JPS627830A - Manufacture of permanent magnet material - Google Patents

Manufacture of permanent magnet material

Info

Publication number
JPS627830A
JPS627830A JP60145423A JP14542385A JPS627830A JP S627830 A JPS627830 A JP S627830A JP 60145423 A JP60145423 A JP 60145423A JP 14542385 A JP14542385 A JP 14542385A JP S627830 A JPS627830 A JP S627830A
Authority
JP
Japan
Prior art keywords
powder
rare earth
permanent magnet
atomic
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60145423A
Other languages
Japanese (ja)
Other versions
JPH0526857B2 (en
Inventor
Akiyasu Oota
晶康 太田
Takami Hikone
彦根 孝美
Setsuo Fujimura
藤村 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60145423A priority Critical patent/JPS627830A/en
Publication of JPS627830A publication Critical patent/JPS627830A/en
Publication of JPH0526857B2 publication Critical patent/JPH0526857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a permanent magnet material having superior magnetic characteristics at a low cost by blending the oxide of a rare earth element with iron powder and pure boron powder, ferroboron powder or boron oxide so as to obtain a specified composition and by subjecting the mixture to reduction with Ca and diffusion under specified conditions and to specified processing and treatment. CONSTITUTION:The oxide of at least one kind of rare earth element is blended with iron powder and at least one among pure boron powder, ferroboron powder, boron oxide and boride so as to obtain a composition consisting essentially of, by atom, 12-20% R (R is at least one among Nd, Pr, Dy, Ho and Tb combined optionally with at least one among la, Ce, Sm, Gd, Er, Eu, Tm, Yb and Y), 4-20% B, 0.05-3.0% boride and 65-81% Fe. The powdery mixture is subjected to reduction with Ca and diffusion by heat to 900-1,200 deg.C in an inert gaseous atmosphere and the resulting reaction product is put in water and slurrified. This slurry is treated with water and the treated starting material is pulverized, pressed, sintered and aged to obtain an Fe-B-R type permanent magnet material having a tetragonal phase as the principal phase.

Description

【発明の詳細な説明】 利用産業分野 この発明は、FeB−R系永久磁石材料の製造方法に係
り、溶解2機械的粉砕なしで、所定の粒度が得られ、か
つ容易に製造できるCa還元法で得られ、かつ、最終成
品の磁気特性を劣化させる酸素などの不純物の少ない原
料粉末により、すぐれた磁気特性を有する永久磁石材料
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for manufacturing FeB-R permanent magnet materials, and a Ca reduction method that allows a predetermined particle size to be obtained without melting or mechanical pulverization, and that can be easily manufactured. The present invention relates to a method for producing a permanent magnet material that has excellent magnetic properties using a raw material powder that is obtained by using a raw material powder that contains less impurities such as oxygen that degrades the magnetic properties of the final product.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

このうち希土類コバルト磁石は、磁気特性が格段にすぐ
れているため、多種用途に利用されているが、主成分の
5TII、Coは共に資源的に不足し、かつ° 高価で
あり、今後長期間にわたって、安定して多量に供給され
ることは困難である。そのため、磁気特性がすぐれ、か
つ安価で、ざらに資源的に豊富で今後の安定供給が可能
な組成元素からなる永久磁石材料が切望されてきた。
Among these, rare earth cobalt magnets have extremely excellent magnetic properties and are used for a variety of purposes, but the main components, 5TII and Co, are both scarce in terms of resources and expensive, so they will not last for a long time. , it is difficult to stably supply it in large quantities. Therefore, there has been a strong need for a permanent magnet material that has excellent magnetic properties, is inexpensive, has abundant resources, and has constituent elements that can be stably supplied in the future.

本出願人は先に、高価なSmやらを含有しない新しい高
性能永久磁石としてFa−B−R系(R4,tYを含む
希土類元素のうら少なくとも1種)永久磁石を提案した
(特開昭59−46008@、特開昭59−64733
@、特開昭59−89401号、特開昭59−1321
04号)。
The present applicant previously proposed an Fa-B-R system (at least one rare earth element including R4, tY) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm (Japanese Patent Application Laid-Open No. 59-1993). -46008@, JP-A-59-64733
@, JP-A-59-89401, JP-A-59-1321
No. 04).

この永久磁石は、Rとして陶や円を中心とする資源的(
豊富な軽希土類を用い、FBを主成分として25MGO
s以上の極めて高いエネルギー積を示すすぐれた永久磁
石である。
This permanent magnet is made of natural resources such as ceramics and circles as R.
Using abundant light rare earths, 25MGO with FB as the main component
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding s.

一般に、Fs−BR系永久磁石は、出発原料として、電
解法あるいは熱還元法で得られた純度99.5%以上の
希土類金属、純度99.9%以上の電界鉄、ボロン等の
不純物の少ない高価な金属塊が使用されている。
In general, Fs-BR permanent magnets use as starting materials rare earth metals with a purity of 99.5% or more obtained by electrolysis or thermal reduction, electric field iron with a purity of 99.9% or more, and low impurities such as boron. Expensive metal blocks are used.

上記の出発原料として使用される、純度99゜9%の電
解鉄、純度99.7%以上の希土類金属等は、予め鉱石
から精製された不純物の少ない高品質のもので、これを
高周波溶解し、その後鋳造し、鋳塊を粗粉砕し、次にボ
ールミル等により微粉砕し、例えば磁界中配向しながら
プレス成形し、ざらに焼結、時効処理し、磁石化する方
法が取られていた。
The electrolytic iron with a purity of 99.9% and rare earth metals with a purity of 99.7% or more used as the above starting materials are high quality products with few impurities that have been refined from ores in advance, and are melted using high frequency. Thereafter, the ingot was roughly pulverized, then finely pulverized using a ball mill, etc., pressed, for example, while oriented in a magnetic field, roughly sintered, aged, and magnetized.

従って、原料の希土類金属の!!!造には、高度な分m
精製技術を要し、高価になり、また、上記の鋳塊粉砕法
による磁石の製造には、多工程を要し、永久磁石の価格
を高くする問題があった。
Therefore, raw materials of rare earth metals! ! ! For construction, advanced minute m
This method requires refining technology and is expensive, and the production of magnets by the above-mentioned ingot crushing method requires multiple steps, which increases the price of permanent magnets.

一方、このF@B  R系永久磁石に、なお一層の高磁
石特性を与え、かつ安価に製造するための希土類磁石用
合金粉末の製造方法として、出願人は、先に、Ca還元
法による製造方法を提案(特開昭59−219404号
)し、ざらに、酸素、炭素、カルシウム含有但を低減し
たCa還元による希土類磁石用合金粉末の製造方法を提
案(特願昭59−182574号、特願昭59−248
798号)した。
On the other hand, as a method for producing alloy powder for rare earth magnets in order to provide even higher magnetic properties to this F@B R-based permanent magnet and to produce it at low cost, the applicant has previously developed a production method using a Ca reduction method. (Japanese Unexamined Patent Publication No. 59-219404) and proposed a method for producing alloy powder for rare earth magnets by Ca reduction with roughly reduced oxygen, carbon, and calcium content (Japanese Patent Application No. 59-182574, Gansho 59-248
No. 798).

その要旨は、R(RはNa、 Pr、 Dy、 Ho、
 Toのうち少なくとも1種あるいはさらに、La、 
Ce、 Sm。
The gist is that R (R is Na, Pr, Dy, Ho,
At least one of To or furthermore, La,
Ce, Sm.

Cb、 Er、 EDy、 Tm、 Yb、 La、 
Yのうち少なくとも1種からなる)12.5原子%〜2
0原子%、B4原子%〜20原子%、Fe80原子%〜
83原子%となるように、希土類酸化物のうち少なくと
も1種と、鉄粉。
Cb, Er, EDy, Tm, Yb, La,
consisting of at least one type of Y) 12.5 atomic % to 2
0 atomic%, B4 atomic% ~ 20 atomic%, Fe 80 atomic% ~
At least one rare earth oxide and iron powder so that the content is 83 atomic %.

純ボロン粉、フェロボロン粉および硼素酸化物のうち少
なくとも1種、あるいは上記構成元素の合金粉または混
合酸化物を上記組成に配合した混合粉に、上記希土類酸
化物などの原料粉末に含まれる酸素量に対して、化学量
論的必要量の1.5〜3.5倍(重量比)の金属Caと
希土類酸化物のIwt%〜15W[%のCaCjzを混
合し、不活性ガス雰囲気中で900℃〜1200℃で還
元拡散を行ない、得られた反応生成物を水中に入れてス
ラリー化し、ざらに該スラリーを水処理する希土類!a
石用合金粉末の製造方法でおる。
The amount of oxygen contained in the raw material powder such as the rare earth oxide in a mixed powder in which at least one of pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above constituent elements is blended into the above composition. 1.5 to 3.5 times the stoichiometrically required amount (weight ratio) of metal Ca and rare earth oxide Iwt% to 15W [% CaCjz were mixed, and 900% CaCjz was mixed in an inert gas atmosphere. Rare earths that perform reduction diffusion at ℃~1200℃, put the obtained reaction product in water to form a slurry, and roughly process the slurry with water! a
This is a method for producing alloy powder for stone.

上記の方法によって、酸素量 60001)回収下、炭
素ffi  11000pp以下、Ca量2000pp
m以下のFB−B−R系永久磁石合金粉末が得られ、す
ぐれたvii石特性のFe−BR系永久磁石が得られる
が、従来の鋳塊粉砕法によって得られる合金粉末を用い
て製造した永久磁石と比較して、Ca還元による合金粉
末を用いて製造した永久磁石の場合は、焼結中に結晶粒
の生長が起りやすく、すぐれた保磁力■Hcが得難い問
題があった。
By the above method, under the recovery of oxygen amount 60001), carbon ffi 11000pp or less, Ca amount 2000pp
FB-BR permanent magnet alloy powder with a diameter of less than Compared to permanent magnets, permanent magnets manufactured using alloy powders produced by Ca reduction have a problem in that crystal grains tend to grow during sintering, making it difficult to obtain excellent coercive force (■Hc).

発明の目的 この発明は、Fa−B−R系永久磁石の低価格化と磁石
特性を向上させることができるCa還元法による希土類
磁石用合金粉末を用いたFa−B−R系永久磁石の製造
方法を目的とし、焼結中の結晶粒の成長を防止し、すぐ
れた磁石特性を有するFs −B−R系永久磁石材料が
得られる製造方法を目的としている。
Purpose of the Invention The present invention is directed to the production of Fa-B-R permanent magnets using alloy powder for rare earth magnets by Ca reduction method, which can reduce the price of Fa-B-R permanent magnets and improve magnetic properties. The object of the present invention is to provide a manufacturing method that prevents the growth of crystal grains during sintering and provides an Fs-BR-based permanent magnet material having excellent magnetic properties.

発明の構成と効果 Ca還元による合金粉末を用いて製造した永久磁石が、
焼結中に結晶粒の生長が起りやすく、すぐれた保磁力t
Hcが得難い理由は、該合金粉末表面には非磁性のMリ
ッチ相が生成しやすく、そのため磁石化した場合に磁石
体中の結晶粒の成長が起りやすくなり、保磁力l1−f
cの劣化を招来するものと考えられる。
Structure and effect of the invention A permanent magnet manufactured using alloy powder by Ca reduction,
Grain growth occurs easily during sintering, and excellent coercive force
The reason why it is difficult to obtain Hc is that a nonmagnetic M-rich phase tends to form on the surface of the alloy powder, and therefore, when it is magnetized, crystal grains in the magnet body tend to grow, and the coercive force l1-f
This is considered to cause deterioration of c.

発明者らは、焼結中の結晶粒の生長を防止し、すぐれた
磁石特性が得られるFa−B−R系永久磁石材料の製造
方法について種々検討した結果、磁石体に、TL B 
2やBN等の硼化物を、少なくとも1種、特定量含有さ
せることにより、焼結磁石体の結晶粒の成長を防止し得
ることを知見し、この発明を完成したものである。
The inventors investigated various methods for manufacturing Fa-BR permanent magnet materials that prevent the growth of crystal grains during sintering and provide excellent magnetic properties.
This invention was completed based on the finding that the growth of crystal grains in a sintered magnet can be prevented by containing a specific amount of at least one type of boride such as No. 2 or BN.

すなわち、この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Toのうち
少なくとも1種あるいはさらに、La、 Ce、 Sm
、 (A、 Er、 EDy、丁m。
That is, this invention provides R (R is at least one of Nd, Pr, Dy, Ho, To or furthermore, La, Ce, Sm
, (A, Er, EDy, Dingm.

Yb、 La、 Yのうち少なくとも1種からなる)1
2原子%〜20原子%、 B4@子%〜20原子%、 硼化物 0.05原子%〜3.0原子%Fe65原子%
〜81原子%が主成分となるように、該希土類酸化物の
うち少なくとも1種と、鉄粉と純ボロン粉、フェロボロ
ン粉および硼素酸化物のうち少なくとも1種、及び硼化
物のうち少なくとも1種、あるいはざらに上記溝成元索
の合金粉または混合酸化物を上記組成に配合し、 この混合粉を、不活性ガス雰囲気中で900℃〜120
0℃に加熱して、Ca還元拡散を行ない、得られた反応
生成物を、水中に投入してスラリー化し、ざらに該スラ
リーを水により処理し、得られた処理原料を微粉砕後、
プ、レス、焼結、時効処理し、 前記組成を主成分とし、主相が正方晶相からなる永久磁
石材料を得ることを特徴とする永久磁石材料の製造方法
である。
consisting of at least one of Yb, La, Y)1
2 atomic% to 20 atomic%, B4 @ 20 atomic%, boride 0.05 atomic% to 3.0 atomic% Fe65 atomic%
At least one of the rare earth oxides, at least one of iron powder, pure boron powder, ferroboron powder, and boron oxide, and at least one of boride, so that ~81 atomic % is the main component. , or roughly blend the above-mentioned groove forming element alloy powder or mixed oxide into the above composition, and heat the mixed powder at 900°C to 120°C in an inert gas atmosphere.
Heating to 0° C. to perform Ca reduction and diffusion, the obtained reaction product was poured into water to form a slurry, the slurry was roughly treated with water, and the obtained treated raw material was pulverized,
This is a method for producing a permanent magnet material, which is characterized in that the permanent magnet material is obtained by performing pressing, pressing, sintering, and aging treatment to obtain a permanent magnet material having the above-mentioned composition as a main component and having a main phase of a tetragonal phase.

また、Ca還元拡散は、望ましくは、上記希土類酸化物
などの原料粉末に含まれる酸素量に対して、化学@論的
必要量の1.5〜3.5倍の金属Caと希土類酸化物の
1wt%〜i 5wt%のCaCR2を混合し、不活性
ガス雰囲気中で900°C〜1200℃に加熱して還元
拡散を行ない、得られた反応生成物を、水中に投入して
スラリー化し、ざらに該スラリーを水により処理し、得
られた処理原料を微粉砕後、プレス、焼結、時効処理し
、永久磁石化するのがよい。
In addition, Ca reduction diffusion is preferably carried out using metal Ca and rare earth oxide in an amount of 1.5 to 3.5 times the chemically required amount of oxygen contained in the raw material powder such as the rare earth oxide. 1wt% to 5wt% of CaCR2 is mixed and heated to 900°C to 1200°C in an inert gas atmosphere to perform reduction diffusion, and the resulting reaction product is poured into water to form a slurry. It is preferable that the slurry is treated with water, and the resulting treated raw material is pulverized, then pressed, sintered, and aged to form a permanent magnet.

この発明による合金粉末は、希土類金属を製造する前段
階における中間原料、すなわち、安価なNcj203や
Pr6011などの軽希土類酸化物及びTo304ヤ〜
203などの重希土類酸化物と、Fa粉。
The alloy powder according to the present invention can be used as an intermediate raw material in the preliminary stage of producing rare earth metals, that is, inexpensive light rare earth oxides such as Ncj203 and Pr6011, and To304
Heavy rare earth oxides such as 203 and Fa powder.

純ボロン粉(結晶性あるいはアモルファスのいずれでも
よい)、のFe  B粉またはB2O3粉末などの硼素
酸化物、並びに、硼化物のうち少なくとも1種を出発原
料とし、還元剤として金属Ca、還元反応生成物の崩壊
を容易にするCaC,hを用い、Ca還元拡散させる工
程により製造するため、種々の金属塊原料を用いるより
も安価に高品質であり、Fa−B−R系永久磁石の磁石
特性を向上させることができ、また、工業的量産に最適
である。
Using at least one of pure boron powder (crystalline or amorphous), boron oxide such as Fe B powder or B2O3 powder, and boride as a starting material, metal Ca as a reducing agent, and a reduction reaction product. Because it is manufactured using CaC,h, which facilitates the disintegration of objects, and a process of reducing and diffusing Ca, it is cheaper and of higher quality than using various metal lump raw materials, and the magnetic characteristics of Fa-B-R permanent magnets are It is also ideal for industrial mass production.

この発明による希土類合金粉末は、Fs  B  R系
永久磁石の製造に際して、そのまま微粉砕し、プレス成
形、焼結2時効処理する粉末冶金製造方法により、永久
磁石を得ることができ、希土類金属塊、鉄およびボロン
等の原料塊を原料として製造する鋳塊粉砕法に比較して
、原料溶解、鋳造。
The rare earth alloy powder according to the present invention can be used to obtain a permanent magnet by a powder metallurgy manufacturing method in which it is pulverized as it is, press molded, sintered and subjected to two aging treatments, and a rare earth metal lump, Compared to the ingot crushing method, which uses raw material ingots such as iron and boron as raw materials, raw material melting and casting.

粗粉砕などの手間とコストを要する製造工程を省略する
ことができ、また上記した如く、安価な希土類酸化物な
どの出発原料を用いるため、永久磁石価格を安価にし、
かつ硼化物を添加することで、鋳塊粉砕法と同等以上の
すぐれた16石特性のFe −El−R系永久磁石を安
価に量産できる利点を有する。
It is possible to omit manufacturing processes that require time and cost, such as coarse pulverization, and as mentioned above, since inexpensive starting materials such as rare earth oxides are used, the price of permanent magnets is low,
In addition, by adding boride, it has the advantage that Fe-El-R permanent magnets with 16-stone characteristics, which are equivalent to or better than the ingot crushing method, can be mass-produced at low cost.

この発明によるFe  B  R系永久磁石は、(B 
H)maX  20HGOe以上、iHc 10 ko
e以上の磁石特性を有し、かつ該特性を維持しながら室
温以上の温度雰囲気中でも十分に安定した使用が可能と
なる。
The Fe BR permanent magnet according to the present invention has (B
H) maX 20HGOe or more, iHc 10 ko
It has magnetic properties of e or higher, and can be used in a sufficiently stable manner even in an atmosphere at a temperature of room temperature or higher while maintaining these properties.

発明の限定理由 この発明によるFe  B  R系永久磁石の製造工程
は以下のとおりであり、限定理由を合せて説明する。
Reasons for Limiting the Invention The manufacturing process of the FeBR permanent magnet according to the present invention is as follows, and the reasons for the limitations will also be explained.

まず、Nd酸化物(Nd203−)やPT酸化物(Pr
sOn)などの軽希土類酸化物の少なくとも1種、 あるいはさらに、Tb酸化物(Tb304>やDy酸化
物(Dy203)などの重希土類酸化物の少なくとも−
種と、 Fe粉と純ボロン粉、フェロボロン粉(Fe−8粉)。
First, Nd oxide (Nd203-) and PT oxide (Pr
at least one light rare earth oxide such as Tb oxide (Tb304> or Dy oxide (Dy203));
Seeds, Fe powder, pure boron powder, ferroboron powder (Fe-8 powder).

B2O3粉末などの硼素酸化物のうち少なくとも1種、 及びT12、BN 、ZyBz 、ZrB+2、HfB
z、VB2 、NbB、 FbEh 、Taf3. T
aB2 、CrB2、MoB、MoBz 、VB2 B
SWBSW2 B等の硼化物のうち少なくとも1種の原
料粉末を、 R12原子%〜20原子%、 B44原子〜20原子%、 硼化物 0.05原子%〜3.0原子%Fe65原子%
〜81原子% (ここで、Rはm、 Pr、■、出、 Tbのうち少な
くとも1種あるいはざらに、La、 Ce、 Sm、 
Q:l、 Er。
At least one type of boron oxide such as B2O3 powder, and T12, BN, ZyBz, ZrB+2, HfB
z, VB2, NbB, FbEh, Taf3. T
aB2, CrB2, MoB, MoBz, VB2 B
SWBSW2 At least one kind of raw material powder of borides such as B, R12 atom% to 20 atom%, B44 atom to 20 atom%, boride 0.05 atom% to 3.0 atom% Fe65 atom%
~81 atomic% (here, R is at least one of m, Pr, ■, Tb, La, Ce, Sm,
Q:l, Er.

EDy、 Tm、 yb、 La、 Yのうち少なくと
も1種からなる) の組成となるように配合し、必要に応じて、金属粉、酸
化物粉(M4構成素との混合酸化物も含む)。
(consisting of at least one of EDy, Tm, yb, La, and Y) and, if necessary, metal powder and oxide powder (including mixed oxides with M4 constituents).

合金粉(構成元素との混合酸化物も含む)あるいはその
他のCa還光可能な化合物粉末として添加元素を加えて
原料混合粉末とする。
An additive element is added as an alloy powder (including mixed oxides with constituent elements) or other compound powder capable of returning Ca to form a raw material mixed powder.

この発明において、Fe  B−R系永久磁石を製造す
る際、Ca還元前の原料粉末の配合時に、0.05原子
%〜3.0原子%のTiBz 、BN 。
In the present invention, when producing a Fe BR permanent magnet, 0.05 atomic % to 3.0 atomic % of TiBz and BN are added at the time of blending the raw material powder before Ca reduction.

ZrB2、ZrB+z 、HFB2 、VB2 、Nb
B、NhBz、TaB、 TaB2 、CrB2 、M
oBSMOE32 、VB2 B−。
ZrB2, ZrB+z, HFB2, VB2, Nb
B, NhBz, TaB, TaB2, CrB2, M
oBSMOE32, VB2 B-.

WB、W2 B等の硼化物のうち少なくとも1種の原料
粉末を配合、混合して、Ca還元・拡散を行なうが、硼
化物の量が0.05原子%未満では、磁石体の焼結時の
結晶粒成長の抑制効果が得られず、また、3.0原子%
を越えると、上記の効果が飽和するため、0.05原子
%〜3、O原子%とする。
At least one raw material powder of borides such as WB and W2B is blended and mixed to perform Ca reduction and diffusion, but if the amount of boride is less than 0.05 at%, it will be difficult to sinter the magnet body. 3.0 at%
If the content exceeds 0.05 atomic % to 3.0 atomic %, the above effect will be saturated.

この発明において、希土類酸化物との還元反応を促進さ
せ、上記原料粉との拡散反応を均一にかつ充分に進行さ
せ、均質・単相でかつ含有酸素量の少ない合金粉末を得
るためには、Fe粉、純ボロン粉、フェロボロン粉、 
B2O3粉末などの硼素酸化物のうち少なくとも1種の
原料粉末あるいは種々の添加元素は、粒度が150Am
以下、好ましくは75μm以下の粒度である。
In this invention, in order to promote the reduction reaction with the rare earth oxide and the diffusion reaction with the raw material powder to proceed uniformly and sufficiently, and to obtain a homogeneous, single-phase alloy powder with a low oxygen content, Fe powder, pure boron powder, ferroboron powder,
At least one raw material powder or various additive elements of boron oxide such as B2O3 powder has a particle size of 150 Am.
Below, the particle size is preferably 75 μm or less.

同様に、混合粉の希土類酸化物の平均粒度は1〜10A
mで、さらには2〜51Jms原料粉の平均粒度は1〜
150.でさらに2〜50Bmであることが好ましい。
Similarly, the average particle size of the rare earth oxide in the mixed powder is 1 to 10A.
m, and furthermore, the average particle size of the raw material powder is 1 to 51 Jms.
150. It is further preferable that it is 2 to 50 Bm.

ざらに、上記原料混合粉末に、希土類元素の還元剤とし
て金属Ca粉末、還元反応生成物の崩壊を容易にするた
めのCaCR2粉末を添加する。金属Caの必要量は、
希土類酸化物などの原料粉末に含まれる酸素量に対して
、化学量論的必要量の1.5〜3.5倍であり、CaC
l2は希土類酸化物のIwt%〜15wt%とする。
Roughly, metallic Ca powder as a reducing agent for the rare earth element and CaCR2 powder for facilitating the disintegration of the reduction reaction product are added to the raw material mixed powder. The required amount of metallic Ca is
The amount of oxygen contained in raw material powders such as rare earth oxides is 1.5 to 3.5 times the stoichiometrically required amount, and CaC
l2 is Iwt% to 15wt% of the rare earth oxide.

この発明による合金粉末には、必須元素として、Bを含
有するため、例えば、原料粉のフェロポロン粉の融点は
、鉄粉に比較して、100℃〜400℃低いため、還元
反応時の希土類元素とフェロボロンとの拡散が速く有利
であるが、Caの配合量が、使用した希土類酸化物を還
元するのに必要な化学量論的必要量の1.5倍未満では
、希土類酸化物が十分に還元されないため、合金粉末中
には含有酸素量が多く、所定の合金粉末組成が得られな
い。
Since the alloy powder according to the present invention contains B as an essential element, for example, the melting point of the raw material powder ferropolone powder is 100 to 400 degrees Celsius lower than that of iron powder, so the rare earth element during the reduction reaction However, if the amount of Ca added is less than 1.5 times the stoichiometric amount required to reduce the rare earth oxide used, the rare earth oxide is not sufficiently absorbed. Since it is not reduced, the alloy powder contains a large amount of oxygen, making it impossible to obtain a predetermined alloy powder composition.

一方、還元反応時に生成される反応副生成物であるCa
Oは、合金粉末の還元反応時の結晶粒成長を抑止し、所
定の平均粒度を有する合金粉末を得ることができる。し
かし、希土類酸化物を還元するのに必要な化学量論的必
要量の3.5倍を越える過剰のCa還元剤は、工程のコ
ストを上昇させるだけでなく、還元反応後に水中に投入
する際、CaOとH2Oの過激な発熱反応を生ぜしめ、
得られる合金粉末の酸素量は増加するので、好ましくな
く、        、。
On the other hand, Ca is a reaction byproduct produced during the reduction reaction.
O suppresses crystal grain growth during the reduction reaction of the alloy powder, thereby making it possible to obtain an alloy powder having a predetermined average grain size. However, an excess of Ca reducing agent exceeding 3.5 times the stoichiometric amount needed to reduce rare earth oxides not only increases the cost of the process but also , causing a radical exothermic reaction between CaO and H2O,
This is not preferable because the amount of oxygen in the resulting alloy powder increases.

また、得られる合金粉末中の残存Caが多くなり、  
       ゛このため製造する永久磁石の磁気特性
は低くなるため、3.5倍を上限とする。
In addition, the amount of residual Ca in the obtained alloy powder increases,
``For this reason, the magnetic properties of the manufactured permanent magnet will be low, so the upper limit is set at 3.5 times.

また、希土類酸化物を十分還元し、所定の平均粒度を有
し、低い酸素含有母並びに残存Caff1が少なくて、
かつ所定の組成を有する磁石用合金粉末を、歩留よく得
るために、必要な還元剤の徂は、化学量論的必要量の2
.0〜2.5倍の場合が最も好        −まし
い。                       
    、1CaCf2 徂は、希土類元素量の15w
t%を越えると、還元・拡散反応物を、特定温度の水で
処理する際に、その水中の(J’−が著しく増大し、生
成した希土類合金粉末と反応して粉末の酸素量が600
0ppm以上となり、Fe  B  R系永久磁石用合
金粉末として使用できず、また、1wt%未満では、還
元・拡散反応物を前記水中に投入しても、崩壊せず、前
記水により処理できないため、Iwt%〜15wt%と
する。
In addition, the rare earth oxide is sufficiently reduced, has a predetermined average particle size, has a low oxygen content, and has little residual Caff1.
In order to obtain magnet alloy powder having a predetermined composition with a good yield, the amount of the necessary reducing agent is 2 times the stoichiometric amount.
.. The most preferred case is 0 to 2.5 times.
, 1CaCf2 is 15w of rare earth element content
If the amount exceeds t%, when the reduction/diffusion reactant is treated with water at a specific temperature, the (J'-) in the water increases significantly, reacts with the generated rare earth alloy powder, and the amount of oxygen in the powder increases by 600%.
If it is 0 ppm or more, it cannot be used as an alloy powder for FeBR-based permanent magnets, and if it is less than 1 wt%, even if the reduction/diffusion reactant is put into the water, it will not disintegrate and cannot be treated with the water. Iwt% to 15wt%.

上述した希土類酸化物及びFe粉等の原料粉、還元剤を
所定量配合したのち、例えば■型混合機等を使用し、不
活性ガス雰囲気中で、混合を行なう。
After the above-mentioned rare earth oxides, raw material powders such as Fe powders, and reducing agents are blended in predetermined amounts, they are mixed in an inert gas atmosphere using, for example, a type mixer.

ついで、混合した粉末を不活性ガス流気雰囲気で、90
0″C〜1200℃の温度範囲で、0.5時間から5時
間、還元・拡散反応を行なわせる。このとき、昇温速度
は、出発原11粉末に含有される吸着水分ガス成分を除
去するため、5°C/min以下が好ましい。
Then, the mixed powder was heated for 90 minutes in an inert gas atmosphere.
The reduction/diffusion reaction is carried out for 0.5 to 5 hours in a temperature range of 0"C to 1200C. At this time, the temperature increase rate is set such that the adsorbed moisture gas component contained in the starting material 11 powder is removed. Therefore, the temperature is preferably 5°C/min or less.

ここで、還元温度を900℃〜1200°Cに限定した
のは、900℃未満では、希土類酸化物のCaによる還
元が不十分となり、所定の組成を有する合金粉末が得ら
れず、また、合金粉末の含有酸素量が増大するため、好
ましくないためでおり、また、還元温度が1200℃を
越えると、還元時の拡散反応が促進されすぎて、結晶粒
成長を起し、所定の平均粒度を有する合金粉末が得られ
ず、また、反応生成物中のCaの残存量が多くなり、永
久磁石用合金粉末として好ましくないためである。また
、所定の平均粒度及び成分組成を有し、かつ低い含有酸
素量並びに残存Camを有する高性能永久磁石用合金粉
末を得るためには、950℃〜1100℃の還元温度が
最も望ましい。
Here, the reason why the reduction temperature was limited to 900°C to 1200°C is because below 900°C, the reduction of the rare earth oxide by Ca becomes insufficient and an alloy powder having a predetermined composition cannot be obtained. This is because the amount of oxygen contained in the powder increases, which is undesirable. Also, if the reduction temperature exceeds 1200°C, the diffusion reaction during reduction is promoted too much, causing crystal grain growth and reducing the predetermined average particle size. This is because an alloy powder having the above-mentioned properties cannot be obtained, and the amount of Ca remaining in the reaction product increases, which is not preferable as an alloy powder for permanent magnets. Furthermore, in order to obtain a high-performance permanent magnet alloy powder having a predetermined average particle size and component composition, and a low content of oxygen and residual Cam, a reduction temperature of 950° C. to 1100° C. is most desirable.

Caによる還元・拡散反応において、Caで還元された
溶融状態の希土類金属がただちにFe粉やFe−B粉と
、極めて容易にかつ均質に合金化し、希土類酸化物から
使用の合金粉末が歩留よく回収できる。
In the reduction/diffusion reaction by Ca, the molten rare earth metal reduced by Ca is immediately and homogeneously alloyed with Fe powder or Fe-B powder, and the alloy powder used is produced from the rare earth oxide with a good yield. It can be recovered.

還元・拡散反応終了後は、室温まで炉冷あるいは急速冷
却してもよいが、冷却雰囲気は、得られた合金粉末を酸
化させないように、不活性ガス中が望ましい。また、反
応生成物を予め粉砕して用いるのもよい。
After completion of the reduction/diffusion reaction, furnace cooling or rapid cooling may be performed to room temperature, but the cooling atmosphere is preferably an inert gas atmosphere so as not to oxidize the obtained alloy powder. It is also good to use the reaction product after crushing it in advance.

得られた還元反応生成物を、水中に投入し、反応副生成
物のCaOをH2Oと反応させて、Ca(開)2となす
、すなわち、化学量論的必要量の1.5〜3.5倍の還
元剤を配合して得られた還元反応生成物は、水中におい
て、発熱、自然崩壊してスラリー状態となるので、特別
に機械的粉砕を必要としない利点がある。このスラリー
をざらに、水を用いて、充分にCa分を除去処理して、
さらに、i温で真空乾燥し、10〜500IのFs  
B  R系永久磁石用合金粉末を得る。
The obtained reduction reaction product is poured into water, and the reaction by-product CaO is reacted with H2O to form Ca(open)2, that is, the required stoichiometric amount of 1.5 to 3. The reduction reaction product obtained by blending 5 times as much reducing agent generates heat and spontaneously disintegrates into a slurry state in water, so it has the advantage of not requiring special mechanical pulverization. This slurry was thoroughly treated to remove Ca using water.
Furthermore, vacuum dry at i temperature and Fs of 10 to 500I.
BR alloy powder for permanent magnets is obtained.

ついで、上記の希土類合金粉末を、そのまま微粉砕し、
プレス成形、焼結1時効処理する粉末冶金製造方法によ
り、永久磁石を(qる。
Next, the above rare earth alloy powder is finely pulverized as it is,
Permanent magnets are manufactured using a powder metallurgy manufacturing method that includes press molding, sintering, and aging.

また、この発明において、還元・拡散接の反応生成物を
スラリー化し、水処理する処理水に、希土類磁石に有害
な合金粉末中のCI −、NO3”。
In addition, in this invention, the reaction products of reduction and diffusion bonding are slurried, and the treated water is treated with CI − and NO3” in the alloy powder, which are harmful to rare earth magnets.

CO3−−、5O4−一等の陰イオンを除去し、粉末の
酸化を防止し、ざらに難溶性のCaJiの生成を防止す
るため、イオン交換水を用いることが好ましく、ざらに
、原料粉末中の02濃度、 Ca濃度を低減するために
、イオン交換水を15°C以下に冷却することが好まし
い。
It is preferable to use ion-exchanged water in order to remove anions such as CO3- and 5O4-, prevent oxidation of the powder, and prevent the formation of poorly soluble CaJi. In order to reduce the 02 concentration and the Ca concentration, it is preferable to cool the ion exchange water to 15°C or less.

以上に詳述した製造方法で得られるこの発明による合金
粉末は、 R(RはFe、 Pr、 Dy、 Ha、 Tbのうち
少なくとも1種あるいはさらに、La、 Ce、 Sm
、 Gci、 Er、 EDy、 Tfll。
The alloy powder according to the present invention obtained by the production method detailed above is composed of R (R is at least one of Fe, Pr, Dy, Ha, and Tb, or in addition, La, Ce, and Sm)
, Gci, Er, EDy, Tfll.

Yb、 La、 Yのうち少なくとも1種からなる)1
2原子%〜20原子%、 B44原子〜20原子%、 硼化物 0.05原子%〜3.0原子%Fe65原子%
〜81原子%を主成分とし、主相が正方晶相で、含有酸
素量がaooopom以下、含有炭素量が11000D
O以下、含有Caiが2oooppm以下でおる。
consisting of at least one of Yb, La, Y)1
2 atomic% to 20 atomic%, B44 atomic% to 20 atomic%, boride 0.05 atomic% to 3.0 atomic% Fe65 atomic%
The main component is ~81 atom%, the main phase is a tetragonal phase, the amount of oxygen contained is less than aoooopom, and the amount of carbon contained is 11000D.
0 or less, the Cai content is 2oooppm or less.

上記合金粉末に含まれる酸素は、最も酸化しゃすい希土
類元素と結合して希土類酸化物となり、永久磁石中に酸
化物R2O3として残留するため好ましくなく、酸素量
が6000ppmを越えると、保磁力1l−(cが10
 k○θ以下となる。
The oxygen contained in the alloy powder is undesirable because it combines with the most oxidizable rare earth element to form a rare earth oxide and remains in the permanent magnet as an oxide R2O3.If the oxygen content exceeds 6000 ppm, the coercive force is (c is 10
It becomes less than k○θ.

また、含有炭素量が、1000p囲を越えると、著しい
保磁力の劣化を生じ、好ましくない。
Furthermore, if the carbon content exceeds 1000p, the coercive force will significantly deteriorate, which is not preferable.

また、含有Ca量が、2000ppmを越えると、後続
のこの合金粉末を用いて磁石化する途中の焼結工程にお
いて、還元性の極めて高いCa蒸気を冬瓜に発生し、熱
処理炉を著しく損傷し、工業的生産における安定性に欠
け、また、永久磁石中の残存Ca量が増えて、磁石特性
を劣化させるため好ましくない。
In addition, if the Ca content exceeds 2000 ppm, highly reducing Ca vapor will be generated in the winter melon during the subsequent sintering process during magnetization using this alloy powder, which will significantly damage the heat treatment furnace. It is undesirable because it lacks stability in industrial production and also increases the amount of residual Ca in the permanent magnet, deteriorating the magnetic properties.

永久磁石の成分限定理由 この発明の希土類合金粉末中の希土類元素Rは、組成の
12原子%〜20原子%を占めるが、Nd、Pr。
Reasons for limiting the components of permanent magnets The rare earth element R in the rare earth alloy powder of the present invention accounts for 12 to 20 at % of the composition, including Nd and Pr.

Dy、Ho、Tbのうち少なくとも1種、あるいはざら
に、La、 Co、 Stn、 Gd、 Er、 ED
y、 Tl1l、 Yb、 La、 Yのうち少なくと
も1種を含むものからなる。
At least one of Dy, Ho, Tb, or roughly, La, Co, Stn, Gd, Er, ED
y, Tl1l, Yb, La, and Y.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミッシユメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (missile metal, didymium, etc.) can be used for reasons such as availability.

なあ、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Incidentally, this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規なFa  B  R系永久磁石における、必
須元素であって、12原子%未満では、納品構造がα−
鉄と同一構造の立方品組織となるため、高磁気特性、特
に高保磁力が得られず、20原子%を越えると、尺リッ
チな非磁性相が多くなり、保磁力は10 koe以上で
あるが、残留磁束密度[3rが低下して、すぐれた特性
の永久磁石が得られない。
R is an essential element in the new FaBR permanent magnet, and if it is less than 12 at%, the delivered structure will be α-
Because it has a cubic structure with the same structure as iron, high magnetic properties, especially high coercive force, cannot be obtained, and if it exceeds 20 atomic %, there will be a large amount of thick nonmagnetic phase, and the coercive force will be 10 koe or more, but , the residual magnetic flux density [3r decreases, and a permanent magnet with excellent characteristics cannot be obtained.

よって、希土類元素は、12@子%〜20原子%の範囲
とする。
Therefore, the rare earth element is in the range of 12 atomic % to 20 atomic %.

Bは、Fs  B  R系永久磁石における、必須元素
であって、4原子%未満では、菱面体構造が主相となり
、高い保磁力iHCは得られず、10 koe以下とな
り、20原子%を越えると、Bリッチな非磁性相が多く
なり、残留磁束密度3rが低下し、(BH)max  
208GOθ未満となり、すぐれた永久磁石が得られな
い。よって、Bは、4原子%〜20原子%の範囲とする
B is an essential element in FsBR permanent magnets, and if it is less than 4 at%, the rhombohedral structure will be the main phase, and high coercive force iHC will not be obtained, and it will be less than 10 koe, and if it exceeds 20 at% , the B-rich nonmagnetic phase increases, the residual magnetic flux density 3r decreases, and (BH)max
It becomes less than 208 GOθ, and an excellent permanent magnet cannot be obtained. Therefore, B is in the range of 4 at.% to 20 at.%.

硼化物のうち少なくとも1種を0.05原子%〜3.0
原子%含有させるのは、前記した如く、磁石体の焼結時
の結晶粒の成長を抑制させるためである。
0.05 atomic % to 3.0 at least one type of boride
The reason why the content is atomic % is to suppress the growth of crystal grains during sintering of the magnet body, as described above.

Feは、新規な上記系永久磁石において、必須元素でお
り、65原子%未満では残留磁束密度Brが低下し、8
1原子%を越えると、高い保磁力が得られないので、F
eは65原子%〜81原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet, and if it is less than 65 at%, the residual magnetic flux density Br decreases, and the
If it exceeds 1 atomic %, high coercive force cannot be obtained, so F
The content of e is 65 atomic % to 81 atomic %.

また、この発明による永久磁石材料において、Feの一
部をもで置換することは、得られるvii石の磁気特性
を損うことなく、温度特性を改善することができるが、
Co置換量がFeの30%を越えると、逆に磁気特性が
劣化するため、好ましくなく、さらに置換量の好ましい
量は20%以下である。
In addition, in the permanent magnet material according to the present invention, replacing a part of Fe with also can improve the temperature characteristics without impairing the magnetic properties of the obtained vii stone.
If the Co substitution amount exceeds 30% of Fe, the magnetic properties will deteriorate, which is undesirable, and the preferable substitution amount is 20% or less.

また、この発明による永久磁石は、R,B、Feの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC13,5原子%以下のP
、2.5原子%以下のS、1.5原子%以下のCLL、
5原子%以下のSLのうち少なくとも1種、合計但で5
.0原子%以下で置換することにより、永久磁石の製造
性改善、低価格化が可能である。
In addition to R, B, and Fe, the permanent magnet according to the present invention also includes
Although the presence of unavoidable impurities in industrial production can be tolerated, B
4.0 at% or less of C13, 5 at% or less of P
, 2.5 at% or less S, 1.5 at% or less CLL,
At least one type of SL of 5 at% or less, with a total of 5
.. By substituting at 0 atomic % or less, it is possible to improve the manufacturability of permanent magnets and reduce the cost.

また、下記添加元素のうち少なくとも1種は、R−BF
e系永久磁石に対してその保磁力、減磁曲線の角型性を
改善おるいは製造性の改善、低価格化に効果があるため
添加することができる。しかし、保磁力改善のための添
加に伴ない残留磁束密度(Br)の低下を招来するので
、従来のハードフェライト磁石の残留磁束密度と同等以
上となる範囲での添加が望ましい。
In addition, at least one of the following additional elements is R-BF
It can be added to e-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

5.0原子%以下のへ1.3.0原子%以下のTi、5
.5原子%以下のV、4.5原子%以下のCr、5.0
原子%以下のMn、  5.0原子%以下のBi、9.
0原子%以下のNb、  7.0原子%以下のTa、5
.2原子%以下のNo、  5.0原子%以下の誓、1
.0原子%以下のsb、3.5原子%以下のGe。
5.0 at% or less Ti, 1.3.0 at% or less Ti, 5
.. 5 at% or less V, 4.5 at% or less Cr, 5.0
Mn of atomic % or less, Bi of 5.0 atomic % or less, 9.
Nb of 0 atomic% or less, Ta of 7.0 atomic% or less, 5
.. No less than 2 atom%, Oath less than 5.0 atom%, 1
.. sb of 0 atomic % or less, Ge of 3.5 atomic % or less.

1.5原子%以下のSn、3.3原子%以下の7「、6
.0原子%以下のNi、1.1原子%以下のZn、3.
3原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。また、特に好まし
い添加元素は、V 、 Nb。
Sn of 1.5 atomic % or less, 7'', 6 of 3.3 atomic % or less
.. 0 atomic % or less Ni, 1.1 atomic % or less Zn, 3.
Hf of 3 atomic % or less, at least one of the following is added.However, if two or more types are contained, the maximum content is 3 atomic % or less of the one having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets. Particularly preferable additive elements are V and Nb.

角、 )to、 W 、 Cr、 Mであり、含有量は
少量が好ましく、3原子%以下が有効であり、/Vは0
.1〜3原子%、望ましくは0.2〜2原子%である。
angle, )to, W, Cr, M, the content is preferably a small amount, 3 atomic % or less is effective, /V is 0
.. The amount is 1 to 3 at%, preferably 0.2 to 2 at%.

これらの添加元素は、出発原料混合粉末に、金属粉、酸
化物、あるいは構成元素との合金粉ないし混合酸化物、
あるいはCaにより還元可能な化合物として添加するこ
とができる。
These additive elements are added to the starting raw material mixed powder, such as metal powder, oxide, or alloy powder or mixed oxide with the constituent elements.
Alternatively, it can be added as a compound reducible with Ca.

結品相は主相(特定の相が80%以上)が正方品である
ことが、磁石として高い磁気特性を発現し得る微細で均
一な合金粉末を得るのに不可欠である。この磁性相はF
sBR正方品化合物結晶で構成され、非磁性層により粒
界を囲まれている。非磁性相は主としてRリッチ相から
なり、Bの多い場合、Bリッチ相も部分的に存在し得る
。非磁性層粒界域の存在は高特性に寄与するものと考え
られ、本発明合金の重要な組織上の特徴をなし、はんの
僅かな量でも有効であり、例えば1 vo1%以上は充
分な量である。
In order to obtain a fine and uniform alloy powder capable of exhibiting high magnetic properties as a magnet, it is essential that the main phase (80% or more of a specific phase) of the crystalline phase be a square one. This magnetic phase is F
It is composed of sBR tetragonal compound crystals, and the grain boundaries are surrounded by a nonmagnetic layer. The nonmagnetic phase mainly consists of an R-rich phase, and if there is a large amount of B, a B-rich phase may also be partially present. The existence of grain boundary regions in the non-magnetic layer is considered to contribute to high properties and is an important structural feature of the alloy of the present invention, and even a small amount of solder is effective; for example, 1 vo 1% or more is sufficient. It is a large amount.

またくこの発明の永久磁石は、vii場中プレス成型す
ることにより磁気的異方性磁石が得られ、また、無磁界
中でプレス成型することにより、磁気的等方性磁石を得
ることができる。
Furthermore, the permanent magnet of this invention can be press-molded in a field to obtain a magnetically anisotropic magnet, and by press-molded in a non-magnetic field, a magnetically isotropic magnet can be obtained. .

この発明による永久磁石は、保磁力iHc≧10kQe
、残沼磁束密度Br> 9 k(3、を示し、最大エネ
ルギー積(BH)maxは、最も好ましい組成範囲では
、(BH)maX≧208GOeを示し、最大値は30
8GOe以上に達する。
The permanent magnet according to the present invention has a coercive force iHc≧10kQe
, Zanuma magnetic flux density Br > 9 k (3), and the maximum energy product (BH) max is (BH) max ≧ 208 GOe in the most preferable composition range, and the maximum value is 30
Reach 8 GOe or more.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上を陶及び円を主とする軽希土類金属が占める
場合で、R12m子%〜20原子%、B44原子〜20
原子%、Fe  74原子%〜80原子%、を主成分と
するとき、(BH)max 35HGOa以上のすぐれ
た磁気特性を示し、特に軽希土類金属がMの場合には、
その最大値が428GOa以上に達する。
In addition, in the case where the main component of R in the alloy powder for permanent magnets of this invention is light rare earth metals mainly composed of porcelain and yen, R12 m % to 20 atomic %, B44 atomic % to 20 atomic %
When the main component is Fe 74 at% to 80 at%, it exhibits excellent magnetic properties of (BH)max 35HGOa or more, especially when the light rare earth metal is M.
The maximum value reaches 428 GOa or more.

実施例 実施例1 Nd203粉末        174.3 j;1D
ν203粉末         17.3 g。
Examples Example 1 Nd203 powder 174.3 j; 1D
ν203 powder 17.3 g.

Fe粉末(粒度150tim以下)   215.1 
gフェロボロン粉末      21.9 q(粒度1
50.um以下、19.58−Fs合金粉末)Ti B
 2粉末         1.8g金属Ca粉末  
       162.90(還元に要する化学論必要
量の2.4倍)CaC,h粉末         6.
7g(希土類酸化物原料の3.5wt%) 以上の原料粉末総量6000を用い、30.5Nd −
3,6Dy −1,15B −0,5TiB2−64.
25 Fs(wt%)を目標に、V型混合機を使用し、
Arガス雰囲気中で、混合した。
Fe powder (particle size 150tim or less) 215.1
g Ferroboron powder 21.9 q (particle size 1
50. um or less, 19.58-Fs alloy powder) Ti B
2 powder 1.8g metallic Ca powder
162.90 (2.4 times the stoichiometric amount required for reduction) CaC,h powder 6.
Using a total amount of 7g (3.5wt% of rare earth oxide raw material) or more raw material powder of 6000, 30.5Nd −
3,6Dy-1,15B-0,5TiB2-64.
Aiming at 25 Fs (wt%), using a V-type mixer,
The mixture was mixed in an Ar gas atmosphere.

ついで、上記の混合粉末を、還元炉のArガス流気雰囲
気中で、1060°C13,0時間、の条件で、還元拡
散反応を促進させたのち、室温まで炉冷した。
Next, the above-mentioned mixed powder was accelerated in a reduction-diffusion reaction at 1060° C. for 13.0 hours in an Ar gas atmosphere in a reduction furnace, and then cooled in the furnace to room temperature.

得られた還元反応生成物600 gを、6zのio’c
に冷却したイオン交換水に投入し、スラリー化した後、
ざらに、スラリー状合金粉末を、10℃に冷却したイオ
ン交換水で数回洗浄し、ざらに、真空乾燥し、この発明
による合金粉末を得た。
600 g of the obtained reduction reaction product was subjected to 6z io'c
After adding it to ion-exchanged water cooled to a slurry,
The slurry-like alloy powder was washed several times with ion-exchanged water cooled to 10° C., and dried under vacuum to obtain an alloy powder according to the present invention.

得られた合金粉末は、成分組成が、 Nd  30.4wt%、Dy  3.6wt%、B 
 1.09vt%、TLE320.5vt%、Fa  
62.1wt%、 02 2500pDm 、 C490DDm 、 Ca
  500ppm 。
The obtained alloy powder has the following composition: Nd 30.4wt%, Dy 3.6wt%, B
1.09vt%, TLE320.5vt%, Fa
62.1wt%, 02 2500pDm, C490DDm, Ca
500ppm.

粒度は、10〜400燗であった。The particle size was 10 to 400 g.

この合金粉末を微粉砕して平均粒度2.8燗の微粉砕粉
を得、1界10 K Oe中で配向し、1.5 t4に
て加圧成型して15mmX 16+nmX 10mm寸
法に成形し、その後、Ar雰囲気中で1100°C,2
時間、の条件で焼結し、ざらに、Ar中テ800℃X 
1 Hrと、600℃x’lHrの2段時効処理を行な
い、永久vi1’5となした。
This alloy powder was finely pulverized to obtain a finely pulverized powder with an average particle size of 2.8 mm, oriented in 10 K Oe, and pressure molded at 1.5 t4 to a size of 15 mm x 16 + nm x 10 mm. After that, it was heated at 1100°C for 2 hours in an Ar atmosphere.
Sintered under the conditions of 800°C in Ar
A two-stage aging treatment of 1 hour and 600°C x'1 hour was performed to give a permanent vi1'5.

jqられた永久磁石の磁気特性を測定し、第1表に結果
を示す。
The magnetic properties of the permanent magnets were measured and the results are shown in Table 1.

また、比較のため、Cai元前の原料粉末中にT、82
粉末を配合しない以外は、前記の条件の製造方法で合金
粉末を得、ざらに、この比較合金粉末を用いて前記条件
で磁石化(比較1)し、その磁気特性を測定した。結果
は第1表に示すとおりである。
Also, for comparison, T, 82
An alloy powder was obtained by the manufacturing method under the above conditions except that no powder was blended, and this comparative alloy powder was roughly magnetized under the above conditions (Comparison 1), and its magnetic properties were measured. The results are shown in Table 1.

また、鋳塊粉砕法から得た合金粉末を用いて、30.4
Nd −3,6Dy −1,09B−62,IFe(w
t%)組成の合金を、前記と同一の製造条件で磁石化(
比較2)し、その磁気特性を測定した。結果は第1表に
示すとおりである。
In addition, using alloy powder obtained from the ingot crushing method, 30.4
Nd-3,6Dy-1,09B-62,IFe(w
t%) composition was magnetized (
Comparison 2) and measured its magnetic properties. The results are shown in Table 1.

第1表 実施例2 Nd 203粉末        170.0 (1〜
203粉末         17.6 (]、Fe粉
末(粒度150Aim以下)   213.6 (]フ
ェロボロン粉末      24.5!11(粒度15
0Aim以下、19.58−Fe合金粉末)BN粉末 
         0.7(1金属Ca粉末     
   166.1g(還元に要する化学論必要量の2.
5倍)CaC22粉末         7.5g(希
土類酸化物原料の4.0wt%) 以上の原料粉末総量600gを用い、29.7Nd −
3,7Dy −1,3B −0,28N−65,IFe
(wt%)を目標に、V型混合機を使用し、Arガス雰
囲、気中で、混合した。
Table 1 Example 2 Nd 203 powder 170.0 (1~
203 powder 17.6 (], Fe powder (particle size 150Aim or less) 213.6 (] Ferroboron powder 24.5!11 (particle size 15
0Aim or less, 19.58-Fe alloy powder) BN powder
0.7 (1 metal Ca powder
166.1g (2.2g of the stoichiometric amount required for reduction)
5 times) CaC22 powder 7.5g (4.0wt% of rare earth oxide raw material) Using the above raw material powder total amount of 600g, 29.7Nd -
3,7Dy-1,3B-0,28N-65,IFe
(wt%) using a V-type mixer in an Ar gas atmosphere.

ついで、上記の混合粉末を、還元炉のArガス流気雰囲
気中で、1050℃、2.5時間、の条件で、還元拡散
反応を促進させたのち、室温まで炉冷した。
Next, the above-mentioned mixed powder was accelerated in a reduction-diffusion reaction at 1050° C. for 2.5 hours in an Ar gas atmosphere in a reduction furnace, and then cooled to room temperature in the furnace.

得られた還元反応生成物600gを、6r1の8°Cに
冷却したイオン交換水に投入し、スラリー化した後、ざ
らに、スラリー状合金粉末を、8°Cに冷却したイオン
交換水で数回洗浄し、ざらに、真空乾燥し、この発明に
よる合金粉末を1qだ。
600 g of the obtained reduction reaction product was poured into ion-exchanged water cooled to 8°C in 6r1 to form a slurry. After washing twice, roughening and vacuum drying, 1 q of alloy powder according to the present invention was prepared.

得られた合金粉末は、成分組成が、 Nd   29.8wt%、 Dソ     3.7w
t%、B1゜25 wt%、EIN   O,2wt%
、Fa  63. owt%、 022400ppm 、 C4901)Om 、 Ca
  500ppm 。
The obtained alloy powder has the following composition: Nd 29.8wt%, Dso 3.7w
t%, B1゜25 wt%, EIN O, 2wt%
, Fa 63. owt%, 022400ppm, C4901) Om, Ca
500ppm.

粒度は、20〜4001Mであった。Particle size was 20-4001M.

この合金粉末を微粉砕して平均粒度2,8証の微粉砕粉
を得、磁界10KOa中で配向し、1.5 t4にて加
圧成型して15mmX 16mmX 10mm寸法に成
形し、その後、Ar雰囲気中で1090℃,2時間、の
条件で焼結し、ざらに、Ar中で820℃X 1 Hr
と、630℃xltlrの2段時効処理を行ない、永久
磁石となした。
This alloy powder was finely pulverized to obtain a finely pulverized powder with an average particle size of 2.8 mm, oriented in a magnetic field of 10 KOa, pressure molded at 1.5 t4 to a size of 15 mm x 16 mm x 10 mm, and then Ar Sintered in an atmosphere at 1090°C for 2 hours, then sintered in Ar at 820°C for 1 hour.
Then, a two-stage aging treatment at 630°C x ltlr was performed to obtain a permanent magnet.

得られた永久磁石の磁気特性を測定し、第1表に結果を
示す。
The magnetic properties of the obtained permanent magnet were measured, and the results are shown in Table 1.

また、比較のため、Ca還元前の原料粉末中にBN粉末
を配合しない以外は、前記の条件の製造方法で合金粉末
を得、さらに、この比較合金粉末を用いて前記条件で磁
石化(比較3)し、その磁気特性を測定した。結果は第
1表に示すとおりでおる。
In addition, for comparison, an alloy powder was obtained by the manufacturing method under the above conditions except that BN powder was not blended into the raw material powder before Ca reduction, and further magnetization (comparison) was performed using this comparative alloy powder under the above conditions. 3) and measured its magnetic properties. The results are shown in Table 1.

また、鋳塊粉砕法から得た合金粉末を用いて、29.8
Nd −3,7Dy −1,25B−65,IFe(W
j%)組成の合金を、前記と同一の製造条件で磁石化(
比較4)し、その磁気特性を測定した。結果は第1表に
示すとおりである。
In addition, using alloy powder obtained from the ingot crushing method, 29.8
Nd-3,7Dy-1,25B-65,IFe(W
j%) composition was magnetized (
Comparison 4) and measured the magnetic properties. The results are shown in Table 1.

第2表Table 2

Claims (1)

【特許請求の範囲】  R(RはNd、Pr、Dy、Ho、Tbのうち少なく
とも1種あるいはさらに、La、Ce、Sm、Cd、E
r、Eu、Tm、Yb、La、Yのうち少なくとも1種
からなる)12原子%〜20原子%、 B4原子%〜20原子%、 硼化物 0.05原子%〜3.0原子% Fe65原子%〜81原子%が主成分となるように、該
希土類酸化物のうち少なくとも1種と、鉄粉と純ボロン
粉、フェロボロン粉および硼素酸化物のうち少なくとも
1種、及び硼化物のうち少なくとも1種、あるいはさら
に上記構成元素の合金粉または混合酸化物を上記組成に
配合し、 この混合粉を、不活性ガス雰囲気中で900℃〜120
0℃に加熱して、Ca還元拡散を行ない、得られた反応
生成物を、水中に投入してスラリー化し、さらに該スラ
リーを水により処理し、得られた処理原料を微粉砕後、
プレス、焼結、時効処理し、 前記組成を主成分とし、主相が正方晶相からなるFe−
B−R系永久磁石材料を得ることを特徴とする永久磁石
材料の製造方法。
[Claims] R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Cd, E
r, Eu, Tm, Yb, La, Y) 12 atom% to 20 atom%, B4 atom% to 20 atom%, boride 0.05 atom% to 3.0 atom% Fe65 atom % to 81 atomic % as the main components, at least one of the rare earth oxides, at least one of iron powder, pure boron powder, ferroboron powder, and boron oxide, and at least one of boride. Seeds, or further alloy powders or mixed oxides of the above constituent elements are blended into the above composition, and this mixed powder is heated at 900°C to 120°C in an inert gas atmosphere.
Heating to 0° C. to perform Ca reduction and diffusion, the obtained reaction product was poured into water to form a slurry, the slurry was further treated with water, the obtained treated raw material was pulverized,
Pressed, sintered, and aged, Fe-
A method for producing a permanent magnet material, the method comprising obtaining a BR-based permanent magnet material.
JP60145423A 1985-07-02 1985-07-02 Manufacture of permanent magnet material Granted JPS627830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60145423A JPS627830A (en) 1985-07-02 1985-07-02 Manufacture of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60145423A JPS627830A (en) 1985-07-02 1985-07-02 Manufacture of permanent magnet material

Publications (2)

Publication Number Publication Date
JPS627830A true JPS627830A (en) 1987-01-14
JPH0526857B2 JPH0526857B2 (en) 1993-04-19

Family

ID=15384904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60145423A Granted JPS627830A (en) 1985-07-02 1985-07-02 Manufacture of permanent magnet material

Country Status (1)

Country Link
JP (1) JPS627830A (en)

Also Published As

Publication number Publication date
JPH0526857B2 (en) 1993-04-19

Similar Documents

Publication Publication Date Title
TWI421885B (en) Manufacture method of rare earth metal permanent magnet material
RU2377680C2 (en) Rare-earth permanaent magnet
JP7266751B2 (en) Neodymium-iron-boron magnet material, raw material composition, manufacturing method, and application
JPH01219143A (en) Sintered permanent magnet material and its production
JPS6077960A (en) Permanent magnet and its manufacture
JPS627831A (en) Manufacture of permanent magnet material
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS6223960A (en) High-efficiency permanent magnet material
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS627830A (en) Manufacture of permanent magnet material
JPH045739B2 (en)
KR20200018267A (en) Magnetic powder and manufacturing method of magnetic powder
JPS624806A (en) Production of alloy powder for rare earth magnet
JPS6247455A (en) Permanent magnet material having high performance
JPS6230846A (en) Production of permanent magnet material
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JPS624807A (en) Production of alloy powder for rare earth magnet
JP2000252108A (en) Rare-earth sintered magnet and its manufacture
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS6230845A (en) Production of anisotropic permanent magnet material
JPH01127643A (en) Manufacture of rare earth magnetic material
JPH0532460B2 (en)
JPH0320044B2 (en)
JPS62257704A (en) Permanent magnet
JPH05152115A (en) Manufacture of magnetic recording powder

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees