JPS6276786A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS6276786A
JPS6276786A JP60217656A JP21765685A JPS6276786A JP S6276786 A JPS6276786 A JP S6276786A JP 60217656 A JP60217656 A JP 60217656A JP 21765685 A JP21765685 A JP 21765685A JP S6276786 A JPS6276786 A JP S6276786A
Authority
JP
Japan
Prior art keywords
photoactive layer
electrode film
semiconductor photoactive
power generation
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60217656A
Other languages
Japanese (ja)
Other versions
JPH0551190B2 (en
Inventor
Terutoyo Imai
今井 照豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60217656A priority Critical patent/JPS6276786A/en
Publication of JPS6276786A publication Critical patent/JPS6276786A/en
Publication of JPH0551190B2 publication Critical patent/JPH0551190B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To expose part of extend portion of the first electrode film for connecting in series by emitting energy beam along the aligning direction of the extended portion on a semiconductor photoactive layer coated with the extended portion of the first electrode film. CONSTITUTION:A semiconductor photoactive layer 4 is formed by plasma CVD method substantially on the entire insulating surface of a substrate 1 including the first electrode films 3a-3d and their extended portions 3ae-3de. Then, at least parts of the portions 3ae-3de are exposed by the beam. The portion 4 is removed by emitting the beam by scanning. The bottom sides of the portions 3ae-3ce and the bottom sides of the portions 5bc-5de of the second electrode films 5a-5d are connected to electrically connect in series four generating region 2a-2d, and the series output is led from the portion 5ae and the portion 3de of the film 3d.

Description

【発明の詳細な説明】 (イ)産業上の利用分骨 本発明は光照射を受けると起電力を発生する光起電力装
置の製造方法に関し、本発明により製造された光起電力
装置は特に電卓、腕時計、電子ゲーム等の民生用小型電
子機器の電源として用いられる。
Detailed Description of the Invention (a) Industrial Application The present invention relates to a method for manufacturing a photovoltaic device that generates an electromotive force when irradiated with light. Used as a power source for small consumer electronic devices such as calculators, watches, and electronic games.

(ロ)従来の技術 基板の絶縁表面に複数の発電領域を設けそれら発電領域
を電気的に直列接続した光起電力装置は例えば特公昭5
8−21827’j)公報に開示された如く既に知られ
ており、上述の如き電卓等の民生用小型電子機器の電源
として実用化されている。祈る先行技術に1Jfl示さ
れた光起電力装置の特徴は、複数の発電領域を電気的に
直列接続する構造にも拘らず、光照射を受けると電子及
び正孔の光キャリアを発生する半導体光活性層を各個別
の発電領域毎に分割しなくても良いために、祈る半導体
光活性層のバターニングに微細な加工を必要としない。
(b) Conventional technology A photovoltaic device in which a plurality of power generation regions are provided on the insulating surface of a substrate and these power generation regions are electrically connected in series is known, for example, from the Japanese Patent Publication No. 5
8-21827'j) is already known as disclosed in Japanese Patent Publication No. 8-21827'j), and has been put to practical use as a power source for small consumer electronic devices such as the above-mentioned calculators. The feature of the photovoltaic device shown in the prior art is that, despite its structure in which multiple power generation regions are electrically connected in series, it is a semiconductor photovoltaic device that generates photocarriers of electrons and holes when irradiated with light. Since the active layer does not have to be divided into individual power generation regions, fine processing is not required for patterning the semiconductor photoactive layer.

従って、上記先行技術に開示された半導体光活性層のバ
ターニングは半導体光活性層の形成時に、?&着しては
ならないところをマスクで覆うマスキング法が用いられ
、製造工程の簡略化を可能とし、製造コストの低減に寄
与していた。
Therefore, the patterning of the semiconductor photoactive layer disclosed in the above-mentioned prior art is performed during the formation of the semiconductor photoactive layer. A masking method was used to cover areas that should not be covered with a mask, simplifying the manufacturing process and contributing to lower manufacturing costs.

然し乍ら、祈るマスキング法Viy造コストの低減に寄
与するものの、マスクを半導体光活性層の形成時に支持
基板に対して該光活性層が被着すべき所定箇所を露出せ
しめた状態で装着しなければならず正確な位置決めが要
求されるのみならず、マスクが正確な位置に装置された
としてもマスクと支持基板表面との間に僅かながらも隙
間が形成されるために、祈る隙間に半導体材料が回り込
み半導体光活性層の周縁部分に上記半導体材料の回り込
みによる泌み出し部分が発生しパターン精度の低下を招
く。祈る半導体材料の回シ込みは半導体光活性層の形成
時に加熱されたマスクが支持基板との熱膨張係数の差や
熱歪に基づき撓んだ際に大きくなり、また半導体光活性
層の膜層が薄いほど回り込みによる影響は著しい。
However, although the masking method contributes to a reduction in manufacturing costs, it is necessary to attach the mask to the supporting substrate at the time of forming the semiconductor photoactive layer while exposing a predetermined portion where the photoactive layer is to be deposited. Not only is accurate positioning required, but even if the mask is placed in the correct position, a small gap will be formed between the mask and the surface of the support substrate, so it is difficult for the semiconductor material to fill the gap. A leaking portion due to the wraparound of the semiconductor material occurs at the peripheral edge of the wraparound semiconductor photoactive layer, resulting in a decrease in pattern accuracy. The shrinkage of the semiconductor material becomes large when the mask heated during the formation of the semiconductor photoactive layer is bent due to the difference in thermal expansion coefficient with the supporting substrate or due to thermal strain, and also when the film layer of the semiconductor photoactive layer is bent. The thinner the line, the more significant the influence of wraparound.

一方、半導体光活性層のバターニングに、微細加工に富
むフォトリソグラフィ法を用いれば、マスキング法の持
つ半導体材料の回り込みによる泌み出し部分の発生はな
くなるものの、工程が煩雑となり製造コストの上昇の原
因となるために、低廉価が要求される民生用小型電子機
器の電源として用いられる光起電力装置の製造には不向
きである。
On the other hand, if the photolithography method, which is rich in microfabrication, is used to pattern the semiconductor photoactive layer, the generation of oozing parts caused by the wrapping of the semiconductor material, which is the case with masking methods, can be eliminated, but the process becomes complicated and the manufacturing cost increases. Therefore, it is not suitable for manufacturing photovoltaic devices used as power sources for small consumer electronic devices that require low cost.

(ハ)発明が解決しようとする問題点 本発FiA製造方法は複数の発電領域を電気的に直列接
続した光起電力装置に於いて、半導体光活性層を各個別
の発電領域毎に分割することなく、祈る光活性層のパタ
ーニングに従来のマスキング法やリーングラフィ法−の
持つ欠点を解決しようとするものである。
(c) Problems to be solved by the invention The FiA manufacturing method of the present invention divides the semiconductor photoactive layer into individual power generation regions in a photovoltaic device in which a plurality of power generation regions are electrically connected in series. The present invention attempts to solve the drawbacks of conventional masking methods and lean photography methods for patterning a photoactive layer.

に)問題点を解決するための手段 本発明製造方法は上記問題点を解決すべく、基板の絶縁
表面に複数の発電領域毎に、該発電領域から基板の同一
周縁に向って延出した延長部分を有する第1電極膜を分
割配置し、この第1電極膜及びその延長部分を含んで上
記基板の絶縁表面のほぼ全面に半導体光活性層を設けた
後、上記第1電極膜の延長部分を覆っている半導体光活
性層部分に上記延長部分の整列方向に沿ってエネルギビ
ームを照射し照射部分の半導体光活性層部分を除去して
、上記第1電極膜の延壱部分の少なくとも一部分t−露
出せしめ、次いで当該露出した第1電極膜の延長部分に
、隣接した発電領域の半導体光活性層上に被着された第
2電極膜の延長部分を結合して隣接した発電領域を電気
的に直列接続したことを特徴とする。
B.) Means for Solving the Problems In order to solve the above problems, the manufacturing method of the present invention has an insulating surface of a substrate, in which each of a plurality of power generation regions is provided with an extension extending from the power generation region toward the same periphery of the substrate. After dividing and arranging a first electrode film having a plurality of portions, and providing a semiconductor photoactive layer on almost the entire insulating surface of the substrate, including the first electrode film and its extended portion, At least a portion of the extended portion of the first electrode film t is irradiated with an energy beam to the semiconductor photoactive layer portion covering the extended portion along the alignment direction of the extended portion, and the semiconductor photoactive layer portion in the irradiated portion is removed. - exposing and then bonding the exposed extension of the first electrode film with an extension of a second electrode film deposited on the semiconductor photoactive layer of the adjacent power generation region to electrically connect the adjacent power generation region; It is characterized by being connected in series.

(ホ)作 用 上述の如く、基板の絶縁表面のほぼ全面に半導体光活性
層を設けた後、第1電極膜の延長部分を覆っている半導
体光活性層部分に、上記延長部分の整列方向例沿ってエ
ネルギビームを照射することによって、照射部分の半導
体光活性層部分を除去し得、直列接続のための第1電極
膜の延長部分の少なくとも一部分が露出せしめられる。
(E) Function As described above, after providing the semiconductor photoactive layer on almost the entire insulating surface of the substrate, the semiconductor photoactive layer covering the extended portion of the first electrode film is coated in the alignment direction of the extended portion. By irradiating the semiconductor photoactive layer in accordance with the example with the energy beam, the irradiated portion of the semiconductor photoactive layer can be removed, exposing at least a portion of the extension of the first electrode film for series connection.

(へ)実施例 第1図乃至第4図は本発明製造方法を説[」1するため
のものであって、先ず第1図の工程では、ガラス、セラ
ミック、高分子フィルム等の絶縁材料からなゐ・長方形
、伏の基板(lの一方の主面(la)にその主面(1a
)の長辺方向に整列して複数の発電頭」或(2a)〜(
2d)を区画すべき第1電極膜(3a)〜(3d)が分
割配置さnる。断る第1電ti[[(3a )〜(3d
 )は、基1’ff1f1!を受光面側とするとき、酸
化インジウム錫(ITO)や酸化錫(Sn02)K代表
される透光性導電酸化物(TCO)の単層、或いは積層
構造であシ、基板(1)を背面側とするとき、アルミニ
ウム(AJ)、チタン銀合金(TiAg)、銀(Ag)
の金属からなる単層、或いはI:# 、j−構造、更に
は所る一&1寓層の表面を上記TCOで被覆した積層構
造を持つと共に、基板(11の長辺の一方の周縁に向っ
て延出した延長部分(3ae)〜(3de)が設けられ
、右隣りに分割され九第1′道、■膜< 3 b)〜(
3d)のある第1電極1戻(3a)〜(3C)の延長部
分(3a e ) 〜(3c e )は、右隣りの第1
電啄膜(3b)〜(3d〕に向って屈曲したL字状にバ
ターニングされている。
(f) Example Figures 1 to 4 are for explaining the manufacturing method of the present invention. First, in the process shown in Figure 1, insulating materials such as glass, ceramics, polymer films, etc. - Rectangular, face-down substrate (1 main surface (1a) on one main surface (1a) of
) A plurality of power generation heads arranged in the long side direction'' or (2a) ~ (
The first electrode films (3a) to (3d) that are to partition the area 2d) are arranged in a divided manner. 1st electricity ti [[(3a)~(3d
) is the base 1'ff1f1! When the light-receiving surface side is the substrate (1), the substrate (1) should be a single layer or a multilayer structure of a transparent conductive oxide (TCO) such as indium tin oxide (ITO) or tin oxide (Sn02)K. When used as a side, aluminum (AJ), titanium silver alloy (TiAg), silver (Ag)
It has a single layer made of a metal, or an I:#, j-structure, or a laminated structure in which the surface of a certain 1 & 1 layer is coated with the above TCO. Extension parts (3ae) to (3de) extending from
The extended portions (3a e ) to (3c e ) of the first electrode 1 return (3a) to (3C) with 3d) are the first electrodes on the right.
It is patterned into an L-shape bent toward the electric membranes (3b) to (3d).

第2図の工程では、上記第1電極膜(3a)〜(3d〕
及びその延長部分(3ae) 〜(3de)を含んで上
記基板(I)の絶縁表面のほぼ全面にSiH4、SiF
4等のシリコン化合物ガスを主原料ガスとするプラズマ
CVD法或いは光CVD法ニヨリ、アモルファスシリコ
ン、アモルファスシリコンカーバイド、アモルファスシ
リコンケルマニウム、微結晶シリコン等を適宜各層に配
置したPin接合型、Pn接合型、Pi接合型、戎いけ
それらのタンデム構造の半導体光活性層(4)が形成さ
れる。
In the process shown in FIG. 2, the first electrode films (3a) to (3d)
and its extended portions (3ae) to (3de), almost the entire insulating surface of the substrate (I) is coated with SiH4, SiF.
Amorphous silicon, amorphous silicon carbide, amorphous silicon kermanium, microcrystalline silicon, etc. are appropriately arranged in each layer to form a pin junction type or a pn junction type. A semiconductor photoactive layer (4) having a tandem structure of , Pi junction type, and cylindrical structure is formed.

第3図の工程では、レーザビームやW子ビームの如きエ
ネルギビームを用いて半導体光活性層(4)により覆わ
れ、その下着に位置している第1電極膜(3a)〜(3
d)の延長部分(3ae)〜(3d、 e )の少なく
とも一部分を、特に本実施例にあっては露出長を大きく
するためKL字状の底辺を露出せしめる。使用されるエ
ネルギビーム源は波長1.06μmのレーザビームを発
するQスイッチ付Nd : YAGレーザが適当であり
、上記延長部分(3ae)〜(3de)の整列方向に沿
ってパルス繰り返し周波&1〜10KHz、パワー密度
2×107W/cm2、走査速度10〜100mm/s
ecの条件でパルス的に照射される。祈るレーザビーム
の1回の走査による照射によって、幅100〜200μ
mの半導体光活性層部分(4fが除去される。
In the process shown in FIG. 3, an energy beam such as a laser beam or a W beam is used to form the first electrode films (3a) to (3) covered with the semiconductor photoactive layer (4) and located under the semiconductor photoactive layer (4).
At least a portion of the extended portions (3ae) to (3d, e) of d) is exposed, especially in this embodiment, the bottom of the KL shape is exposed in order to increase the exposed length. The energy beam source used is suitably a Q-switched Nd:YAG laser that emits a laser beam with a wavelength of 1.06 μm, and pulse repetition frequency &1 to 10 KHz along the alignment direction of the extension parts (3ae) to (3de). , power density 2 x 107 W/cm2, scanning speed 10-100 mm/s
It is irradiated in pulses under ec conditions. Width 100~200μ by irradiation with one scanning of laser beam
The semiconductor photoactive layer portion of m (4f is removed).

従って、要求される除去幅に応じて走査回数や、エネル
ギ密度が決定される。
Therefore, the number of scans and energy density are determined depending on the required removal width.

尚、祈るレーザビームの照射による半導体光活性層の除
去自体は、例えば特開5FA57−12568号公報等
に開示された如く既に知られているが、除去される半導
体光活性層は複数の発電領域が互いに隣り合う隣接間隔
部分であり、本実施例の如く4つの発電領域(2a)〜
(2d)を持つ光起電力装置にあっては各々の隣接間隔
部分について最低3回レーザビームを照射しなければな
らないのに対し、露出すべき延長部分(3ae)〜(3
de)を一方向に整列配置することによって、最低1回
のレーザビームの照射で良い。
Note that the removal of the semiconductor photoactive layer by irradiation with a laser beam is already known, for example, as disclosed in Japanese Patent Laid-Open No. 5FA57-12568. are the adjacent interval portions adjacent to each other, and as in this embodiment, there are four power generation regions (2a) to
For photovoltaic devices with (2d), each adjacent spaced part must be irradiated with the laser beam at least three times, whereas the extended parts to be exposed (3ae) to (3
By aligning and arranging de) in one direction, laser beam irradiation may be performed at least once.

第4図の最終工程では、各発電@域(2a)〜(2d)
の第1電極膜(3a)〜(3d)と隣接間隔部分が除去
されることなく連続した半導体光活性層4)を挾んでこ
の面を受光面とするとき上記TCOからなり、基板tB
1受光面とするとき上記AJ、TiAg等の金属からな
る第2電極膜(5a)〜(5d)が対向配置されると共
に、該第2虫極膜(5a)〜(5d)の内、左隣に発電
@域(2a)〜(2c)が存在するもの(5b)〜(5
d)は上記第3図のレーザビームの照射により露出した
第1電極1漠(3a)〜(3C)の延長部分(3ae)
〜(3ce)と結合すべく、基板(1)の畏辺の一方の
周縁に向って延出し逆り字状に屈曲した延長部分(sb
e)〜(5de)を持つ0所る第1′4i板(3a) 
〜(3c)のL字状延長部分(3ae) 〜(3ce)
の底辺と、第2電極膜(5b)〜(5d〕の逆り字状延
長部分(5bC)〜(5de)の底辺との結合によって
、4つの発電領域(2a)〜(2d)は・な気的に直列
接maれ、それら発゛市頭域(2a ) 〜(2d )
の1(゛f列出力は右端の第2電礒膜(5a)の蛎長部
分(5ae)と、左端の第1電極膜〔3d〕の延長部分
(3de)から導出される。
In the final process of Figure 4, each power generation @ area (2a) to (2d)
When the first electrode films (3a) to (3d) and the semiconductor photoactive layer 4) which is continuous without being removed and this surface is used as a light-receiving surface, the substrate tB is made of the above TCO.
When one light-receiving surface is used, the second electrode films (5a) to (5d) made of metals such as AJ and TiAg are arranged facing each other, and of the second polar films (5a) to (5d), the left Those where power generation@areas (2a) to (2c) exist next to each other (5b) to (5
d) is an extended portion (3ae) of the first electrode 1 (3a) to (3C) exposed by the laser beam irradiation in FIG. 3 above.
~(3ce), an extension part (sb
e) 0th 1'4i plate (3a) with ~(5de)
~(3c) L-shaped extension (3ae) ~(3ce)
The four power generation regions (2a) to (2d) are connected to the bottoms of the inverted letter-shaped extensions (5bC) to (5de) of the second electrode films (5b) to (5d). The market area (2a) ~ (2d)
1(゛f column output is derived from the cone length portion (5ae) of the second electrode film (5a) at the right end and the extended portion (3de) of the first electrode film [3d] at the left end.

尚、第1’jPjftlla(3a )〜(3c ) 
(!:2FG2電極膜(5b)〜(5d)との直列接続
は、L字状或いは逆り字状の延長部分(3ae)〜(3
ce)戎いは(5be)〜(5de)の底辺同士を結合
することによって、半導体光活性M(4)の除去幅が狭
くとも第1電極膜(3a)〜(3c)の延長部分(3a
e)〜(3ce)の露出長を大きくすることができるの
で、結合面積の減少による電力損失を可及的に抑圧する
ことができる。
In addition, the 1st'jPjftlla (3a) to (3c)
(!: The series connection with the 2FG2 electrode films (5b) to (5d) is the L-shaped or inverted-shaped extension part (3ae) to (3
ce) Alternatively, by bonding the bases of (5be) to (5de), even if the removal width of the semiconductor photoactive M(4) is narrow, the extended portions (3a) of the first electrode films (3a) to (3c) can be removed.
Since the exposed lengths of e) to (3ce) can be increased, power loss due to a reduction in the coupling area can be suppressed as much as possible.

(ト)発明の効果 本発明製造方法は以上の説明から明らかな如く、基板の
同一周縁に向うて第1′疏極膜から延出した延長部分を
覆う半導体光活性層部分は、その延長部分の整列方向に
沿ってエネルギビームが照射されることによって、従来
の如くマスクを使用したり、フォトリソグラフィ法を使
用することなく除去されるので、煩雑な工程を経ずに直
列接続のための第1電庵摸のl/fE長部分の少なくと
も一部分を露出せしめることができる。
(G) Effects of the Invention As is clear from the above explanation, the semiconductor photoactive layer portion covering the extended portion extending from the first polar film toward the same periphery of the substrate is By irradiating the energy beam along the alignment direction of the 3D images, they can be removed without using conventional masks or photolithography. At least a portion of the l/fE long portion of the 1denan pattern can be exposed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は不発明製造方法と工程別に示す平面
図であって、(1)は基板、(2a)〜(2d)は発電
頭載、(3a)〜(3d)は第1電極膜、(3ae)〜
(3de)(ri第1電極膜(3a〕〜(3d)の延長
部分、(4)は半導体光活性・密、(5a) 〜(5d
)は第2電極膜、(5ae)〜(5da)け第2電nN
、(5a ) 〜(5d )の延長部分。 出頃入 玉洋電機株式会社
1 to 4 are plan views showing the uninvented manufacturing method and each step, in which (1) is the substrate, (2a) to (2d) are the power generation overhead, and (3a) to (3d) are the first Electrode film, (3ae) ~
(3de) (ri extended portion of first electrode film (3a) to (3d), (4) is semiconductor photoactive/dense, (5a) to (5d)
) is the second electrode film, (5ae) to (5da) is the second electrode nN
, (5a) to (5d). Coming soon Tamayo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)基板の絶縁表面に複数の発電領域毎に、該発電領
域から基板の同一周縁に向って延出した延長部分を有す
る第1電極膜を分割配置し、この第1電極膜及びその延
長部分を含んで上記基板の絶縁表面のほぼ全面に半導体
光活性層を設けた後、上記第1電極膜の延長部分を覆っ
ている半導体光活性層部分に上記延長部分の整列方向に
沿ってエネルギビームを照射し照射部分の半導体光活性
層部分を除去して、上記第1電極膜の延長部分の少なく
とも一部分を露出せしめ、次いで当該露出した第1電極
膜の延長部分に、隣接した発電領域の半導体光活性層上
に被着された第2電極膜の延長部分を結合して隣接した
発電領域を電気的に直列接続したことを特徴とする光起
電力装置の製造方法。
(1) A first electrode film having an extension portion extending from the power generation region toward the same periphery of the substrate is divided and arranged on the insulating surface of the substrate for each of a plurality of power generation regions, and the first electrode film and its extension are arranged separately on the insulating surface of the substrate. After providing a semiconductor photoactive layer on almost the entire insulating surface of the substrate including the first electrode film, energy is applied to the semiconductor photoactive layer portion covering the extended portion of the first electrode film along the alignment direction of the extended portion. A beam is irradiated to remove the irradiated portion of the semiconductor photoactive layer to expose at least a portion of the extended portion of the first electrode film, and then the exposed extended portion of the first electrode film is exposed to the adjacent power generation region. 1. A method of manufacturing a photovoltaic device, comprising: connecting extended portions of a second electrode film deposited on a semiconductor photoactive layer to electrically connect adjacent power generation regions in series.
JP60217656A 1985-09-30 1985-09-30 Manufacture of photovoltaic device Granted JPS6276786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60217656A JPS6276786A (en) 1985-09-30 1985-09-30 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60217656A JPS6276786A (en) 1985-09-30 1985-09-30 Manufacture of photovoltaic device

Publications (2)

Publication Number Publication Date
JPS6276786A true JPS6276786A (en) 1987-04-08
JPH0551190B2 JPH0551190B2 (en) 1993-07-30

Family

ID=16707664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60217656A Granted JPS6276786A (en) 1985-09-30 1985-09-30 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6276786A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232175A (en) * 1986-03-31 1987-10-12 Kyocera Corp Manufacture of photovoltaic device
JPS62232176A (en) * 1986-03-31 1987-10-12 Kyocera Corp Photovoltaic device
JPS62259479A (en) * 1986-03-31 1987-11-11 Kyocera Corp Photovoltaic device
JPH0193174A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor device
US5041391A (en) * 1988-11-18 1991-08-20 Sanyo Electric Co., Ltd. Method of manufacturing a photovoltaic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107276A (en) * 1979-02-09 1980-08-16 Sanyo Electric Co Ltd Photoelectromotive force device
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5976480A (en) * 1982-10-26 1984-05-01 Fuji Electric Co Ltd Amorphous silicon solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107276A (en) * 1979-02-09 1980-08-16 Sanyo Electric Co Ltd Photoelectromotive force device
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5976480A (en) * 1982-10-26 1984-05-01 Fuji Electric Co Ltd Amorphous silicon solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62232175A (en) * 1986-03-31 1987-10-12 Kyocera Corp Manufacture of photovoltaic device
JPS62232176A (en) * 1986-03-31 1987-10-12 Kyocera Corp Photovoltaic device
JPS62259479A (en) * 1986-03-31 1987-11-11 Kyocera Corp Photovoltaic device
JPH0193174A (en) * 1987-10-05 1989-04-12 Kanegafuchi Chem Ind Co Ltd Manufacture of semiconductor device
US5041391A (en) * 1988-11-18 1991-08-20 Sanyo Electric Co., Ltd. Method of manufacturing a photovoltaic device

Also Published As

Publication number Publication date
JPH0551190B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JPH0449272B2 (en)
JPH053151B2 (en)
JPS6276786A (en) Manufacture of photovoltaic device
JPH0447466B2 (en)
JPS62242371A (en) Manufacture of photovoltaic device
JPS6213829B2 (en)
JPH09260697A (en) Manufacture of integrated solar cell apparatus
JP2798772B2 (en) Method for manufacturing photovoltaic device
JP3521268B2 (en) Method for manufacturing photovoltaic device
JPS62232176A (en) Photovoltaic device
JP3573865B2 (en) Method for manufacturing photovoltaic device
JP2000208794A (en) Method of laser patterning pattern-shaped thin film of thin-film solar cell or the like
JPS63261883A (en) Manufacture of photovoltaic device
JPS63258077A (en) Manufacture of photovoltaic device
JPS61164274A (en) Manufacture of photovoltaic device
JPH065779B2 (en) Method for manufacturing solar cell device
JPS6225466A (en) Manufacture of solar cell
JPH053150B2 (en)
JPH0513545B2 (en)
JP2000261020A (en) Integrated thin-film solar battery
JPH0542142B2 (en)
JPH03151673A (en) Manufacture of photovoltaic device
JPS61210681A (en) Manufacture of photovoltaic device
JPH04130672A (en) Production of photovoltaic device
JPS61210683A (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term