine ion (atomic fi) /T
Even if a sol with i (number of atoms)=0.005 is produced, the sol remains stable even after 6 months have passed. Such a tendency was also observed in other metal oxide-based sols, and the effect of the oxygen-containing organic compound could be demonstrated. Further, the higher the proportion of the oxygen-containing organic compound in the dispersion medium, the more effective it is, but the effect will be significant if it is 10% or more, preferably 20% or more, based on the total ff1ffl. This coexistence effect of the oxygen-containing organic compound is observed during the formation of the sol by the above-mentioned hydrolysis, after the formation, or during fractional addition. Examples of the oxygen-containing organic compound include alcohols such as methanol, ethanol, propatool, and butanol;
Ketones such as acetone and methyl ethyl ketone, ethers such as methyl ethyl ether and dioxane, and esters such as methyl formate and methyl acetate can be suitably used.

上述した金属酸化物系ゾルの製法において上記したキレ
ート化剤および/または金属キレートの添加時期および
添加方法については何ら制限されるものではなく、上述
したように微粒子形成前、途中、侵または分別添加時等
いずれでも良く、最終的に微粒子とキレート化剤および
/または金属キレートを共存させることにより微粒子の
凝集防止効果が発揮される。
In the method for manufacturing the metal oxide sol described above, there are no restrictions on the timing and method of adding the chelating agent and/or metal chelate, and as described above, the addition may be performed before, during, during, or separately added to the fine particles. The effect of preventing agglomeration of the fine particles can be exhibited by finally allowing the fine particles to coexist with the chelating agent and/or the metal chelate.

本発明がとくに好ましいキレート化剤とするβ−ジカル
ボニル化合物の金属酸化物系ゾル安定化機構は十分解明
されている訳ではないが、酸化物または水酸化物微粒子
の表面に局在している表面電荷がプラスの部位にβ−ジ
カルボニル化合物が配位結合することにより粒子表面が
非親水化し粒子どうしの衝突によって起こる凝集を防止
するのではないかと考えられる。ここでいう凝集とは粒
子〔本発明においてはく金属元素−酸素)結合が鎖状に
連なった線状無機高分子とよばれるものおよび三次元状
に結合した不定形状物およびそれらの混合物を粒子と称
する〕間の脱水縮合による粒子成長および粒子間の水素
結合によるビリー化現象をいう。
The metal oxide sol stabilization mechanism of the β-dicarbonyl compound, which is a particularly preferred chelating agent in the present invention, is not fully elucidated, but it is localized on the surface of oxide or hydroxide fine particles. It is thought that the coordination bond of the β-dicarbonyl compound to a site with a positive surface charge makes the particle surface non-hydrophilic and prevents aggregation caused by collisions between particles. Agglomeration here refers to particles (metallic element-oxygen in the present invention) that are called linear inorganic polymers in which bonds are connected in a chain, irregularly shaped substances that are bonded three-dimensionally, and mixtures thereof. This refers to particle growth due to dehydration condensation between particles and billy formation due to hydrogen bonding between particles.

一方、本発明の一実論態様である有効な分散媒として、
含酸素有機化合物の少なくとも1種を用いた場合、金属
酸化物系ゾルが水分散媒のみの場合に比べて、無機塩の
対イオンである塩素イオン、硝酸イオン、硫酸イオン等
の量を更に減少させても該ゾルが安定に存在する理由と
して本発明者らは下記のように考えている。即ち、通常
対イオンの減少につれゾル粒子の表面電荷が減少し、静
電気力による反発力が小さくなりゾルの凝集が起こりや
すくなるといわれているが、含酸素有機化合物の存在す
る溶媒系では水単独の溶媒系に比べ分散媒の表面張力が
低下し、比較的親水性であるゾル粒子(この中には線状
高分子も含まれる)は三次元的に広がるよりも小さくま
とまった方がエネルギー的に安定となり、その結果粒子
同士の衝突会合の機会が減少し、安定剤としてのβ−ジ
カルボニル化合物の安定化効果と相開し安定な金属酸化
物系ゾルとなったのではないかと推察している。
On the other hand, as an effective dispersion medium which is a practical aspect of the present invention,
When at least one type of oxygen-containing organic compound is used, the amount of chlorine ions, nitrate ions, sulfate ions, etc., which are counterions of inorganic salts, can be further reduced compared to when the metal oxide sol is only an aqueous dispersion medium. The present inventors believe that the reason why the sol exists stably even when the temperature is increased is as follows. In other words, it is said that as counterions decrease, the surface charge of sol particles decreases, and the repulsive force due to electrostatic force decreases, making it easier for sol aggregation to occur. However, in a solvent system containing oxygen-containing organic compounds, water alone The surface tension of the dispersion medium is lower than that of a solvent system, and sol particles (which also include linear polymers) are relatively hydrophilic. It is speculated that the sol becomes stable, and as a result, the chances of collisional association between particles are reduced, and this is due to the stabilizing effect of the β-dicarbonyl compound as a stabilizer, resulting in a stable metal oxide-based sol. There is.

なお、金属酸化物系ゾルを表面処理剤として用いる場合
、基材との密着性、均−分散性等を向上させる目的で場
合により酢酸などのカルボン酸類、メタノール、エタノ
ールなどのアルコール類、酢酸エチル、アクリル酸メチ
ルなどのエステル類、エチルエーテルなどのエーテル類
、アセトンなどのケトン類、LPG、LNGなどの低級
炭化水素類や、そのハロゲン化物および(メタ)アクリ
ル酸、2−とドロキシエチル(メタ)アクリレート、酢
酸ビニル、マレイン酸、エチレンオキサイドなどの反応
性七ツマ−の単一または共重合体の水溶性または乳化物
および界面活性剤を共存せしめることができる。
When using a metal oxide sol as a surface treatment agent, carboxylic acids such as acetic acid, alcohols such as methanol and ethanol, and ethyl acetate may be used to improve adhesion to the substrate and uniform dispersion. , esters such as methyl acrylate, ethers such as ethyl ether, ketones such as acetone, lower hydrocarbons such as LPG and LNG, their halides and (meth)acrylic acid, 2- and droxyethyl (meth) Water-soluble or emulsified monopolymers or copolymers of reactive heptamers such as acrylate, vinyl acetate, maleic acid, ethylene oxide, etc., and surfactants can be co-present.

以下に実施例を掲げて本発明を更に詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

実施例 1 四塩化チタン水溶液(Ti含ffi 16.8重量%)
168gに純水447mとアセチルアセトン12゜39
を加え均一溶液とした。この溶液にイオン交換基をあら
かじめOH型に転化させた陰イオン交換樹脂(アンバー
ライト”IRA−68,ロームアンドハース製)を湿潤
樹脂で600(l加え25°Cで35分間接触させたあ
と上記のイオン交換樹脂を炉別し、安定なチタニアゾル
を製造した。このゾルの組成は、チタニアがT i 0
2で換算して7゜5重量%、塩素イオン(Cf ’)が
0.65重伍%でアセチルアセトン(モル数)/T+(
fi子数)−0,2であった。該コロイドの粒子径はダ
イナミック光散乱光度計(DLS−700ユニオン技研
製)で観測すると平均粒径が40人であった。またこの
ゾルは、空温で3ケ月放置後もゲル化増粘せず安定であ
ったが、アセチルアセトン無添加の場合は2日後には増
粘しており4日後にはゼリー化した。
Example 1 Titanium tetrachloride aqueous solution (Ti-containing ffi 16.8% by weight)
168 g, 447 m of pure water and 12°39 acetylacetone
was added to make a homogeneous solution. To this solution, 600 (l) of an anion exchange resin (Amberlite "IRA-68, manufactured by Rohm and Haas) whose ion exchange groups were previously converted to OH type was added with a wet resin, and after contacting at 25°C for 35 minutes, the above A stable titania sol was produced by furnace-separating the ion exchange resin.The composition of this sol was such that titania was Ti 0
2, it is 7°5% by weight, chlorine ion (Cf') is 0.65% by weight, and acetylacetone (number of moles)/T+(
number of children) -0.2. The particle size of the colloid was observed using a dynamic light scattering photometer (DLS-700 manufactured by Union Giken), and the average particle size was 40. Further, this sol remained stable without gelation and thickening even after being left at air temperature for 3 months, but when no acetylacetone was added, the sol thickened after 2 days and turned into jelly after 4 days.

実施例 2 実施例1において四塩化チタン水溶液を用いるかわりに
オキシ塩化ジルコニル(ZrOCj!2 ・8)+20
)水溶液を用い、アセチルアセトンの添加時期をイオン
交換樹脂をが別した直後とし、その後溶媒の水の一部を
減圧上留去してゾル濃度を高めた他は実施例1と同様に
行ない下記の表−1に示すジルコニアゾルをえた。
Example 2 Instead of using titanium tetrachloride aqueous solution in Example 1, zirconyl oxychloride (ZrOCj!2 ・8) + 20
) Using an aqueous solution, acetylacetone was added immediately after the ion exchange resin was separated, and then a portion of the solvent water was distilled off under reduced pressure to increase the sol concentration. A zirconia sol shown in Table 1 was obtained.

実施例 3〜14 実施例1において四塩化チタンを用いる代りに下記の表
−1に示す各元素の塩を原料とし、安定化剤として表−
1に示すキレート化剤または金属キレートを用いた他は
実施例1と同様に行ない各種の金属酸化物系ゾルをえた
。これらのゾルはいずれも製造して3ケ月経過後も安定
であった。
Examples 3 to 14 Instead of using titanium tetrachloride in Example 1, salts of each element shown in Table 1 below were used as raw materials, and the stabilizers shown in Table 1 were used as raw materials.
Various metal oxide-based sols were obtained in the same manner as in Example 1, except that the chelating agent or metal chelate shown in Example 1 was used. All of these sols remained stable even after three months had passed since they were manufactured.

実施例 15 四塩化チタン50(]およびオキシ塩化ジルコニル(Z
rOCj!2−8H20)84.9(Jをアセチルアセ
トンの13゜2重最%水溶液160dに添加溶解せしめ
均一溶液とした。この溶液を撹拌しながら外部より加熱
し、液160’cで1時間熱加水分解せしめた。次いで
セロファン膜を通しての透析により塩素イオンを除去し
た。この時の液のpHは3.0であった。えられたチタ
ニア−ジルコニア複合ゾルはTi/Zr=1/1 (原
子比)、Ti○2+ZrO2に換算したゾル111度2
5重ω%、アセチルアセトンモル数/(Ti+Zr)原
子数=0.4であった。該コロイドの平均粒径は透過型
電子顕微鏡で測定した結果0.023μmで製造1ケ月
後も変化しなかった。
Example 15 Titanium tetrachloride 50 (] and zirconyl oxychloride (Z
rOCj! 2-8H20) 84.9 (J) was added and dissolved in 160 d of a 13° 2% aqueous solution of acetylacetone to form a homogeneous solution. This solution was heated from the outside while stirring, and thermally hydrolyzed at 160'C for 1 hour. The chloride ions were then removed by dialysis through a cellophane membrane.The pH of the solution at this time was 3.0.The obtained titania-zirconia composite sol had Ti/Zr=1/1 (atomic ratio). , Sol 111 degrees 2 converted to Ti○2 + ZrO2
5 weight ω%, number of moles of acetylacetone/number of (Ti+Zr) atoms = 0.4. The average particle size of the colloid was 0.023 μm as measured using a transmission electron microscope, and did not change even after one month of production.

該コロイド中の水を100Torrの減圧上留出せしめ
アセチルアセトン配位のチタニア・ジルコニア複合水和
物微粒子をえた後500℃で焼成してチタニア・ジルコ
ニア微粒子を製造した。この微粒子の平均粒径は0.0
7μmであった。
The water in the colloid was distilled off under a reduced pressure of 100 Torr to obtain acetylacetone-coordinated titania-zirconia composite hydrate fine particles, which were then calcined at 500°C to produce titania-zirconia fine particles. The average particle size of these fine particles is 0.0
It was 7 μm.

なおアセチルアセ1〜ンを添加する以外は上記した方法
と同様にチタニア・ジルコニア粒子を製造したが平均粒
径は0.2μmに成長していた。
Incidentally, titania-zirconia particles were produced in the same manner as described above except that acetylacetate was added, but the average particle size had grown to 0.2 μm.

実施例 16 塩化インジウム(InCj!3・4H20)330aと
塩化第2スズ(SnCfa ・3H20)33gをアセ
チルアセトン25(]を含む0.1 M HC1水溶液
1140(lに溶解し、この液をあらかじめOH型に転
化させた陰イオン交換樹脂(商品名デュオライトA−3
40)6j!を充填した塔にSV 208 r ”の速
度で通液し、酸化インジウム−酸化スズ複合ゾルを製造
した。ゾルの組成はln/5n=10.8(原子比)、
In2O3+SnO3に換算したゾル濃度13.1重量
%、アセチルアセトンモル数/(In+Sn)原子数=
1.6であり平均粒子径は0.03μmであった。該ゾ
ルおよびエタノールによりゾル濃度を72に希釈したゾ
ルは両者共25℃で3ケ月経過後も増粘現象がなく、ま
た沈澱物を生成することなく安定であった。
Example 16 330a of indium chloride (InCj!3.4H20) and 33g of tinnic chloride (SnCfa.3H20) were dissolved in 1140 (l) of a 0.1 M HC1 aqueous solution containing 25() of acetylacetone, and this solution was converted into OH type in advance. Anion exchange resin (product name: Duolite A-3)
40) 6j! The indium oxide-tin oxide composite sol was produced by passing the liquid through a column filled with the following at a rate of SV 208 r''.The composition of the sol was ln/5n = 10.8 (atomic ratio),
Sol concentration converted to In2O3+SnO3 13.1% by weight, number of moles of acetylacetone/number of (In+Sn) atoms =
1.6, and the average particle diameter was 0.03 μm. Both the sol and the sol diluted to a sol concentration of 72 with ethanol showed no thickening phenomenon even after 3 months at 25°C, and were stable without forming a precipitate.

なお上記製法において、アセチルアセトンを使用しない
場合およびセチルアセトンの替りに酢酸1.59を含ま
せた以外は工法と同様に酸化インジウム−酸化スズ複合
ゾルを製造したがいずれも24時間後には自沈が生成し
1ケ月後には殆んどすべての酸化物が沈澱分離した。
In addition, in the above manufacturing method, an indium oxide-tin oxide composite sol was manufactured in the same manner as the manufacturing method except that acetylacetone was not used and 1.59% of acetic acid was included instead of cetyl acetone, but in both cases, scuttling occurred after 24 hours. After one month, almost all the oxides were precipitated and separated.

実施例 17 四塩化チタン水溶液(Ti含量16.8重量%)168
gにイソプロピルアルコール(IPA)447gとアセ
チルアセトン35.4 (+を加え均一溶液とした。こ
の溶液にイオン交換基をあらかじめ0)−1型に転化さ
せた陰イオン交換樹脂(IRA−68)を湿潤樹脂で9
00!+加え25℃で45分間接触させたあと上記のイ
オン交換樹脂を炉別しIPA溶媒系の安定なチタニアゾ
ルを製造した。
Example 17 Titanium tetrachloride aqueous solution (Ti content 16.8% by weight) 168
447 g of isopropyl alcohol (IPA) and 35.4 g of acetylacetone (+) were added to make a homogeneous solution. This solution was wetted with an anion exchange resin (IRA-68) whose ion exchange group had been previously converted to 0)-1 type. 9 with resin
00! After adding + and contacting at 25° C. for 45 minutes, the above ion exchange resin was separated from the furnace to produce a stable titania sol in an IPA solvent system.

このゾルの組成はチタニアがT i 02で換算して7
.3重量%、塩素イオン<CI!−)が0.04重量%
で、アセチルアセトン(モル数)/Ti(原子数)=0
.6であった。該コロイドの粒子径はダイナミック光散
乱光度計で観測すると平均粒径が30人であった。また
、このゾルは室温で6ケ月放置後もゲル化増粘せず安定
であったが、アセチルアセトン無添加の場合は反応中に
ゼリー化した。
The composition of this sol is 7 when titania is converted to T i 02.
.. 3% by weight, chlorine ion <CI! -) is 0.04% by weight
So, acetylacetone (number of moles)/Ti (number of atoms) = 0
.. It was 6. The particle size of the colloid was observed using a dynamic light scattering photometer, and the average particle size was 30 particles. Further, this sol remained stable without gelation or thickening even after being left at room temperature for 6 months, but it turned into jelly during the reaction when acetylacetone was not added.

実施例 18 オキシ塩化ジルコニル(ZrOCj!2 ・8H20)
67(]をメタノール447gとアセチルアセトン16
.7 (]を加え均一溶液とした。この溶液にイオン交
換樹脂(アンバーライト01RA−410ロームアンド
ハース製)を湿潤樹脂で3709加え25℃で10分間
接触させたあと上記のイオン交換樹脂を炉別し、メタノ
ール溶媒系の安定なジルコニアゾルを製造した。このゾ
ルの組成はジルコニアがZrO2で換算して、4.8重
囲%、塩素イオン<CI!−)が0.01重M%で、ア
セチルアセトン(モル数)/Zr(原子数)=0.8で
あった。該コロイドの粒子径はダイナミック光散乱光度
計で観測すると平均粒径が40人であった。
Example 18 Zirconyl oxychloride (ZrOCj!2 ・8H20)
67 () with 447 g of methanol and 16 acetylacetone
.. 7 () was added to make a homogeneous solution. To this solution, an ion exchange resin (Amberlite 01RA-410 manufactured by Rohm and Haas) was added as a wet resin 3709, and after contacting for 10 minutes at 25°C, the above ion exchange resin was separated into a furnace. A stable zirconia sol in a methanol solvent system was produced.The composition of this sol was 4.8% by weight of zirconia, calculated as ZrO2, and 0.01% by weight of chloride ions (<CI!-). Acetylacetone (number of moles)/Zr (number of atoms) = 0.8. The particle size of the colloid was observed using a dynamic light scattering photometer, and the average particle size was 40.

また、このゾルは室温で6ケ月放置後もゲル化増粘せず
安定であったが、アセチルアセトン無添加の場合は反応
中にゼリー化した。
Further, this sol remained stable without gelation or thickening even after being left at room temperature for 6 months, but it turned into jelly during the reaction when acetylacetone was not added.

実施例 19〜30 実施例17において四塩化チタンを用いる代りに下記の
表−2に示す各元素の塩を原料とし、安定化剤として表
−2に示すキレート化剤または金属キレートを用い分散
媒をメタノールとした他は実施例17と同様に行ない各
種の金属酸化物系ゾルをえた。これらのゾルはいずれも
製造して6ケ月経過後も安定であった。
Examples 19 to 30 Instead of using titanium tetrachloride in Example 17, the salts of each element shown in Table 2 below were used as raw materials, the chelating agent or metal chelate shown in Table 2 was used as a stabilizer, and a dispersion medium was used. Various metal oxide-based sols were obtained in the same manner as in Example 17, except that methanol was used. All of these sols remained stable even after 6 months had passed since their manufacture.

実施例 31〜35 実施例17においてイソプロピルアルコールの代りに表
−3に示す溶媒を用いた他は実施例17と同様に行ない
安定なチタニアゾルをえた。これらのゾルはいずれも製
造して6ケ月経過後も安定であった。
Examples 31 to 35 A stable titania sol was obtained in the same manner as in Example 17, except that the solvent shown in Table 3 was used instead of isopropyl alcohol. All of these sols remained stable even after 6 months had passed since their manufacture.

表   −3Table-3

Claims (1)

【特許請求の範囲】 (1)金属酸化物系ゾルを構成する粒子が金属酸化物ま
たは金属水酸化物縮合体でありか つその平均径が0.1μm以下である当該ゾルにキレー
ト化剤および/または金属キレ ートを存在せしめてなることを特徴とする 安定な金属酸化物系ゾル組成物。 (2)キレート化剤がβ−ジカルボニル化合物であり、
また金属キレートがβ−ジカルボ ニル金属キレートであることを特徴とする 特許請求の範囲(1)記載の金属酸化物系ゾル組成物。 (3)キレート化剤および/または金属キレート中のキ
レート化用分子のモル数が粒子を 構成する金属原子に対し0.05〜2.0倍の範囲存在
せしめられてなることを特徴とす る特許請求の範囲(1)または(2)記載の金属酸化物
系ゾル組成物。 (4)粒子がチタニウム、ジルコニウム、セリウム、バ
ナジウム、ニオブ、タンタル、ア ルミニウム、ガリウム、インジウム、錫、 マンガン、ニッケル、コバルトおよび鉄よ りなる群より選ばれた少なくとも一種の金 属の酸化物または水酸化物縮合体を主成分 とする特許請求の範囲(1)、(2)または(3)記載
の金属酸化物系ゾル組成物。 (5)該金属酸化物系ゾルを構成する分散媒が水および
/または含酸素有機化合物である ことを特徴とする特許請求の範囲(1)、 (2)、(3)または(4)記載の金属酸化物系ゾル組
成物。
[Scope of Claims] (1) A chelating agent and/or Alternatively, a stable metal oxide sol composition characterized in that it contains a metal chelate. (2) the chelating agent is a β-dicarbonyl compound,
The metal oxide-based sol composition according to claim (1), wherein the metal chelate is a β-dicarbonyl metal chelate. (3) A patent characterized in that the number of moles of chelating molecules in the chelating agent and/or metal chelate is present in a range of 0.05 to 2.0 times the number of moles of the metal atoms constituting the particles. A metal oxide-based sol composition according to claim (1) or (2). (4) The particles are an oxide or hydroxide of at least one metal selected from the group consisting of titanium, zirconium, cerium, vanadium, niobium, tantalum, aluminum, gallium, indium, tin, manganese, nickel, cobalt, and iron. A metal oxide-based sol composition according to claim (1), (2) or (3), which contains a condensate as a main component. (5) Claim (1), (2), (3) or (4), wherein the dispersion medium constituting the metal oxide sol is water and/or an oxygen-containing organic compound. metal oxide-based sol composition.
JP28098985A 1985-05-29 1985-12-16 Stable metal oxide sol composition Granted JPS6287242A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-113965 1985-05-29
JP11396585 1985-05-29

Publications (2)

Publication Number Publication Date
JPS6287242A true JPS6287242A (en) 1987-04-21
JPH0585481B2 JPH0585481B2 (en) 1993-12-07

Family

ID=14625642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28098985A Granted JPS6287242A (en) 1985-05-29 1985-12-16 Stable metal oxide sol composition

Country Status (1)

Country Link
JP (1) JPS6287242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180740A (en) * 1986-01-31 1987-08-08 Matsumoto Seiyaku Kogyo Kk Organoindium sol and composite for forming transparent electrically conductive membrane
JPS63272460A (en) * 1987-04-28 1988-11-09 Mitsubishi Monsanto Chem Co Composition for polishing wafer
JP2000007336A (en) * 1998-06-10 2000-01-11 Industrial Research Ltd Production of complex
JP2011521870A (en) * 2008-02-14 2011-07-28 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Colloidal titanium dioxide sol
WO2015056488A1 (en) * 2013-10-18 2015-04-23 第一稀元素化学工業株式会社 Zirconium oxide-titanium oxide composite sol and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172504A (en) * 1993-12-21 1995-07-11 Kubota Corp Sorting and storing method of waste and equipment therefor

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US281917A (en) * 1883-07-24 Eobeet s
US2819174A (en) * 1953-11-25 1958-01-07 American Cyanamid Co Stable aqueous titania monohydrate dispersions
JPS49111580A (en) * 1973-02-02 1974-10-24
JPS5229499A (en) * 1975-08-18 1977-03-05 Chemetron Corp Method of making antimony pentaoxide hydrate sol
JPS5336450A (en) * 1976-09-17 1978-04-04 Hitachi Ltd Gain control circuit
JPS55116765A (en) * 1979-03-02 1980-09-08 Toray Ind Inc Coating composition
JPS55116731A (en) * 1979-03-01 1980-09-08 Toray Ind Inc Coating composition for molded polycarbonate article
JPS5626896A (en) * 1979-08-09 1981-03-16 Ichiro Kijima Preparation of water-soluble titanium compound
JPS5684729A (en) * 1979-11-14 1981-07-10 Toray Ind Inc Production of transparent material having excellent reflection-preventing effect
JPS577818A (en) * 1980-06-13 1982-01-16 Idemitsu Kosan Co Ltd Manufacture of crystalline aluminosilicate zeolite and catalytically converting method for organic starting material using said zeolite
JPS57168922A (en) * 1981-04-10 1982-10-18 Toray Ind Inc Coating composition
JPS57177069A (en) * 1981-04-24 1982-10-30 Toray Ind Inc Coating composition
JPS5841724A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS5841722A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS5841720A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS58172231A (en) * 1982-03-30 1983-10-11 Nippon Sheet Glass Co Ltd Manufacture of transition metallic oxide film
JPS59102201A (en) * 1982-12-06 1984-06-13 Nippon Soda Co Ltd Multilayered film having high durability and its production
JPS59195504A (en) * 1983-04-15 1984-11-06 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS59213602A (en) * 1983-05-13 1984-12-03 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS60255622A (en) * 1984-05-30 1985-12-17 Toyo Soda Mfg Co Ltd Production of fine powder of zirconia having excellent sinterability
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia
JPS6183603A (en) * 1984-09-07 1986-04-28 Agency Of Ind Science & Technol Preparation of amorphous compound metal oxide
JPS61283335A (en) * 1985-04-30 1986-12-13 Sumitomo Chem Co Ltd Alumina sol composition

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US281917A (en) * 1883-07-24 Eobeet s
US2819174A (en) * 1953-11-25 1958-01-07 American Cyanamid Co Stable aqueous titania monohydrate dispersions
JPS49111580A (en) * 1973-02-02 1974-10-24
JPS5229499A (en) * 1975-08-18 1977-03-05 Chemetron Corp Method of making antimony pentaoxide hydrate sol
JPS5336450A (en) * 1976-09-17 1978-04-04 Hitachi Ltd Gain control circuit
JPS55116731A (en) * 1979-03-01 1980-09-08 Toray Ind Inc Coating composition for molded polycarbonate article
JPS55116765A (en) * 1979-03-02 1980-09-08 Toray Ind Inc Coating composition
JPS5626896A (en) * 1979-08-09 1981-03-16 Ichiro Kijima Preparation of water-soluble titanium compound
JPS5684729A (en) * 1979-11-14 1981-07-10 Toray Ind Inc Production of transparent material having excellent reflection-preventing effect
JPS577818A (en) * 1980-06-13 1982-01-16 Idemitsu Kosan Co Ltd Manufacture of crystalline aluminosilicate zeolite and catalytically converting method for organic starting material using said zeolite
JPS57168922A (en) * 1981-04-10 1982-10-18 Toray Ind Inc Coating composition
JPS57177069A (en) * 1981-04-24 1982-10-30 Toray Ind Inc Coating composition
JPS5841724A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS5841722A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS5841720A (en) * 1981-09-02 1983-03-11 Nippon Soda Co Ltd Composition forming metallic oxide film
JPS58172231A (en) * 1982-03-30 1983-10-11 Nippon Sheet Glass Co Ltd Manufacture of transition metallic oxide film
JPS59102201A (en) * 1982-12-06 1984-06-13 Nippon Soda Co Ltd Multilayered film having high durability and its production
JPS59195504A (en) * 1983-04-15 1984-11-06 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS59213602A (en) * 1983-05-13 1984-12-03 Kanegafuchi Chem Ind Co Ltd Composite metallic solution
JPS60255622A (en) * 1984-05-30 1985-12-17 Toyo Soda Mfg Co Ltd Production of fine powder of zirconia having excellent sinterability
JPS6168314A (en) * 1984-09-07 1986-04-08 Agency Of Ind Science & Technol Production of porous silica, alumina, titania, and zirconia
JPS6183603A (en) * 1984-09-07 1986-04-28 Agency Of Ind Science & Technol Preparation of amorphous compound metal oxide
JPS61283335A (en) * 1985-04-30 1986-12-13 Sumitomo Chem Co Ltd Alumina sol composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180740A (en) * 1986-01-31 1987-08-08 Matsumoto Seiyaku Kogyo Kk Organoindium sol and composite for forming transparent electrically conductive membrane
JPS63272460A (en) * 1987-04-28 1988-11-09 Mitsubishi Monsanto Chem Co Composition for polishing wafer
JPH0420742B2 (en) * 1987-04-28 1992-04-06 Monsanto Japan
JP2000007336A (en) * 1998-06-10 2000-01-11 Industrial Research Ltd Production of complex
JP2011521870A (en) * 2008-02-14 2011-07-28 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Colloidal titanium dioxide sol
JP2014139133A (en) * 2008-02-14 2014-07-31 Crystal Usa Inc Colloidal titanium dioxide sols
WO2015056488A1 (en) * 2013-10-18 2015-04-23 第一稀元素化学工業株式会社 Zirconium oxide-titanium oxide composite sol and production method thereof
JP2015078102A (en) * 2013-10-18 2015-04-23 第一稀元素化学工業株式会社 Zirconium oxide-titanium oxide composite sol and method for producing the same
US9902655B2 (en) 2013-10-18 2018-02-27 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconium oxide-titanium oxide composite sol and production method thereof

Also Published As

Publication number Publication date
JPH0585481B2 (en) 1993-12-07

Similar Documents

Publication Publication Date Title
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
US7344591B2 (en) Stabilized suspension of titanium dioxide nanoparticles and methods of manufacture
JP4922040B2 (en) Metal oxide fine particle aqueous dispersion and method for producing the same
Kessler The chemistry behind the sol–gel synthesis of complex oxide nanoparticles for bio-imaging applications
WO1998039253A1 (en) Process for producing composite sols, coating composition, and optical member
JPH0354126A (en) Production of powder coated with metallic oxide
JP3250259B2 (en) Modified stannic oxide-zirconium oxide composite sol and method for producing the same
JP4963820B2 (en) Method for producing sol using Zr-O-based particles as dispersoid
JPS6287242A (en) Stable metal oxide sol composition
JP2733874B2 (en) Concentrated colloidal solution of non-agglomerated monocrystalline particles of metal oxide, process for its preparation and its use in obtaining coatings
JP4851685B2 (en) Method for producing rutile type titanium oxide ultrafine particles
JP2008081378A (en) Method for producing niobium-based oxide fine particle
JP2001122621A (en) Modified metal oxide sol and method of manufacturing the same
JPH03217230A (en) Modified metallic oxide sol and its production
JPH06254383A (en) Production of metal oxide particulate
JPH085660B2 (en) Method for producing silica gel containing titanium oxide ultrafine particles dispersed therein
JP4922038B2 (en) Metal oxide fine particle dispersion and method for producing the same
JPH07100611B2 (en) Method for producing modified titania sol
WO2011016418A1 (en) Method for producing silica-zirconia composite particles each coated with silica layer
Sun et al. Design of reflective tantala optical coatings using sol-gel chemistry with ethanoic acid catalyst and chelator
US8106101B2 (en) Method for making single-phase anatase titanium oxide
KR100703143B1 (en) Aqueous colloidal dispersion based on at least a metal compound and a complexing agent, preparation method and use
JPH0980203A (en) Modified metal oxide sol and its production
US5312613A (en) Process for producing ceramic precursor powders without gel formation
JPH03218928A (en) Zirconia organosol and production thereof