JPS624807A - Production of alloy powder for rare earth magnet - Google Patents

Production of alloy powder for rare earth magnet

Info

Publication number
JPS624807A
JPS624807A JP14318385A JP14318385A JPS624807A JP S624807 A JPS624807 A JP S624807A JP 14318385 A JP14318385 A JP 14318385A JP 14318385 A JP14318385 A JP 14318385A JP S624807 A JPS624807 A JP S624807A
Authority
JP
Japan
Prior art keywords
powder
rare earth
less
alloy powder
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14318385A
Other languages
Japanese (ja)
Other versions
JPH0586441B2 (en
Inventor
Akiyasu Oota
晶康 太田
Takami Hikone
彦根 孝美
Setsuo Fujimura
藤村 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14318385A priority Critical patent/JPS624807A/en
Publication of JPS624807A publication Critical patent/JPS624807A/en
Publication of JPH0586441B2 publication Critical patent/JPH0586441B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain alloy powder contg. O2, C and Ca at low ratios and having excellent magnetic characteristics by mixing respective powders of Fe, B and rare earth which are controlled in grain size to a specific ratio, subjecting the mixture to a reduction diffusion treatment and subjecting the resulted product thereof to slurrying and water treatments in a cooled ion exchange water. CONSTITUTION:The rare earth oxide powder, the iron powder and pure boron powder having <=150mu grain size, ferroboron powder and boron oxide, etc. are mixed in such a manner that the powder mixture contains 12-20atom% R (Nd, Pr, Dy, Ho, Tb, etc.), 4-20% B and 65-81% Fe. Metallic Ca of 1.5-3.5 times the stoichiometrical requirement of the oxygen content in the raw material powder and CaCl2 of 1-15wt% of the weight of the raw earth oxide are compounded with such powder mixture. The compounded powder is heated to 900-1,200 deg.C in an inert gaseous atmosphere and is subjected to the reduction diffusion treatment. The resulted product is introduced into the ion exchange water cooled to <=15 deg.C and is slurried; further the product is removed of the Ca-component by the ion exchange water kept at <=15 deg.C and is then vacuum-dried. The alloy powder for a rare earth magnet of which the main crystal is of a tegragonal crystal phase and contains <=4,000ppm O2, <=600ppm C and <=100ppm Ca is obtd.

Description

【発明の詳細な説明】 利用産業分野 この発明は、Fe  B  R系永久磁石用合金粉末の
製造方法に係り、溶解2機械的粉砕なしで、所定の粒度
が得られ、かつ容易に’I造できるCa還元法による製
造方法で、最終成品の磁気特性を劣化させる酸素などの
不純物の少ない希土類磁石用合金粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a method for producing FeBR based alloy powder for permanent magnets, which enables a predetermined particle size to be obtained without melting or mechanical pulverization, and which can be easily manufactured by 'I'. The present invention relates to a method for producing alloy powder for rare earth magnets, which is a production method using a Ca reduction method that can reduce the amount of impurities such as oxygen that deteriorate the magnetic properties of the final product.

背景技術 現在の代表的な永久磁石材料は、アルニコ、ハ−ドフエ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

このうち希土類コバルト磁石は、磁気特性が格段にすぐ
れているため、多種用途に利用されているが、主成分の
Sm、Coは共に資源的に不足し、かつ高価であり、今
後長期間にわたって、安定して多量に供給されることは
困難である。そのため、磁気特性がすぐれ、かつ安価で
、ざらに資源的に豊富で今後の安定供給が可能な組成元
素からなる永久磁石材料が切望されてきた。
Among these, rare earth cobalt magnets have extremely excellent magnetic properties and are used for a variety of purposes, but their main components, Sm and Co, are both scarce and expensive, and will continue to be used for a long time. It is difficult to stably supply large amounts of it. Therefore, there has been a strong need for a permanent magnet material that has excellent magnetic properties, is inexpensive, has abundant resources, and has constituent elements that can be stably supplied in the future.

本出願人は先に、高価なSmや%を含有しない新しい高
性能永久磁石としてFa−B−R系(RはYを含む希土
類元素のうち少なくとも1種)永久磁石を提案した(特
開昭59−460()8号、特開昭59−64733号
、特開昭59−89401号、特開昭59−13210
4号)。
The present applicant previously proposed a Fa-B-R system (R is at least one rare earth element including Y) permanent magnet as a new high-performance permanent magnet that does not contain expensive Sm or % (Unexamined Japanese Patent Publication No. 59-460()8, JP-A-59-64733, JP-A-59-89401, JP-A-59-13210
No. 4).

この永久磁石は、Rとして陶や円を中心とする資源的に
豊富な軽希土類を用い、Fsを主成分として15 M 
G Os以上の極めて高いエネルギー積を示すすぐれた
永久磁石である。
This permanent magnet uses resource-rich light rare earth materials such as ceramics and circles as R, and is made of 15 M with Fs as the main component.
It is an excellent permanent magnet that exhibits an extremely high energy product exceeding G Os.

また、このFa−B−R系永久磁石に、なお一層の高磁
石特性を与え、かつ安価に製造するための希土類磁石用
合金粉末の製造方法として、出願人は、先に、Ca還元
法による製造方法を提案(特開昭59−219404号
)し、さらに、酸素、炭素、カルシウム含有量を低減し
たCa還元による希土類磁石用合金粉末の製造方法を提
案(特願昭59−182574号、特願昭59−248
798号)した。
In addition, as a method for producing alloy powder for rare earth magnets in order to provide even higher magnetic properties to this Fa-B-R permanent magnet and to produce it at low cost, the applicant has previously developed a method using a Ca reduction method. proposed a manufacturing method (Japanese Patent Application No. 59-219404), and further proposed a manufacturing method for alloy powder for rare earth magnets by Ca reduction with reduced oxygen, carbon, and calcium contents (Japanese Patent Application No. 59-182574, Gansho 59-248
No. 798).

その要旨は、R(Rはm、 Pr、 Dy、 Ho、 
Thのうち少なくとも1種あるいはさらに、La、 C
8,Sm。
The gist is that R (R is m, Pr, Dy, Ho,
At least one of Th or further, La, C
8, Sm.

(J、 Er、 Eu、丁m、 Yb、 Li、 Yの
うち少なくとも1種からなる)12.0原子%〜20原
子%、B4原子%〜20原子%、Fe80原子%〜83
原子%となるように、希土類酸化物のうち少なくとも1
種と、鉄粉。
(consisting of at least one of J, Er, Eu, Tom, Yb, Li, Y) 12.0 atom% to 20 atom%, B4 atom% to 20 atom%, Fe80 atom% to 83
At least 1 of the rare earth oxides so that the atomic %
Seeds and iron powder.

純ボロン粉、フェロボロン粉および硼素酸化物のうち少
なくとも1種、あるいは上記構成元素の合金粉または混
合酸化物を上記組成に配合した混合粉に、上記希土類酸
化物などの原料粉末に含まれる酸素量に対して、化学量
論的必要量の1゜5〜3.5倍(重量比)の金RCaと
希土類酸化物の1wt%〜15wt%のCaCl2を混
合し、不活性ガス雰囲気中で900℃〜1200℃で還
元拡散を行ない、得られた反応生成物を水中に入れてス
ラリー化し、さらに該スラリーを水処理する希土類磁石
用合金粉末の製造方法である。
The amount of oxygen contained in the raw material powder such as the rare earth oxide in a mixed powder in which at least one of pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above constituent elements is blended into the above composition. Gold RCa in an amount of 1.5 to 3.5 times (weight ratio) the stoichiometric required amount and 1 wt% to 15 wt% of rare earth oxide CaCl2 were mixed and heated at 900°C in an inert gas atmosphere. This is a method for producing alloy powder for rare earth magnets, in which reduction and diffusion is carried out at ~1200°C, the obtained reaction product is put into water to form a slurry, and the slurry is further treated with water.

上記の技術によって、酸素量 soooppm以下、炭
素量 1oooppm以下、Ca量 2000pl)m
 JJ下(DFa−E3−R系永久Fj1EJ合金粉末
が得られ、すぐれた磁石特性のFe −B −R系永久
磁石が得られるが、さらにすぐれた磁石特性を得るには
、上記各含有量のより一層の低減が必要であった。
With the above technology, the amount of oxygen is less than soooppm, the amount of carbon is less than 100ppm, and the amount of Ca is 2000pl)m
Under JJ (DFa-E3-R series permanent Fj1EJ alloy powder is obtained, and a Fe-B-R series permanent magnet with excellent magnetic properties is obtained. However, in order to obtain even better magnetic properties, the above contents must be Further reduction was necessary.

また、上記のCa還元法において、還元・拡散時の原料
粉末の歩留をさらに向上させ、生成合金粉末の組成の均
質化を図り、さらに該合金を使用して磁石化した際の磁
石特性にばらつきが発生しなことが望まれている。
In addition, in the above Ca reduction method, we have further improved the yield of raw material powder during reduction and diffusion, homogenized the composition of the produced alloy powder, and further improved the magnetic properties when magnetized using the alloy. It is desired that no variations occur.

発明の目的 この発明は、Fa−B−R系永久!1石の磁石特性を向
上させることができるCa還元法による希土類磁石用合
金粉末の製造方法を目的とし、反応生成した希土類Ia
石用合金粉末の酸素量、炭素量、カルシウム量の著しく
低減でき、還元・拡散の効率化と、精整合金粉未組織の
均質化を図り、すぐれた磁石特性の得られる希土類磁石
用合金粉末の製造方法を目的としている。
Purpose of the Invention This invention provides permanent Fa-B-R system! The aim is to produce a rare earth magnet alloy powder using a Ca reduction method that can improve the magnetic properties of a single stone.
We have developed an alloy powder for rare earth magnets that can significantly reduce the amount of oxygen, carbon, and calcium in alloy powder for stone, improve the efficiency of reduction and diffusion, and homogenize the unstructured structure of finely matched gold powder, resulting in excellent magnetic properties. It is intended for manufacturing methods.

発明の構成と効果 希土類1石用合金粉末中の酸素、炭素、カルシウムの含
有量は、得られる永久磁石の特性を大きく左右するため
、かかる含有量の低減が必要不可欠であるが、上述のC
a還元において、Ca還元・拡散により得られる反応生
成物をスラリー化して、水処理する場合、処理水の性状
が、生成合金粉末の酸素量、炭素量、カルシウム量に大
きく影響し、生成合金粉末の酸化を惹起していることが
分った。
Structure and Effects of the Invention The content of oxygen, carbon, and calcium in the rare earth single-stone alloy powder greatly influences the properties of the obtained permanent magnet, so it is essential to reduce the content.
In a-reduction, when the reaction product obtained by Ca reduction/diffusion is slurried and treated with water, the properties of the treated water greatly affect the amount of oxygen, carbon, and calcium in the produced alloy powder. It was found that the oxidation of

発明者らは、Fe−B−R系永久磁5の磁石特性を向上
し得る合金粉末の製造方法について種々検討した結果、
Ca還元・拡散により得た反応生成物をスラリー化し、
水処理する際に、15℃以下に冷却したイオン交換水を
使用することにより、合金粉末中の酸素、炭素、カルシ
ウムの含有量を大きく低減でき、Fa −B −R系永
久磁石材料の保磁力並びに減磁曲線の角型性を改善向上
させ得ることを知見し、この発明を完成したものである
As a result of various studies on the manufacturing method of alloy powder that can improve the magnetic properties of the Fe-B-R permanent magnet 5, the inventors found that
The reaction product obtained by Ca reduction and diffusion is made into a slurry,
By using ion-exchanged water cooled to 15°C or less during water treatment, the content of oxygen, carbon, and calcium in the alloy powder can be greatly reduced, and the coercive force of the Fa-B-R permanent magnet material Furthermore, the present invention was completed based on the finding that the squareness of the demagnetization curve could be improved.

すなわち、この発明は、 R(RはNd、 Pr、 Dy、 Ho、 Tbのうち
少なくとも1種あるいはさらに、La、 Co、 Sm
、 CtJ、 Er、 Eu、丁m。
That is, this invention provides R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Co, Sm
, CtJ, Er, Eu, Dingm.

Yb、 La、 Yのうち少なくとも1種からなる)1
2原子%〜20原子%、 B44原子〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方
品相で、含有酸素量が4000pI)m以下、含有炭素
量が600ppm以下、含有Calが1000ppm以
下である希土類磁石用合金粉末の製造において、該希土
類酸化物のうち少なくとも1種と、粒度1501XrI
以下の鉄粉と純ボロン粉、フェロボロン粉および硼素酸
化物のうち少なくとも1種、あるいは上記構成元素の合
金粉または混合酸化物、さらに粒度150I以下の添加
元素粉末を上記組成に配合した混合粉に、 上記希土類酸化物などの原料粉末に含まれる酸素量に対
して、化学量論的必要量の1.5〜3.5倍の金属Ca
と希土類酸化物の1wt%〜15wt%のCaCR2を
混合し、 不活性ガス雰囲気中で900’C〜1200℃に加熱し
て還元拡散を行ない、 得られた反応生成物を、15℃以下に冷却したイオン交
換水中に投入し水と反応させてスラリー化し、ざらに該
スラリーを15℃以下に冷却したイオン交換水により処
理することを特徴とする希土類磁石用合金粉末の製造方
法である。
consisting of at least one of Yb, La, Y)1
The main components are 2 atomic % to 20 atomic %, B44 atomic % to 20 atomic %, and Fe 65 atomic % to 81 atomic %, the main phase is a tetragonal phase, the content of oxygen is 4000 pI)m or less, and the content of carbon is 600 ppm or less , in the production of alloy powder for rare earth magnets having a Cal content of 1000 ppm or less, at least one of the rare earth oxides and a particle size of 1501XrI
A mixed powder containing at least one of the following iron powder, pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above constituent elements, and an additional element powder with a particle size of 150I or less in the above composition. , 1.5 to 3.5 times the stoichiometrically required amount of metal Ca to the amount of oxygen contained in the raw material powder such as the rare earth oxide.
and 1wt% to 15wt% of rare earth oxide CaCR2 are mixed and heated to 900'C to 1200°C in an inert gas atmosphere to perform reduction diffusion, and the obtained reaction product is cooled to 15°C or less. This is a method for producing an alloy powder for rare earth magnets, which is characterized in that the powder is poured into ion-exchanged water, reacted with water to form a slurry, and the slurry is roughly treated with ion-exchanged water cooled to 15° C. or lower.

この発明による合金粉末は、希土類金属を製造する前段
階における中間原料、すなわち、安価なNd 203や
Prs O+tなどの軽希土類酸化物及びTb30aや
DV203などの重希土類酸化物と、粒度150屡以下
のF+s粉と純ボロン粉(結晶性あるいはアモルファス
のいずれでもよい)、粒度1501.1m以下のFe−
8粉またはe2o3粉末などの硼素酸化物を出発原料と
し、還元剤として金属Ca、還元反応生成物の崩壊を容
易にするCaCR2を用い、Ca還元拡散させる工程に
より製造するため、種々金属塊原料を用いるよりも安価
に高品質でおり、Fe  B−R系永久磁石の磁石特性
を向上させることができ、また、工業的量産に最適であ
る。
The alloy powder according to the present invention is an intermediate raw material in the preliminary stage of producing rare earth metals, that is, inexpensive light rare earth oxides such as Nd 203 and Prs O+t, and heavy rare earth oxides such as Tb30a and DV203, and a particle size of 150 or less. F+s powder and pure boron powder (either crystalline or amorphous), Fe- with a particle size of 1501.1m or less
The starting material is boron oxide such as 8 powder or e2o3 powder, metal Ca is used as a reducing agent, and CaCR2 is used to facilitate the disintegration of the reduction reaction product. It is cheaper and has higher quality than conventional magnets, can improve the magnetic properties of Fe BR permanent magnets, and is ideal for industrial mass production.

この発明による希土類合金粉末は、Fa −B −R系
永久磁石の製造に際して、そのまま微粉砕し、プレス成
形、焼結2時効処理する粉末冶金製造方法により、永久
磁石を得ることができ、希土類金属塊、鉄およびボロン
等の原料塊を原料として製造する鋳塊粉砕法に比較して
、原料溶解、鋳造。
The rare earth alloy powder according to the present invention can be used to obtain a permanent magnet by a powder metallurgy manufacturing method in which it is finely pulverized as it is, press-formed, sintered and subjected to two aging treatments. Compared to the ingot crushing method, which uses raw material lumps such as iron and boron as raw materials, raw material melting and casting.

粗粉砕などの手間とコストを要する製造工程を省略する
ことができ、また上記した如く、安価な希土類酸化物な
どの出発原料を用い、かつ原料粉末の歩留がよいため、
永久磁石価格を安価にし、特に、粉末中の酸素含有量等
が少ないこと及び組成の均質化が向上していることによ
り、ばらつきがなく、すぐれた磁石特性のFa −B 
−R系永久磁石を安価に量産できる利点を有する。
It is possible to omit manufacturing processes that require time and cost such as coarse pulverization, and as mentioned above, it uses inexpensive starting materials such as rare earth oxides and has a high yield of raw material powder.
Fa-B has reduced the price of permanent magnets, and in particular has excellent magnetic properties with no variation due to the low oxygen content in the powder and improved homogenization of the composition.
-It has the advantage that R-based permanent magnets can be mass-produced at low cost.

この発明による合金粉末を使用して得られたFa−B−
R系永久磁石は、(B H)maX  20MGOa以
上、!HC10koe以上であり、角型性Hk 8kO
s以上の磁石特性を有し、特性のばらつきが少なく、か
つ該特性を維持しなから至澗以上の温度雰囲気中でも十
分に安定した使用が可能となる。なお、角型性Hkは磁
束密度Bが残留磁束密度Brが90%となる時の磁界H
の値である。
Fa-B- obtained using the alloy powder according to the present invention
R-based permanent magnets have (B H) maX 20MGOa or more! HC10koe or more, square shape Hk 8kO
It has magnetic properties of s or more, has little variation in properties, and maintains these properties, so it can be used in a sufficiently stable manner even in an atmosphere with a temperature of 1000 yen or more. In addition, the squareness Hk is the magnetic field H when the magnetic flux density B becomes 90% of the residual magnetic flux density Br.
is the value of

発明の限定理由 この発明による希土類磁石用合金粉末の製造工程は以下
のとおりであり、限定理由を合せて説明する。
Reasons for Limiting the Invention The manufacturing process of the alloy powder for rare earth magnets according to the present invention is as follows, and the reasons for the limitations will also be explained.

まず、Nd酸化物(Ndz03 )や円酸化物(Pr6
0++)なとの軽希土類酸化物の少なくとも1種、ある
いはざらに、Tb酸化物(Tb30c>やN酸化物(〜
203)などの重希土類酸化物の少なくとも一種と、 粒度150通以下のFa粉と純ボロン粉、フェロボロン
y1(Fe−B粉)、8□03粉末などの硼素酸化物の
うち少なくとも1種の原料粉末を、 R12原子%〜20原子%、 B44原子〜20原子%、 Fe65原子%〜81原子% (ここで、Rはm、 Pr、 u、 l(o、 Tbの
うち少なくとも1種あるいはさらに、La、 Ce、 
Sm、 Gd、 Er。
First, Nd oxide (Ndz03) and yen oxide (Pr6
At least one light rare earth oxide, such as Tb oxide (Tb30c>) or N oxide (~
At least one type of heavy rare earth oxide such as 203) and at least one type of boron oxide such as Fa powder with a particle size of 150 or less and pure boron powder, ferroboron y1 (Fe-B powder), and 8□03 powder. The powder is composed of R12 at % to 20 at %, B44 at % to 20 at %, Fe65 at % to 81 at % (here, R is at least one of m, Pr, u, l(o, Tb) or further, La, Ce,
Sm, Gd, Er.

Eu、丁m、 Yb、 La、 Yのうち少なくとも1
種からなる) の組成となるように配合し、必要に応じて、粒度150
項以下の金属粉、酸化物粉(構成元素との混合酸化物も
含む)2合金粉(構成元素との混合酸化物も含む)おる
いはその他のCa還元可能な化合物粉末として添加元素
を加えて原料混合粉末とする。
At least one of Eu, Dingm, Yb, La, Y
(consisting of seeds), and if necessary, adjust the particle size to 150.
Addition of additional elements as metal powders, oxide powders (including mixed oxides with constituent elements), alloy powders (including mixed oxides with constituent elements), or other Ca-reducible compound powders listed below. and make a raw material mixed powder.

なお、構成元素との合金として、V、 TL、 Zr。Note that V, TL, and Zr are used as alloys with constituent elements.

田、Ta、No等の硼化物がおる。There are borides such as Ta, Ta, and No.

この発明において、希土類酸化物との還元反応を促進さ
せ、上記原料粉との拡散反応を均一にかつ充分に進行さ
せ、均質・単相でかつ含有酸素量の少ない合金粉末を得
るためには、Fs粉、純ボロン粉、フェロボロン粉(F
@−B粉)、B2O3粉末などの硼素酸化物のうち少な
くとも1種の原料粉末あるいは種々の添加元素は、粒度
が150燗以下でおることが必要でり、好ましくは、7
5加以下でおる。
In this invention, in order to promote the reduction reaction with the rare earth oxide and the diffusion reaction with the raw material powder to proceed uniformly and sufficiently, and to obtain a homogeneous, single-phase alloy powder with a low oxygen content, Fs powder, pure boron powder, ferroboron powder (F
At least one raw material powder or various additive elements among boron oxides such as @-B powder) and B2O3 powder must have a particle size of 150 g or less, preferably 7
Stay below 5K.

同様に、混合粉の希土類酸化物の平均粒度は1〜10I
で、さらには2〜8々m、原料粉の平均粒度は1〜15
0証でさらに2〜so、nであることが最も望ましい。
Similarly, the average particle size of the rare earth oxide in the mixed powder is 1 to 10I
Furthermore, the average particle size of the raw material powder is 1 to 15 m.
It is most desirable that the value is 2 to so and n in the case of 0 proof.

ざらに、上記原料混合粉末に、希土類元素の還元剤とし
て金属Ca粉末、還元反応生成物の崩壊を容易にするた
めのCaCRz ’FA末を添加する。金属Caの必要
量は、希土類酸化物などの原料粉末に含まれる酸素量に
対して、化学量論的必要量の1.5〜3.5倍であり、
CaCbは希土類酸化物のIwt%〜15wt%とする
Roughly, metallic Ca powder as a rare earth element reducing agent and CaCRz'FA powder to facilitate the disintegration of the reduction reaction product are added to the raw material mixed powder. The required amount of metallic Ca is 1.5 to 3.5 times the stoichiometric amount of oxygen contained in the raw material powder such as rare earth oxide,
CaCb is Iwt% to 15wt% of the rare earth oxide.

この発明による合金粉末には、必須元素として、Bを含
有するため、例えば、原料粉のフェロボロン粉の融点は
、鉄粉に比較して、100℃〜400℃低いため、還元
反応時の希土類元素とフェロボロンとの拡散が速く有利
でおるが、Caの配合量が、使用した希土類酸化物を還
元するのに必要な化学量論的必要量の1.5倍未満では
、希土類酸化物が十分に還元されないため、合金粉末中
には含有酸素量が多く、所定の合金粉末組成が得られな
い。
Since the alloy powder according to the present invention contains B as an essential element, for example, the melting point of the raw material powder ferroboron powder is 100°C to 400°C lower than that of iron powder, so the rare earth element during the reduction reaction However, if the amount of Ca added is less than 1.5 times the stoichiometric amount required to reduce the rare earth oxide used, the rare earth oxide is not sufficiently absorbed. Since it is not reduced, the alloy powder contains a large amount of oxygen, making it impossible to obtain a predetermined alloy powder composition.

一方、還元反応時に生成される反応副生成物であるCa
Oは、合金粉末の還元反応時の結晶粒成長を抑止し、所
定の平均粒度を有する合金粉末を得ることができる。し
かし、希土類酸化物を還元するのに必要な化学量論的必
要量の3.5倍を越える過剰のCa還元剤は、工程のコ
ストを上昇させるだけでなく、還元反応後に水中に投入
する際、CaOとH2Oの過激な発熱反応を生ぜしめ、
得られる合金粉末の酸素量は増加するので、好ましくな
く、また、得られる合金粉末中の残存Caが多くなり、
このため製造する永久Fli石の磁気特性は低くなるた
め、3.5倍を上限とする。
On the other hand, Ca is a reaction byproduct produced during the reduction reaction.
O suppresses crystal grain growth during the reduction reaction of the alloy powder, thereby making it possible to obtain an alloy powder having a predetermined average grain size. However, an excess of Ca reducing agent exceeding 3.5 times the stoichiometric amount needed to reduce rare earth oxides not only increases the cost of the process but also , causing a radical exothermic reaction between CaO and H2O,
This is not preferable because the amount of oxygen in the obtained alloy powder increases, and the amount of residual Ca in the obtained alloy powder increases.
For this reason, the magnetic properties of the permanent Fli stone to be manufactured will be low, so the upper limit is set at 3.5 times.

また、希土類酸化物を十分還元し、所定の平均粒度を有
し、低い酸素含有量並びに残存Calが少なくて、かつ
所定の組成を有する磁石用合金粉末を、歩留よく得るた
めに、必要な還元剤の量は、化学量論的必要量の1.5
〜2゜5倍の場合が最も好ましい。
In addition, in order to sufficiently reduce rare earth oxides, obtain alloy powder for magnets having a predetermined average particle size, low oxygen content, low residual Cal, and a predetermined composition with a high yield, it is necessary to The amount of reducing agent is 1.5 of the stoichiometric requirement.
The most preferred case is ~2°5 times.

Ca(Jz量は、希土類元素量の15wt%を越えると
、還元・拡散反応物を、特定温度のイオン交換水で処理
する際に、その水中のCR−が著しく増大し、生成した
希土類合金粉末と反応して粉末の酸素量が40001)
l)111以上となり、Fs  B −R系永久磁石用
合金粉末として使用できず、また、1wt3未満では、
還元・拡散反応物を前記イオン交換水中に投入しても、
崩壊せず、前記イオン交換水により処理できないため、
1wt%〜15wt%とする。
When the amount of Ca (Jz exceeds 15 wt% of the amount of rare earth elements), when the reduction/diffusion reaction product is treated with ion-exchanged water at a specific temperature, the CR- in the water increases significantly, and the generated rare earth alloy powder The amount of oxygen in the powder increases by 40,001)
l) If it is 111 or more, it cannot be used as an alloy powder for Fs B-R permanent magnets, and if it is less than 1wt3,
Even if the reduction/diffusion reactant is put into the ion exchange water,
Because it does not disintegrate and cannot be treated with the ion-exchanged water,
The content is set at 1 wt% to 15 wt%.

上述した希土類酸化物及び粒度15011I以下のFs
粉等の原料粉、還元剤を所定量配合したのち、例えばV
型混合機等を使用し、不活性ガス雰囲気中で、混合を行
なう。ついで、混合した粉末を不活性ガス流気雰囲気で
、9()O℃〜1200′Gの温度範囲で、0.5時間
から5時間、還元・拡散反応を行なわせる。このとき、
昇温速度は、出発原料粉末に含有される吸着水分ガス成
分を除去するため、5’C/ m i n以下が好まし
い。
The above-mentioned rare earth oxide and Fs with a particle size of 15011I or less
After blending a predetermined amount of raw material powder such as powder and reducing agent, for example, V
Mixing is performed in an inert gas atmosphere using a mold mixer or the like. Next, the mixed powder is allowed to undergo a reduction/diffusion reaction in an inert gas flow atmosphere at a temperature range of 9()O<0>C to 1200'G for 0.5 to 5 hours. At this time,
The heating rate is preferably 5'C/min or less in order to remove adsorbed moisture gas components contained in the starting material powder.

ここで、還元温度を900℃〜1200℃に限定したの
は、900℃未満では、希土類酸化物のCaによる還元
が不十分となり、所定の組成を有する合金粉末が得られ
ず、また、合金粉末の含有酸素量が増大するため、好ま
しくないためであり、また、還元温度が1200℃を越
えると、還元時の拡散反応が促進されすぎて、結成粒成
長を起し、所定の平均粒度を有する合金粉末が得られず
、また、反応生成物中のCaの残存量が多くなり、永久
磁石用合金粉末として好ましくないためである。また、
所定の平均粒度及び成分組成を有し、かつ低い含有酸素
量並びに残存Ca量を有する高性能永久磁石用合金粉末
を得るためには、900℃〜1ioo°cの還元温度が
最も望ましい。
Here, the reason why the reduction temperature was limited to 900°C to 1200°C is because below 900°C, the reduction of the rare earth oxide by Ca becomes insufficient, making it impossible to obtain an alloy powder with a predetermined composition. This is because the content of oxygen increases, which is undesirable. Also, if the reduction temperature exceeds 1200°C, the diffusion reaction during reduction will be promoted too much, causing grain formation and growth, resulting in the reduction of the grain size to a predetermined average grain size. This is because alloy powder cannot be obtained and the amount of Ca remaining in the reaction product increases, which is not preferable as alloy powder for permanent magnets. Also,
In order to obtain a high-performance permanent magnet alloy powder having a predetermined average particle size and component composition, and a low content of oxygen and residual Ca, a reduction temperature of 900° C. to 1 ioo° C. is most desirable.

Caによる還元・拡散反応において、Caで還元された
溶融状態の希土類金属がただちに粒度150.a以下の
F8粉やFθ−B粉と、極めて容易にかつ均質に合金化
し、希土類酸化物から使用の合金粉末が歩留よく回収で
きる。
In the reduction/diffusion reaction by Ca, the molten rare earth metal reduced by Ca immediately becomes grain size 150. It can be very easily and homogeneously alloyed with F8 powder or Fθ-B powder of less than a, and the alloy powder used can be recovered from the rare earth oxide with a high yield.

還元・拡散反応終了接は、室温まで炉冷あるいは急速冷
却してもよいが、冷却雰囲気は、得られた合金粉末を酸
化させないように、不活性ガス中が望ましい。また、反
応生成物を予め粉砕して用いるのもよい。
At the end of the reduction/diffusion reaction, the reaction may be furnace cooled or rapidly cooled to room temperature, but the cooling atmosphere is preferably in an inert gas so as not to oxidize the obtained alloy powder. It is also good to use the reaction product after crushing it in advance.

得られた還元反応生成物を、15℃以下に冷却されたイ
オン交換水中に投入し、反応副生成物のCaO、CaO
2CaCJzをHa0と反応させて、Ca(DH)2と
なす、すなわち、化学量論的必要量の1.5〜3.5倍
の還元剤を配合して得られた還元反応生成物は、水中に
おいて、発熱、自然崩壊してスラリー状態となるので、
特別に機械的粉砕を必要としない利点がある。このスラ
リーをさらに、15℃以下に冷却したイオン交換水を用
いて、充分にCa分を除去処理して、ざらに、室温で真
空乾燥し、10〜500.のF日−B−R系永久磁石用
合金粉末を得る。
The obtained reduction reaction product was poured into ion-exchanged water cooled to 15°C or lower, and the reaction by-products CaO and CaO
2CaCJz is reacted with Ha0 to form Ca(DH)2, that is, the reduction reaction product obtained by blending 1.5 to 3.5 times the stoichiometric amount of reducing agent is , it generates heat and spontaneously collapses into a slurry state.
It has the advantage of not requiring special mechanical grinding. This slurry was further treated to sufficiently remove Ca using ion-exchanged water cooled to 15°C or lower, and roughly dried under vacuum at room temperature for 10-500°C. F-BR alloy powder for permanent magnets is obtained.

この発明において、還元・拡散後の反応生成物をスラリ
ー化し、水処理する処理水に、15℃以下に冷却したイ
オン交換水を用いたのは、水をイオン交換することによ
り、希土類磁石に有害な合金粉末中のCI ”、 NO
3−、CO3−−、5O4−一等の陰イオンを除去し、
粉末の酸化を防止し、さらに難溶性のCa塩の生成を防
止するためでおり、かつ15℃以下に冷却することによ
り、原料粉末中の02濃度。
In this invention, the reaction products after reduction and diffusion are made into a slurry, and ion-exchanged water cooled to below 15°C is used as the treated water. CI in alloy powder”, NO
3-, CO3--, 5O4- and other anions are removed,
This is to prevent oxidation of the powder and further prevent the formation of poorly soluble Ca salts, and by cooling to 15°C or less, the 02 concentration in the raw material powder can be reduced.

Ca11度を低減し、1麦続の磁石化処理により、(B
H)max>20)IGOa、  iHc >10 k
oe、角型性Hk > 8 koeのすぐれた11石特
性を得ることができる。
By reducing Ca11 degrees and continuous magnetization treatment, (B
H) max > 20) IGOa, iHc > 10 k
It is possible to obtain excellent 11-stone characteristics with oe and squareness Hk > 8 koe.

以上に詳述した製造方法で得られるこの発明による合金
粉末は、 R(RはNd、 Pr、 Dy、 Ha、 Tbのうち
少なくとも1種おるいはざらに、La、 Ce、 St
n、 Gd、 Er、 Eu、 Tm。
The alloy powder according to the present invention obtained by the production method detailed above is composed of R (R is at least one of Nd, Pr, Dy, Ha, Tb, or at least one of La, Ce, St).
n, Gd, Er, Eu, Tm.

Yb、 La、 Yのうち少なくとも1種からなる)1
2原子%〜20原子%、 B44原子〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方
晶相で、含有酸素量が4000ppm以下、含有炭素量
が600ppm以下、含有Ca量が11000pp以下
でおる。
consisting of at least one of Yb, La, Y)1
The main components are 2 atom% to 20 atom%, B44 atom to 20 atom%, Fe65 atom% to 81 atom%, the main phase is a tetragonal phase, the content of oxygen is 4000 ppm or less, the content of carbon is 600 ppm or less, The amount of Ca is 11,000 pp or less.

上記合金粉末に含まれる酸素は、最も酸化しやすい希土
類元素と結合して希土類酸化物となり、永久磁石中に酸
化物R2O3として残留するため好ましくなく、酸素量
が4000ppmを越えると、角型性Hk < 8 k
oeとなる。
The oxygen contained in the alloy powder is undesirable because it combines with the rare earth element that is most easily oxidized to form a rare earth oxide and remains in the permanent magnet as an oxide R2O3.If the oxygen amount exceeds 4000 ppm, the squareness <8k
It becomes oe.

また、含有炭素量が、600ppmを越えると、著しい
保磁力角型性の劣化を生じ、好ましくない。
Moreover, if the carbon content exceeds 600 ppm, the coercive force squareness will significantly deteriorate, which is not preferable.

また、含有Ca量が、11000ppを越えると、)炎
続のこの合金粉末を用いて磁石化する途中の焼結工程に
おいて、還元性の極めて高いCa蒸気を多量に発生し、
熱処理炉を著しく損傷し、工業的生産における安定性に
欠け、また、永久磁石中の残存Ca量が増えて、磁石特
性を劣化させるため好ましくない。
In addition, if the Ca content exceeds 11,000 pp, a large amount of extremely highly reducing Ca vapor will be generated during the sintering process during magnetization using this alloy powder in the flame continuation process.
This is not preferable because it significantly damages the heat treatment furnace, lacks stability in industrial production, and increases the amount of residual Ca in the permanent magnet, deteriorating the magnet properties.

永久磁石の成分限定理由 この発明の希土類合金粉末中の希土類元素Rは、組成の
12原子%〜20原子%を占めるが、tb、 Pr。
Reasons for limiting the components of permanent magnets The rare earth element R in the rare earth alloy powder of the present invention accounts for 12 at % to 20 at % of the composition, but tb, Pr.

〜、l−に+、Thのうち少なくとも1種、あるいはざ
らに、La、 Ce、 Sm、 (<、 Er、 Eu
、 Tm、 yb、 La、 Yのうち少なくとも1種
を含むものからなる。
~, l- +, at least one of Th, or roughly, La, Ce, Sm, (<, Er, Eu
, Tm, yb, La, and Y.

また、通常Rのうち1種をもって足りるが、実用上は2
種以上の混合物(ミツシュメタル、ジジム等)を入手上
の便宜等の理由により用いることができる。
Also, normally one type of R is sufficient, but in practice two types are sufficient.
A mixture of more than one species (Mitushmetal, Didim, etc.) can be used for reasons such as availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
Note that this R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within an industrially available range.

Rは、新規なFe  B  R系永久磁石における、必
須元素であって、12原子%未満では、結晶構造がα−
鉄と同一構造の立方品組織となるため、高磁気特性、特
に高保磁力が得られず、20原子%を越えると、Rリッ
チな非磁性相が多くなり、保磁力は10 koe以上で
あるが、残留磁束密度Brが低下して、すぐれた特性の
永久磁石が得られない。
R is an essential element in the new FeBR permanent magnet, and if it is less than 12 at%, the crystal structure changes to α-
Because it has a cubic structure with the same structure as iron, it is difficult to obtain high magnetic properties, especially high coercive force, and if it exceeds 20 atomic %, R-rich nonmagnetic phase increases and the coercive force is 10 koe or more, but , the residual magnetic flux density Br decreases, making it impossible to obtain a permanent magnet with excellent characteristics.

よって、希土類元素は、12原子%〜20原子%の範囲
とする。
Therefore, the rare earth element is in the range of 12 atomic % to 20 atomic %.

Bは、Fe  B  R系永久磁石にあける、必須元素
であって、4原子%未満では、菱面体構造が主相となり
、高い保磁力1l−(cは得られず、10 koe以下
となり、20原子%を越えると、Bリッチな非磁性相が
多くなり、残留磁束密度[3rが低下し、(B H)m
aX  20)IGOe未満となり、すぐれた永久磁石
が得られない。よって、Bは、4原子%〜20原子%の
範囲とする。
B is an essential element in FeBR permanent magnets, and when it is less than 4 atomic %, the rhombohedral structure becomes the main phase, and a high coercive force of 1l-(c is not obtained, it becomes less than 10 koe, and 20 When it exceeds atomic%, the B-rich nonmagnetic phase increases, the residual magnetic flux density [3r decreases, and (B H)m
aX 20) less than IGOe, making it impossible to obtain an excellent permanent magnet. Therefore, B is in the range of 4 at.% to 20 at.%.

Feは、新規な上記系永久磁石において、必須元素でお
り、65原子%未満では残留磁束密度3rが低下し、8
1原子%を越えると、高い保磁力が得られないので、F
eは65原子%〜81原子%の含有とする。
Fe is an essential element in the new above-mentioned permanent magnet, and if it is less than 65 at%, the residual magnetic flux density 3r decreases, and the
If it exceeds 1 atomic %, high coercive force cannot be obtained, so F
The content of e is 65 atomic % to 81 atomic %.

また、この発明による永久磁石材料において、F8の一
部をうで置換することは、得られる磁石の磁気特性を損
うことなく、温度特性を改善し耐食性を向上することが
できるが、G置換量がFeの30%を越えると、逆に磁
気特性が劣化するため、好ましくなく、望ましくはFe
の20%以下でおる。
In addition, in the permanent magnet material according to the present invention, replacing a part of F8 with arm can improve temperature characteristics and corrosion resistance without impairing the magnetic properties of the resulting magnet, but G substitution If the amount exceeds 30% of Fe, the magnetic properties will deteriorate, which is undesirable.
20% or less.

また、この発明による永久磁石は、R,B、Faの他、
工業的生産上不可避的不純物の存在を許容できるが、B
の一部を4.0原子%以下のC13,5原子%以下のP
、2.5原子%以下のS、1.5原子%以下の伍、5原
子%以下のSLのうち少なくとも1種、合計量で5.0
原子%以下で置換することにより、永久磁石の製造性改
善、低価格化が可能である。
In addition, the permanent magnet according to the present invention includes R, B, Fa, and other magnets.
Although the presence of unavoidable impurities in industrial production can be tolerated, B
4.0 at% or less of C13, 5 at% or less of P
, at least one of the following: 2.5 atomic % or less S, 1.5 atomic % or less 5, 5 atomic % or less SL, the total amount is 5.0
By substituting at atomic % or less, it is possible to improve the manufacturability and reduce the cost of permanent magnets.

また、下記添加元素のうち少なくとも1種は、R−B−
Fe系永久磁石に対してその保磁力、減磁曲線の角型性
を改善おるいは製造性の改善、低価格化に効果があるた
め添加することができる。しかし、保磁力改善のための
添加に伴ない残留磁束密度(Br)の低下を招来するの
で、従来のハードフェライト磁石の残留磁束密度と同等
以上となる範囲での添加が望ましい。
Furthermore, at least one of the following additional elements is R-B-
It can be added to Fe-based permanent magnets because it is effective in improving the coercive force and squareness of the demagnetization curve, improving manufacturability, and reducing costs. However, addition to improve coercive force causes a decrease in residual magnetic flux density (Br), so it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of conventional hard ferrite magnets.

5.0原子%以下のA1.3.0原子%以下の月、5.
5原子%以下のV、4.5原子%以下のCr、5.0原
子%以下のHn、  5.0原子%以下のBi、9.0
原子%以下のNb、7.0原子%以下の丁a、5.2原
子%以下のHa、5.0原子%以下の−11,0原子%
以下のsb、3.5原子%以下のGe、1.5原子%以
下のSn、3.3原子%以下のZr。
A1 of 5.0 atomic % or less. Moon of 3.0 atomic % or less, 5.
5 at% or less V, 4.5 at% or less Cr, 5.0 at% or less Hn, 5.0 at% or less Bi, 9.0
Nb below 7.0 atom%, Ha below 5.2 atom%, -11.0 atom% below 5.0 atom%
The following sb, 3.5 atom % or less Ge, 1.5 atom % or less Sn, and 3.3 atom % or less Zr.

6.0原子%以下のNi、1.1原子%以下のZn、3
.3原子%以下のHf、 のうち少なくとも1種を添加含有、但し、2種以上含有
する場合は、その最大含有量は当該添加元素のうち最大
値を有するものの原子%以下の含有させることにより、
永久磁石の高保磁力化が可能になる。また、特に好まし
い添加元素は、V 、 Nb。
6.0 at% or less Ni, 1.1 at% or less Zn, 3
.. Hf of 3 atomic % or less, at least one of the following is added.However, if two or more types are contained, the maximum content is 3 atomic % or less of the one having the maximum value among the added elements.
It becomes possible to increase the coercive force of permanent magnets. Particularly preferable additive elements are V and Nb.

Ta、 )io、 W 、 Cr、 AIであり、含有
量は少量が好ましく、3原子%以下が有効でおり、〃は
0.1〜3原子%、望ましくは0.2〜2原子%である
Ta, )io, W, Cr, AI, the content is preferably a small amount, 3 atomic % or less is effective, and 〃 is 0.1 to 3 atomic %, preferably 0.2 to 2 atomic %. .

これらの添加元素は、出発原料混合粉末に、金属粉、酸
化物、あるいは構成元素との合金粉、化合物粉ないし混
合酸化物、あるいはCaにより還元可能な化合物として
添加することができる。
These additional elements can be added to the starting raw material mixed powder in the form of metal powder, oxide, alloy powder with constituent elements, compound powder or mixed oxide, or compound reducible with Ca.

結晶相は主相(特定の相が80%以上)が正方晶である
ことが、磁石として高い磁気特性を発現し得る微細で均
一な合金粉末を得るのに不可欠でおる。この磁性相はF
e2 R正方品化合物結晶で構成され、非磁性層により
粒界を囲まれている。非磁性相は主としてRリッチ相か
らなり、Bの多い場合、Bリッチ相も部分的に存在し得
る。非磁性層粒界域の存在は高特性に寄与するものと考
えられ、本発明合金の重要な組織上の特徴をなし、はん
の僅かな量でも有効であり、例えばIVO1%以上は充
分な四である。
It is essential that the main crystal phase (80% or more of a specific phase) be tetragonal in order to obtain a fine and uniform alloy powder that can exhibit high magnetic properties as a magnet. This magnetic phase is F
It is composed of e2 R tetragonal compound crystals, and the grain boundaries are surrounded by a nonmagnetic layer. The nonmagnetic phase mainly consists of an R-rich phase, and if there is a large amount of B, a B-rich phase may also be partially present. The presence of grain boundary regions in the nonmagnetic layer is thought to contribute to high properties and is an important structural feature of the alloy of the present invention, and even a small amount of solder is effective; for example, IVO of 1% or more is sufficient It is four.

また、この発明の永久磁石は、磁場中プレス成型するこ
とにより磁気的異方性磁石が得られ、また、無磁界中で
プレス成型することにより、磁気均等方性磁石を得るこ
とができる。
Further, the permanent magnet of the present invention can be press-molded in a magnetic field to obtain a magnetically anisotropic magnet, and press-molded in a non-magnetic field to obtain a magnetically isotropic magnet.

この発明による永久1a5は、保磁力用C≧10 kO
e、残留磁束密度Br> 9kG、を示し、最大エネル
ギー積(13+−1)maxは、最も好ましい組成範囲
では、(B)l )max≧208GOsを示し、最大
値は30)IGOs以上に達する。
Permanent 1a5 according to this invention has a coercive force C≧10 kO
e, the residual magnetic flux density Br > 9 kG, and the maximum energy product (13+-1) max is (B)l ) max ≧ 208 GOs in the most preferred composition range, and the maximum value reaches 30) IGOs or more.

また、この発明永久磁石用合金粉末のRの主成分がその
50%以上をM及び円を主とする軽希土類金属が占める
場合で、R12原子%〜20原子%、B44原子〜20
原子%、Fe  74原子%〜80原子%、を主成分と
するとき、(BH)maX 35HGOe以上のすぐれ
た磁気特性を示し、特に軽希土類金属が陶の場合には、
その最大値が428GOe以上に達する。
In addition, in the case where the main component of R in the alloy powder for permanent magnets of this invention is 50% or more of light rare earth metals mainly consisting of M and circles, R12 to 20 at%, B44 to 20
When the main component is Fe 74 at% to 80 at%, it exhibits excellent magnetic properties of (BH)ma
The maximum value reaches 428 GOe or more.

実施例 実施例1 Nd203粉末        154.7(]Dソ2
03 粉末                    
   17.3  (]、Fe粉末(粒度70m以下)
    227.5 gフェロボロン粉末      
23.(NJ(粒度70pm以下、19.58−Fe合
金粉末)金属Ca粉末        170.8g(
還元に要する化学論必要量の2.4倍)CaCJ2粉末
         7、Og(希土類酸化物原料の3.
5wt%) 以上の原料粉末総量600gを用い、30.5Ncl−
3,6Dy −1,15B −64,75Fs(wt%
)を目標に、V型混合機を使用し、Arガス雰囲気中で
、混合した。
Examples Example 1 Nd203 powder 154.7(]Dso2
03 Powder
17.3 (], Fe powder (particle size 70m or less)
227.5 g ferroboron powder
23. (NJ (particle size 70pm or less, 19.58-Fe alloy powder) metal Ca powder 170.8g (
2.4 times the stoichiometric amount required for reduction) CaCJ2 powder 7. Og (3.
5wt%) Using a total amount of 600g of the above raw material powder, 30.5Ncl-
3,6Dy -1,15B -64,75Fs (wt%
), the mixture was mixed in an Ar gas atmosphere using a V-type mixer.

ついで、上記の混合粉末を、還元炉のArガス流気雰囲
気中で、1050℃、2.01118間、の条件で、還
元拡散反応を促進させたのち、室温まで炉冷した。
Next, the above-mentioned mixed powder was subjected to a reduction-diffusion reaction in an Ar gas atmosphere in a reduction furnace under conditions of 1050° C. and 2.01118°C, and then cooled to room temperature in the furnace.

得られた還元反応生成物600gを、62の7℃に冷却
したイオン交換水に投入し、スラリー化した後、ざらに
、スラリー状合金粉末を、1℃に冷却したイオン交換水
で数回洗浄し、さらに、真空乾燥し、この発明による合
金粉末351.7 g(歩留90%)を得た。
600 g of the obtained reduction reaction product was poured into ion exchange water cooled to 7°C at 62°C to form a slurry, and then the slurry alloy powder was washed several times with ion exchange water cooled to 1°C. This was further vacuum-dried to obtain 351.7 g (yield: 90%) of an alloy powder according to the present invention.

得られた合金粉末は、成分組成が、 Nd30.2vt%、Dy  3.4vt%、8 1.
07 vt%、Fe  62.2wt%、02 240
0ppm 、 C490ppm SCa  500pp
m 。
The obtained alloy powder had the following composition: Nd 30.2vt%, Dy 3.4vt%, 81.
07 vt%, Fe 62.2wt%, 02 240
0ppm, C490ppm SCa 500pp
m.

粒度は、平均粒度89〃mであった。The average particle size was 89 mm.

この合金粉末を微粉砕して平均粒度2.8μmの微粉砕
粉を得、磁界10KOθ中で配向し、1.5tJにて加
圧成型して15mmX 161T1mX 10mnn寸
法に成形し、その接、Ar雰囲気中で1080’C,2
時間、の条件で焼結し、さらに、Ar中で800℃X 
1 Hrと、630℃X 1 Hrの2段時効処理を行
ない、永久磁石となした。
This alloy powder was finely pulverized to obtain a finely pulverized powder with an average particle size of 2.8 μm, oriented in a magnetic field of 10 KOθ, pressure molded at 1.5 tJ to form a size of 15 mm x 161 T1 m x 10 mnn, and in contact with it, in an Ar atmosphere. Inside 1080'C, 2
Sintered at 800°C in Ar
A two-stage aging treatment of 1 hour and 630°C x 1 hour was performed to obtain a permanent magnet.

得られた永久磁石の磁気特性を測定し、第1表に結果を
示す。
The magnetic properties of the obtained permanent magnet were measured, and the results are shown in Table 1.

また、比較のため、 Nd2o3粉末        178.9g〜203
粉末         17.3iJ、Fθ粉末(粒度
150〜70証)   21B、7pフエロボロン粉末
      21.9 Q(粒度150〜701Jrn
、 19.58−Fe合金粉末)金属Ca粉末    
    162.9g(還元に要する化学論必要量の2
.4倍)CaCf12粉末         7.0g
(希土類酸化物原料の3.5針%) 以上の原料粉末総量600 gを用い、イオン交換水の
温度を20’Cにして、スラリー化し、さらに洗浄処理
する以外は、前記の条件の製造方法で得た合金粉末(3
26,7g、歩留81%)は、Nd30.5wt%、D
y  3.4wt%、B  1.10vt%、Fa  
62.6wt%、Oe  8800ppm 、 C67
0DDm 、 Ca  8001)l)m 。
Also, for comparison, Nd2o3 powder 178.9g ~ 203
Powder 17.3iJ, Fθ powder (particle size 150-70Jrn) 21B, 7p ferroboron powder 21.9Q (particle size 150-701Jrn
, 19.58-Fe alloy powder) Metallic Ca powder
162.9g (2 stoichiometrically required amount for reduction)
.. 4 times) CaCf12 powder 7.0g
(3.5 needles % of rare earth oxide raw material) The manufacturing method under the above conditions except that the above raw material powder total amount of 600 g was used, the temperature of ion exchange water was set to 20'C, it was made into a slurry, and further washed. The alloy powder obtained in (3
26.7g, yield 81%), Nd30.5wt%, D
y 3.4wt%, B 1.10vt%, Fa
62.6wt%, Oe 8800ppm, C67
0DDm, Ca 8001)l)m.

粒度は、平均1571Jmであった。The average particle size was 1571 Jm.

この比較合金粉末を用いて前記条件で磁石化し、その磁
気特性を測定した。結果は第1表に示すとおりである。
This comparative alloy powder was magnetized under the conditions described above, and its magnetic properties were measured. The results are shown in Table 1.

第1表 実施例2 Nd203粉末        178.9(]Dソ2
03粉末         5.8g、Fe粉末(粒度
70ALrn以下>     226.2 gフェロボ
ロン粉末      21.3 g(粒度7011rH
以下、19.58−Fe合金粉末)フェロニオブ粉末 
     3,4q(粒度70Atm以下、67.6N
b−Fe合金粉末)金属Ca粉末        15
7.9 g(還元に要する化学論必要量の2.4倍)C
a(J2粉末         6.5q(希土類酸化
物原料の3.5wt%) 以上の原料粉末総量600 gを用い、30.5M−1
,2Dy −0,6Nb −1,1B−66,6Fe(
wt%)を目標に、V型混合機を使用し、Arガス雰囲
気中で、混合した。
Table 1 Example 2 Nd203 powder 178.9(]Dso2
03 powder 5.8 g, Fe powder (particle size 70 ALrn or less > 226.2 g Ferroboron powder 21.3 g (particle size 7011 rH
Hereinafter, 19.58-Fe alloy powder) Ferroniobium powder
3,4q (particle size 70 Atm or less, 67.6N
b-Fe alloy powder) Metal Ca powder 15
7.9 g (2.4 times the stoichiometric amount required for reduction)C
a (J2 powder 6.5q (3.5 wt% of rare earth oxide raw material) Using the above raw material powder total amount of 600 g, 30.5M-1
,2Dy-0,6Nb-1,1B-66,6Fe(
wt%) using a V-type mixer in an Ar gas atmosphere.

ついで、上記の混合粉末を、還元炉のArガス流気雰囲
気中で、1050℃、2.0時間、の条件で、還元拡散
反応を促進させたのち、室温まで炉冷した。
Next, the above-mentioned mixed powder was subjected to a reduction-diffusion reaction in an Ar gas atmosphere in a reduction furnace at 1050° C. for 2.0 hours, and then cooled to room temperature in the furnace.

得られた還元反応生成物600 (]を、6zの7℃に
冷却したイオン交換水に投入し、スラリー化した後、さ
らに、スラリー状合金粉末を、7℃に冷却したイオン交
換水で数回洗浄し、さらに、真空乾燥し、この発明によ
る合金粉末を得た。
The obtained reduction reaction product 600 () was poured into ion-exchanged water cooled to 7°C in 6z to form a slurry, and then the slurry-like alloy powder was further mixed several times with ion-exchanged water cooled to 7°C. The alloy powder according to the present invention was obtained by washing and vacuum drying.

得られた合金粉末(380,7g、歩留93%)は、成
分組成が、 Nd30.7wt%、Dy  1.16 wt%、Nb
  0.6wt%、8 1.08 wt%、Fe  6
3.6wt%、02 2300ppm 、 C510D
Dm 、 Ca  400ppm 。
The obtained alloy powder (380.7 g, yield 93%) had the following composition: Nd 30.7 wt%, Dy 1.16 wt%, Nb
0.6wt%, 8 1.08wt%, Fe6
3.6wt%, 02 2300ppm, C510D
Dm, Ca 400 ppm.

粒度は、平均85.4mであった。The average particle size was 85.4 m.

この合金粉末を微粉砕して平均粒度2.8.の微粉砕粉
を得、磁界10KOθ中で配向し、1.5 t、Jにて
加圧成型して15mmX 16nur+X 10mm寸
法に成形し、その後、Ar雰囲気中でttoooc、 
2時間、の条件で焼結し、ざらに、Ar中で800’C
X 1 Hrと、630’CX 1 Hrの2段時効処
理を行ない、永久vii石となした。得られた永久磁石
の磁気特性を測定し、第2表に結果を示す。
This alloy powder was finely pulverized to have an average particle size of 2.8. Finely pulverized powder was obtained, oriented in a magnetic field of 10 KOθ, pressure molded at 1.5 t and J to form a size of 15 mm x 16 nur + x 10 mm, and then ttoooc in an Ar atmosphere.
Sintered at 800'C in Ar for 2 hours.
A two-stage aging treatment of X 1 Hr and 630'CX 1 Hr was performed to obtain a permanent VII stone. The magnetic properties of the obtained permanent magnet were measured, and the results are shown in Table 2.

また、比較のため、Fe粉末、フェロボロン粉末。Also, for comparison, Fe powder and ferroboron powder.

フェロニオブ粉末に粒度が1501Xnから7011m
の粉末を用いる以外は、前記の条件の製造方法で得た合
金粉末(347,9Q、歩留85%)は、Nd30.6
wt%、Dy  1.16wt%、Nb  O,6wt
%、B  1.07 vt%、Fe  63.5wt%
、022500pI)m 、 C4901)I)m S
Ca  500ppm 。
Ferroniobium powder with particle size from 1501Xn to 7011m
The alloy powder (347.9Q, yield 85%) obtained by the manufacturing method under the above conditions except that Nd30.6 powder was used.
wt%, Dy 1.16wt%, NbO, 6wt
%, B 1.07 vt%, Fe 63.5 wt%
, 022500pI)m , C4901)I)m S
Ca 500ppm.

粒度は、平均147々mであった。The average particle size was 147 mm.

この比較合金粉末を用いて前記条件で磁石化し、その磁
気特性を測定した。結果は第2表に示すとおりである。
This comparative alloy powder was magnetized under the conditions described above, and its magnetic properties were measured. The results are shown in Table 2.

第2表Table 2

Claims (1)

【特許請求の範囲】 1 R(RはNd、Pr、Dy、Ho、Tbのうち少な
くとも1種あるいはさらに、La、Ce、Sm、Gd、
Er、Eu、Tm、Yb、La、Yのうち少なくとも1
種からなる)12原子%〜20原子%、 B4原子%〜20原子%、 Fe65原子%〜81原子%を主成分とし、主相が正方
晶相で、含有酸素量が4000ppm以下、含有炭素量
が600ppm以下、含有Ca量が1000ppm以下
である希土類磁石用合金粉末の製造において、 該希土類酸化物のうち少なくとも1種と、粒度150μ
m以下の鉄粉と純ボロン粉、フェロボロン粉および硼素
酸化物のうち少なくとも1種、あるいは上記構成元素の
合金粉または混合酸化物、さらに粒度150μm以下の
添加元素粉末を上記組成に配合した混合粉に、 上記希土類酸化物などの原料粉末に含まれる酸素量に対
して、化学量論的必要量の1.5〜3.5倍の金属Ca
と希土類酸化物の1wt%〜15wt%のCaCl_2
を混合し、 不活性ガス雰囲気中で900℃〜1200℃に加熱して
還元拡散を行ない、 得られた反応生成物を、15℃以下に冷却したイオン交
換水中に投入してスラリー化し、 さらに該スラリーを15℃以下に冷却したイオン交換水
により処理することを特徴とする希土類磁石用合金粉末
の製造方法。
[Claims] 1 R (R is at least one of Nd, Pr, Dy, Ho, Tb, or furthermore, La, Ce, Sm, Gd,
At least one of Er, Eu, Tm, Yb, La, Y
The main components are 12 atomic % to 20 atomic %, B4 atomic % to 20 atomic %, and Fe 65 atomic % to 81 atomic %, the main phase is a tetragonal phase, the content of oxygen is 4000 ppm or less, the content of carbon In the production of an alloy powder for rare earth magnets having a Ca content of 600 ppm or less and a Ca content of 1000 ppm or less, at least one of the rare earth oxides and a particle size of 150 μm.
A mixed powder in which the above composition is blended with an iron powder of 150 μm or less, at least one of pure boron powder, ferroboron powder, and boron oxide, or an alloy powder or mixed oxide of the above constituent elements, and additional element powder with a particle size of 150 μm or less. In addition, metal Ca is added in an amount of 1.5 to 3.5 times the stoichiometrically required amount of oxygen contained in the raw material powder such as the rare earth oxide.
and 1wt% to 15wt% of rare earth oxide CaCl_2
are mixed and heated to 900°C to 1200°C in an inert gas atmosphere to perform reductive diffusion, and the resulting reaction product is poured into ion-exchanged water cooled to 15°C or less to form a slurry. A method for producing alloy powder for rare earth magnets, which comprises treating slurry with ion-exchanged water cooled to 15° C. or lower.
JP14318385A 1985-06-28 1985-06-28 Production of alloy powder for rare earth magnet Granted JPS624807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14318385A JPS624807A (en) 1985-06-28 1985-06-28 Production of alloy powder for rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14318385A JPS624807A (en) 1985-06-28 1985-06-28 Production of alloy powder for rare earth magnet

Publications (2)

Publication Number Publication Date
JPS624807A true JPS624807A (en) 1987-01-10
JPH0586441B2 JPH0586441B2 (en) 1993-12-13

Family

ID=15332812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14318385A Granted JPS624807A (en) 1985-06-28 1985-06-28 Production of alloy powder for rare earth magnet

Country Status (1)

Country Link
JP (1) JPS624807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064465A (en) * 1990-11-29 1991-11-12 Industrial Technology Research Institute Process for preparing rare earth-iron-boron alloy powders
JP2009113375A (en) * 2007-11-07 2009-05-28 Toshiba Corp Bioplastic and bioplastic molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064465A (en) * 1990-11-29 1991-11-12 Industrial Technology Research Institute Process for preparing rare earth-iron-boron alloy powders
JP2009113375A (en) * 2007-11-07 2009-05-28 Toshiba Corp Bioplastic and bioplastic molded article

Also Published As

Publication number Publication date
JPH0586441B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
US4762574A (en) Rare earth-iron-boron premanent magnets
US4747874A (en) Rare earth-iron-boron permanent magnets with enhanced coercivity
KR960008185B1 (en) Rare earth-iron system permanent magnet and process for producing the same
JPH0685369B2 (en) Permanent magnet manufacturing method
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
US4952252A (en) Rare earth-iron-boron-permanent magnets
JPS624807A (en) Production of alloy powder for rare earth magnet
JPS6223960A (en) High-efficiency permanent magnet material
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS624806A (en) Production of alloy powder for rare earth magnet
JPS627831A (en) Manufacture of permanent magnet material
JP3178848B2 (en) Manufacturing method of permanent magnet
JPS6247455A (en) Permanent magnet material having high performance
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
US4933009A (en) Composition for preparing rare earth-iron-boron-permanent magnets
JPS627830A (en) Manufacture of permanent magnet material
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPS61270313A (en) Production of rare earth alloy powder
JPH0320044B2 (en)
JPS6271201A (en) Bond magnet
JPH0422104A (en) Method of manufacturing permanent magnet
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP2992808B2 (en) permanent magnet
KR20200018267A (en) Magnetic powder and manufacturing method of magnetic powder

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term