JPH0193174A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0193174A
JPH0193174A JP62251317A JP25131787A JPH0193174A JP H0193174 A JPH0193174 A JP H0193174A JP 62251317 A JP62251317 A JP 62251317A JP 25131787 A JP25131787 A JP 25131787A JP H0193174 A JPH0193174 A JP H0193174A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor layer
power generation
amorphous semiconductor
extension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251317A
Other languages
Japanese (ja)
Inventor
Tadashi Oohayashi
只志 大林
Genji Umehara
梅原 源治
Shinzo Tanaka
田中 新三
Seishiro Mizukami
水上 誠志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62251317A priority Critical patent/JPH0193174A/en
Publication of JPH0193174A publication Critical patent/JPH0193174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To reduce the width of a junction and attain an increase in the effective photovoltaic region by a method wherein a first electrode is connected to an adjoining second electrode by a scribe section provided by removing a linear section from an amorphous semiconductor layer by using a high energy beam. CONSTITUTION:On an insulating substrate 14, first electrodes 18 are formed, each composed of a main section 10 and an extension 17. Then an amorphous semiconductor layer 20 is attached to them. A high energy beam is thrown upon an extension 17 for a partial removal of the semiconductor layer 20 for the formation of a scribe section 22. Second electrodes 26 are then formed on them, to be electrically connected by the scribe section 22 in the extension 17 overlapping an extension 25. Finally, a protecting film 28 is provided for the completion of a semiconductor device 10 of this design. With a scribe section being formed through application of a narrow high-energy beam, the area that electrodes require for their connection is quite small and other regions may be used for power generation. This design greatly enlarges the area to serve as an effective photovoltaic region.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の製造方法に関し、特に集積技
術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to integration technology.

〔従来の技術〕[Conventional technology]

太陽電池などの半導体装置は必要な電圧を得るため、絶
縁基板上に第1の電極、アモルファス半導体層及び該第
1の電極に相対向する第2の電極が積層されてなる発電
領域が複数直列に集積されて構成されている。このよう
な半導体装置は半導体の性能が同じとき、出力効率すな
わち単位面積当たりの出力を大きくするためには、有効
発電領域の増加、換言すれば集積部面積を減少させる必
要がある。従来、集積部面積を減少させて半導体装置を
製造する方法として、次の2つの方法が実用化されてい
る。
In order to obtain the necessary voltage in a semiconductor device such as a solar cell, a plurality of power generation regions are connected in series on an insulating substrate, in which a first electrode, an amorphous semiconductor layer, and a second electrode facing the first electrode are laminated. It is organized by being integrated into. In such a semiconductor device, when the performance of the semiconductor is the same, in order to increase the output efficiency, that is, the output per unit area, it is necessary to increase the effective power generation area, in other words, to decrease the integrated area. Conventionally, the following two methods have been put into practical use as methods for manufacturing semiconductor devices by reducing the integrated area.

その1つの方法は、第20図(a) 、 (b)に示す
ように、絶縁基板lの上に複数の第1の電極2を形成し
た後、その第1の電極2を覆うようにアモルファス半導
体層3が形成される。次に、レーザビームにてアモルフ
ァス半導体層3が線条に除去されて、第1の電極2が露
出させられた後、第2の電極4がアモルファス半導体N
3を覆うように形成され、更にレーザビームにて第2の
電極4が切断されることによって、ある発電領域の第1
の電極2と隣接する発電領域の第2の電極4とが直列に
接続された半導体装置5が製造される。
One method is to form a plurality of first electrodes 2 on an insulating substrate l, and then to cover the first electrodes 2, as shown in FIGS. 20(a) and 20(b). A semiconductor layer 3 is formed. Next, the amorphous semiconductor layer 3 is removed in stripes using a laser beam to expose the first electrode 2, and then the second electrode 4 is removed from the amorphous semiconductor layer 3.
By cutting the second electrode 4 with a laser beam, the first electrode 4 in a certain power generation area
A semiconductor device 5 is manufactured in which the electrode 2 of the first electrode 2 and the second electrode 4 of the adjacent power generation region are connected in series.

他の方法は、第21図(a) 、 (b)に示すように
、絶縁基板1の上に延長部6を有する第1の電極2を複
数形成した後、その延長部6をマスクにて被覆して延長
部6を除く第1の電極2上にアモルファス半導体Jl!
! 3が形成される。次に、アモルファス半導体層3の
上に、延長部7を有する第2の電極4が第1の電極2と
相対向するように形成されて、ある発電fiJl域の第
1の電極2と隣接する発電領域の第2の電極4とがそれ
ぞれの延長部6.7によって直列に接続された半導体装
置8が製造される。
Another method is to form a plurality of first electrodes 2 having extensions 6 on an insulating substrate 1, and then cover the extensions 6 with a mask, as shown in FIGS. 21(a) and 21(b). An amorphous semiconductor Jl! is coated on the first electrode 2 excluding the extension portion 6.
! 3 is formed. Next, a second electrode 4 having an extension part 7 is formed on the amorphous semiconductor layer 3 so as to face the first electrode 2, and is adjacent to the first electrode 2 in a certain power generation fiJl region. A semiconductor device 8 is manufactured in which the second electrode 4 of the power generation region is connected in series by the respective extensions 6.7.

なお、図中符号9は保護膜である。Note that the reference numeral 9 in the figure is a protective film.

(発明が解決しようとする問題点) 第20図に示す第1の方法は、レーザビームにてアモル
ファス半導体N3及び第2の電極4を短冊状に切断する
ものであるため、レーザ加工に時間を要するだけでなく
、レーザビームの熱によるアモルファス半導体の変質な
ど熱影響が大きいという問題があった。しかも、発電領
域の集積は第1の電極2.アモルファス半導体層3及び
第2の電極4の位置を少しずつずらせた形態でなされる
ため集積部の幅が広くなり、もって集積部面積が大きく
なるという問題点があった。
(Problems to be Solved by the Invention) The first method shown in FIG. 20 uses a laser beam to cut the amorphous semiconductor N3 and the second electrode 4 into strips, so the laser processing takes time. Not only is this necessary, but there is also the problem of significant thermal effects, such as deterioration of the amorphous semiconductor due to the heat of the laser beam. Moreover, the power generation area is concentrated at the first electrode 2. Since the positions of the amorphous semiconductor layer 3 and the second electrode 4 are slightly shifted from each other, the width of the integrated portion becomes wide, resulting in a problem that the area of the integrated portion becomes large.

また、第21図に示す第2の方法は、第1の電極2の上
にアモルファス半導体11113を被着させる際、集積
部となる第1の電極2の延長部6をマスクにて被覆して
露出させるものであるため、延長部6を含む基板lの端
部にマスクを取り付けるための一定の幅を必要とし、集
積部面積の減少に限界があった。しかも、マスクの存在
により、第1の電極2とマスクとの境界部近傍において
、アモルファス半導体の堆積不良や層中に細孔が発生す
る等の問題があった。
In addition, in the second method shown in FIG. 21, when depositing the amorphous semiconductor 11113 on the first electrode 2, the extension part 6 of the first electrode 2, which becomes the integrated part, is covered with a mask. Since the mask is to be exposed, a certain width is required to attach the mask to the end of the substrate 1 including the extension portion 6, and there is a limit to the reduction in the area of the integrated portion. Furthermore, due to the presence of the mask, there were problems such as poor deposition of the amorphous semiconductor and generation of pores in the layer near the boundary between the first electrode 2 and the mask.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点を解決するために為されたも
のであり、本発明に係る半導体装置の製造方法の要旨と
するところは、絶縁基板上に複数の第1の電極を形成す
るとともに該複数の第1の電極の上にアモルファス半導
体を被着した後、相隣合う第1の電極のうちいずれか一
方の第1の電極上に形成されたアモルファス半導体層の
一部を高エネルギービームにて除去し、次いでアモルフ
ァス半導体層が除去された部分から他方の第1の電極上
に被着されたアモルファス半導体層の上に跨がって第2
の電極を複数形成するようにしたことにある。
The present invention has been made to solve these problems, and the gist of the method for manufacturing a semiconductor device according to the present invention is to form a plurality of first electrodes on an insulating substrate and to After depositing the amorphous semiconductor on the plurality of first electrodes, a portion of the amorphous semiconductor layer formed on one of the adjacent first electrodes is exposed to a high-energy beam. , and then from the part where the amorphous semiconductor layer was removed, a second electrode is applied over the amorphous semiconductor layer deposited on the other first electrode.
The reason is that a plurality of electrodes are formed.

〔作 用〕[For production]

かかる本発明によれば、絶縁基板上に第1の電極、アモ
ルファス半導体層及び第2の電極によって構成された発
電領域が複数形成され、それら発電領域のうちある発電
領域の第1′の電極と相隣合う発電領域の第2の電極と
は、高エネルギービームによりアモルファス半導体層が
除去された一部分にて電気的に接続されて、複数の発電
領域は直列に集積されることとなる。
According to the present invention, a plurality of power generation regions constituted by the first electrode, the amorphous semiconductor layer, and the second electrode are formed on the insulating substrate, and the first electrode of a certain power generation region among the power generation regions is formed on the insulating substrate. The second electrodes of adjacent power generation regions are electrically connected at a portion where the amorphous semiconductor layer is removed by the high-energy beam, and the plurality of power generation regions are integrated in series.

〔実施例〕〔Example〕

次に、本発明の実施例を図面に基づいて詳しく説明する
。なお、説明のため図面の各部は適宜、拡大して示す。
Next, embodiments of the present invention will be described in detail based on the drawings. In addition, each part of the drawing is shown enlarged as appropriate for explanation.

第1図は本発明方法によって製造された半導体装置の一
実施例を示す正面図であり、本例における半導体装置1
0は4つの発電領域12が集積され大ものである。この
半導体装置10は次のようにして製造される。
FIG. 1 is a front view showing an embodiment of a semiconductor device manufactured by the method of the present invention.
0 is a large one in which four power generation areas 12 are integrated. This semiconductor device 10 is manufactured as follows.

第2図において、符号14は絶縁基板であり、その絶縁
基板14の上には電極本体部16とその両側に延び出す
延長部17とを備えた第1の電極18が写真蝕刻(フォ
トリソグラフィ)法又はスクリーン印刷法などにより、
所定のパターンに複数形成される。
In FIG. 2, reference numeral 14 denotes an insulating substrate, and on the insulating substrate 14, a first electrode 18 having an electrode main body portion 16 and extension portions 17 extending on both sides thereof is formed by photolithography. by the law or screen printing method, etc.
A plurality of them are formed in a predetermined pattern.

ここで、絶縁基板14はたとえば、ガラス、高分子フィ
ルム、セラミックス又は金属箔に電気絶縁性被膜を形成
したものなど、一般に太陽電池などの半導体装置に用い
られる基板であれば、すべて含むものである。
Here, the insulating substrate 14 includes any substrate that is generally used in semiconductor devices such as solar cells, such as glass, polymer film, ceramics, or metal foil with an electrically insulating coating formed thereon.

また、第1の電極18はたとえば、ITO,5nOz+
ITO/Snowなどの透明電極や、^!、ステンレス
、 Mo。
Further, the first electrode 18 is made of, for example, ITO, 5nOz+
Transparent electrodes such as ITO/Snow, etc. , stainless steel, Mo.

Pt+ Au、 Ag+ Nt+ Cu、  これらの
合金などの金属電極、その他一般に太陽電池などの半導
体装置に用いられる電極であればすべて含み、上記絶縁
基板14がガラスなどの透明基板である場合は、第1の
電極18として5nO1などの透明電極が用いられ−る
It includes metal electrodes such as Pt+Au, Ag+Nt+Cu, and alloys thereof, and any other electrodes that are generally used in semiconductor devices such as solar cells.If the insulating substrate 14 is a transparent substrate such as glass, the first A transparent electrode such as 5nO1 is used as the electrode 18.

第1の電極1日が形成された絶縁基板14の上には、第
3図(a) 、 (b)に示すように、アモルファス半
導体N20が第1の電極18の電流取り出し部19を除
いて被着される。アモルファス半導体層20はたとえば
、アモルファスシリコンa−5i+水素水素モアファス
シリコンa、Si:IL水水素化7ルルフアスシリコン
カーバイドa3iC:II、アモルファスシリコンナイ
トライドなどのアモルファス半導体を、pin型+ 9
n型、 Mis型、ヘテロ接合型、ホモ接合型、ショッ
トキーバリアー型あるいはこれらを組合せた型などに堆
積させたものであり、イオンブレーティング法、真空蒸
着法、プラズマCvUI法あるいはスパッタリング法な
どにて形成される。
As shown in FIGS. 3(a) and 3(b), an amorphous semiconductor N20 is formed on the insulating substrate 14 on which the first electrode 18 is formed, except for the current extraction portion 19 of the first electrode 18. be coated. The amorphous semiconductor layer 20 is made of, for example, an amorphous semiconductor such as amorphous silicon a-5i + hydrogen hydrogen more amorphous silicon a, Si:IL water hydrogenated 7 rulphous silicon carbide a3iC:II, amorphous silicon nitride, pin type + 9
It is deposited in n-type, Mis-type, heterojunction type, homojunction type, Schottky barrier type, or a combination of these types, and can be deposited using ion blating method, vacuum evaporation method, plasma CvUI method, sputtering method, etc. It is formed by

このようにしてアモルファス半導体M20が被着された
第1の電極18は、第3図(a)に示すように、その延
長部17の上に高エネルギービームを発電領域12の集
積方向とほぼ平行に照射して線条にアモルファス半導体
層20が除去される。
The first electrode 18, on which the amorphous semiconductor M20 is deposited in this way, emits a high-energy beam onto its extended portion 17 almost parallel to the direction in which the power generation regions 12 are integrated, as shown in FIG. 3(a). The amorphous semiconductor layer 20 is removed in a linear manner by irradiating the same.

高エネルギービームはたとえば、YAGレーザ、Cot
レーザなどのレーザビームや、電子ビーム、イオンビー
ムなど、高エネルギーを集中し得るものが用いられる。
High energy beams are e.g. YAG laser, Cot
A beam capable of concentrating high energy is used, such as a laser beam such as a laser, an electron beam, or an ion beam.

高エネルギービームにてアモルファス半m体層20が線
条に除去された延長部17のスクライプ部22は、第4
図(a)に示すように絶縁基板14に達するものであっ
ても良いが、第4図(b)に示すように、少なくとも第
1の電極18の延長部17が露出させられれば足りる。
The scribe portion 22 of the extension portion 17 where the amorphous semi-molar body layer 20 is removed in a linear manner with a high energy beam is the fourth
Although it may reach the insulating substrate 14 as shown in FIG. 4(a), it is sufficient that at least the extension portion 17 of the first electrode 18 is exposed as shown in FIG. 4(b).

次に第1図及び第5図(a) 、 (b) 、 (c)
に示すように、アモルファス半導体Ji20の上に、電
極本体部24とその両端に延び出す延長部25とを有す
る第2の電極26が蒸着法やフォトリソグラフィ法など
により所定のパターンに形成される。第2の電極26の
電極本体部24は第1の電極18の電極本体部16に相
対向するように配設されるとともに、第2の電極26の
延長部25は隣接する第■の電極18から延び出す延長
部I7に跨がるように配設されて、両延長部17.25
は第5図(a) 、 (b)に示すように高エネルギー
ビームにてアモルファス半導体N20が除去されたスク
ライプ部22にて電気的に接続される。従って、第1の
電極18の電極本体部16/アモルファス半導体層20
/第2の電極26の電極本体部24によって構成される
発電Mk/i12は延長部17.25により集積される
こととなる。ここで、第2の電極26は第1の電極18
と同様の材料が用いられるが、絶縁基板14がガラスな
どの透明基板でありかつ第1の電極18がSnugなど
の透明電極である場合には、第2の電極26はAIなど
の金属電極が用いられる。
Next, Figures 1 and 5 (a), (b), (c)
As shown in FIG. 2, a second electrode 26 having an electrode body portion 24 and extension portions 25 extending to both ends thereof is formed in a predetermined pattern on the amorphous semiconductor Ji 20 by a vapor deposition method, a photolithography method, or the like. The electrode body part 24 of the second electrode 26 is disposed to face the electrode body part 16 of the first electrode 18, and the extension part 25 of the second electrode 26 is connected to the adjacent electrode 18. It is arranged so as to straddle the extension part I7 extending from the both extension parts 17.25.
As shown in FIGS. 5(a) and 5(b), they are electrically connected at the scribe portion 22 where the amorphous semiconductor N20 is removed by a high-energy beam. Therefore, the electrode body portion 16/amorphous semiconductor layer 20 of the first electrode 18
/The power generation Mk/i 12 constituted by the electrode body 24 of the second electrode 26 is integrated by the extension 17.25. Here, the second electrode 26 is the first electrode 18
However, if the insulating substrate 14 is a transparent substrate such as glass and the first electrode 18 is a transparent electrode such as Snug, the second electrode 26 is a metal electrode such as AI. used.

第2の電極26の上には、第5図(a)に示すように更
に、保護膜2日が被覆されて半導体装置lOが製造され
る。
As shown in FIG. 5(a), the second electrode 26 is further coated with a protective film 2 to manufacture the semiconductor device 1O.

本実施方法によれば、マスクなどを用いずに集111部
となる延長部を形成し得るため、アモルファス半導体層
の端部に堆積不良や細孔などの不具合が発生することは
なく、しかも延長部の幅は高エネルギービームにてアモ
ルファス半導体層を除去し得るものであれば足りるため
、集積部面積を大幅に減少させることが可能となる。よ
り具体的には、スクライブ部の幅は約0.02〜0.3
 am程度であるため、集積部の幅は0.5m+s以下
にすることが可能となる。従来の製造方法では、半導体
装置の面積に対する有効発電領域の面積の率、即ち有効
発電領域の面積率は60〜80%にすぎなかったが、本
発明方法によると、その面積率は80%以上になる。
According to this implementation method, the extension part that becomes the aggregate 111 part can be formed without using a mask or the like, so problems such as poor deposition or pores do not occur at the end of the amorphous semiconductor layer, and the extension part Since the width of the part is sufficient as long as the amorphous semiconductor layer can be removed by a high-energy beam, it is possible to significantly reduce the area of the integrated part. More specifically, the width of the scribe portion is approximately 0.02 to 0.3
Since it is about am, the width of the accumulation part can be made 0.5 m+s or less. In conventional manufacturing methods, the area ratio of the effective power generation area to the area of the semiconductor device, that is, the area ratio of the effective power generation area, was only 60 to 80%, but according to the method of the present invention, the area ratio is 80% or more. become.

以上、本発明の一実施例を詳述したが、本発明方法は上
述の実施例に限定されるものではない。
Although one embodiment of the present invention has been described above in detail, the method of the present invention is not limited to the above-mentioned embodiment.

たとえば、第6図に示すように、第1の電極18の延長
部17上のアモルファス半導体層20が高エネルギービ
ームにて線条に除去されたスクライブ部22において、
第2の電極26の延長部25が配設されないスクライブ
部22に電気的良導体からなるメタル30を蒸着させて
も良い、メタル30は第2の電極26と異なる材質を用
いても良く、あるいは第2の電極26と一体的に形成す
ることも可能である。本例によれば、スクライブ部22
における、第1の電極18と第2の電極26との接続抵
抗を小さくすることができる。
For example, as shown in FIG. 6, in the scribe portion 22 where the amorphous semiconductor layer 20 on the extension portion 17 of the first electrode 18 is removed in lines with a high-energy beam,
A metal 30 made of a good electrical conductor may be deposited on the scribe portion 22 where the extension portion 25 of the second electrode 26 is not provided, or a material different from that of the second electrode 26 may be used for the metal 30. It is also possible to form it integrally with the second electrode 26. According to this example, the scribing section 22
The connection resistance between the first electrode 18 and the second electrode 26 can be reduced.

また、第7図乃至第8図に示すように、絶縁基板14上
に形成された第1の電極18の延長部17を含む他の第
1の電極18に隣接する周縁部上に、Cr、Ni、Ti
などの電気的良導体からなる薄膜32を蒸着法などによ
り被着させた後、前述と同様にアモルファス半導体11
ff120の被着工程、高エネルギービームによるアモ
ルファス半導体層20の除去工程及び第2の電極26の
形成工程を行っても良い。このようにすれば、発電領域
12において発電された電流は、第1の電極18を流れ
て直接に集積部である延長部17に導出させられるだけ
でなく、第1の電極18から電気的良導体からなる薄膜
32に流れて迅速に延長部17に導出させられる0本例
によれば、発電された電流が抵抗の大きいSnO,など
から成る第1の電極18を流れる際に生ずる出力ロスを
、薄膜32に電流を導出することによって減少させるこ
とができ、太陽光発電装置やその他の大電流を発生させ
る半導体装置に適用すれば効果がある。
Further, as shown in FIGS. 7 to 8, Cr, Ni, Ti
After depositing a thin film 32 made of a good electrical conductor such as by vapor deposition method, etc., the amorphous semiconductor 11 is deposited in the same manner as described above.
The step of depositing the ff120, the step of removing the amorphous semiconductor layer 20 using a high-energy beam, and the step of forming the second electrode 26 may be performed. In this way, the current generated in the power generation region 12 not only flows through the first electrode 18 and is directly led out to the extension part 17 which is the accumulation part, but also flows from the first electrode 18 to the electrically good conductor. According to this example, the output loss that occurs when the generated current flows through the first electrode 18 made of SnO, etc., which has a high resistance, is It can be reduced by directing the current to the thin film 32, and is effective when applied to solar power generation devices and other semiconductor devices that generate large currents.

以上、本発明方法の実施例において、集積部を形成する
延長部17.25を発電領域12の両端部に設けたが、
一端部にのみ設けても良く、半導体装置の発電量によっ
て選択し得る。
As described above, in the embodiment of the method of the present invention, the extension parts 17.25 forming the accumulation part were provided at both ends of the power generation area 12.
It may be provided only at one end, and can be selected depending on the amount of power generated by the semiconductor device.

その他、本発明方法は第9図乃至第10図に示すように
、第1の電極18の延長部34を隣接する第1の電極1
8側に延び出さないように形成して、その延長部34上
に施された高エネルギービームによるスクライブ部22
にて第1の電極18と第2の電極26とが電気的に接続
されるように、第2の電極26の延長部36を形成する
ことも可能である。
In addition, as shown in FIGS. 9 and 10, the method of the present invention includes connecting the extension portion 34 of the first electrode 18 to the adjacent first electrode 1.
The scribe portion 22 is formed so that it does not extend toward the 8th side, and is formed by a high-energy beam on the extended portion 34 of the scribe portion 22.
It is also possible to form the extension 36 of the second electrode 26 such that the first electrode 18 and the second electrode 26 are electrically connected at.

また、第11図に示すように、第1の電極38には延長
部を設けず、適宜、高エネルギービームにてアモルファ
ス半導体N20が除去されたスクライブ部22に、第2
の電極26の延長部25が第1の電極38に跨がるよう
にして接続されても良い。
Further, as shown in FIG. 11, the first electrode 38 is not provided with an extension part, and a second
The extension portion 25 of the electrode 26 may be connected to span the first electrode 38.

更に、第12図乃至第13図に示すように、第1の電極
40の延長部42を隣接する他の第1の電極40の切欠
き部44に配設して、高エネルギービームによるアモル
ファス半導体層20のスクライブ部22を延長部42上
に集積方向と直角方向に形成した後、延長部を有しない
第2の電極46を第1の11極40に相対向させて配設
し、スクライブ部22にて第1の電極40と第2の電極
46とを接続させても良い。
Furthermore, as shown in FIGS. 12 to 13, the extension part 42 of the first electrode 40 is arranged in the notch part 44 of the other adjacent first electrode 40, so that the amorphous semiconductor can be removed by the high-energy beam. After forming the scribe portion 22 of the layer 20 on the extension portion 42 in a direction perpendicular to the stacking direction, a second electrode 46 having no extension portion is disposed opposite to the first 11 poles 40, and the scribe portion 22 is formed on the extension portion 42 in a direction perpendicular to the stacking direction. The first electrode 40 and the second electrode 46 may be connected at 22.

また逆に、第14図乃至第15図に示すように、延長部
を有しない第1の電極48の適宜箇所に、その電極48
の上に被着したアモルファス半導体層20の上部から高
エネルギービームにて集積方向と直角方向に一部、スク
ライブ部22を設け、次いで第2の電極50の延長部5
2を隣接する第1の電極48側に跨がるようにしてスク
ライプ部22上に配設し、そのスクライブ部22にて第
1の電極48と第2の電極50とを電気的に接続させる
ことも可能である。
Conversely, as shown in FIGS. 14 and 15, the electrode 48 is placed at an appropriate location on the first electrode 48 without an extension.
A high-energy beam is applied from the top of the amorphous semiconductor layer 20 deposited thereon to form a scribe portion 22 in a direction perpendicular to the integration direction, and then the extension portion 5 of the second electrode 50 is formed.
2 is disposed on the scribe portion 22 so as to straddle the side of the adjacent first electrode 48, and the first electrode 48 and the second electrode 50 are electrically connected at the scribe portion 22. It is also possible.

以上いずれの例においても、さらに発電領域の集積部面
積を減少させることができる。
In any of the above examples, the area of the integrated portion of the power generation region can be further reduced.

以上、本発明方法の実施例を図面に基づいて詳しく説明
したが、その他、第1の電極又は第2の電極の適宜箇所
に電気的良導体からなる薄膜を設けることも可能である
等、本発明方法はその趣旨を逸脱しない範囲内で、当業
者の知識に基づき種々なる変形、改良、修正を加えた態
様で実施し得るものである。
The embodiments of the method of the present invention have been described above in detail based on the drawings, but it is also possible to provide a thin film made of a good electrical conductor at an appropriate location on the first electrode or the second electrode, etc. The method can be implemented with various modifications, improvements, and modifications based on the knowledge of those skilled in the art without departing from the spirit thereof.

実施例1 第16図に示す太陽電池を第1図乃至第5図に示す方法
で製造した。
Example 1 The solar cell shown in FIG. 16 was manufactured by the method shown in FIGS. 1 to 5.

絶縁基板として外形寸法35+++mX 15m+w、
厚さ1.1mmのガラス製の透明基板54を用い、その
透明基板54上に第1の電極として厚さ200〜500
0人のSnO,から成る透明電極56を4箇所に分離し
て形成した。透明電極56は、感光領域となる電極本体
部と発電に寄与しない延長部とからなるパターンをフォ
トリングラフィにて形成した。
External dimensions 35+++mX 15m+w as an insulating board,
A transparent substrate 54 made of glass with a thickness of 1.1 mm is used, and a layer with a thickness of 200 to 500 mm is used as a first electrode on the transparent substrate 54.
Transparent electrodes 56 made of SnO were formed at four separate locations. The transparent electrode 56 was formed by photolithography into a pattern consisting of an electrode main body portion serving as a photosensitive area and an extension portion that does not contribute to power generation.

次に、透明電極56上に厚さ5000〜7000人のア
モルファスシリコン半導体Jll!5Bを被着した。ア
モルファスシリコン半導体層58はその内部に層面と平
行に形成されたpin接合にて構成されていて、具体的
には透明電極上に先ずP型アモルファスシリコン半導体
層/i型アモルファスシリコン半8体層/n型アモルフ
ァスシリコン半導体層の順に公知の方法で積層した。
Next, an amorphous silicon semiconductor with a thickness of 5,000 to 7,000 people is placed on the transparent electrode 56. 5B was applied. The amorphous silicon semiconductor layer 58 is composed of a pin junction formed inside thereof in parallel with the layer surface, and specifically, first a P-type amorphous silicon semiconductor layer/i-type amorphous silicon half-octane layer/ N-type amorphous silicon semiconductor layers were laminated in order by a known method.

その後、透明電極56の延長部上のアモルファスシリコ
ン半導体N58をYAGレーザにて集積方向と平行に線
条に除去した。使用したYAGレーザは、波長1.06
μm、出力6W、パルス周波数25kllzの条件であ
った。また、YAGレーザにてアモルファスシリコン半
導体1’55Bが除去されたスクライブ部60の幅は約
50μmであった。
Thereafter, the amorphous silicon semiconductor N58 on the extension of the transparent electrode 56 was removed in stripes parallel to the direction of integration using a YAG laser. The YAG laser used has a wavelength of 1.06
The conditions were μm, output 6W, and pulse frequency 25kllz. Further, the width of the scribe portion 60 from which the amorphous silicon semiconductor 1'55B was removed using the YAG laser was approximately 50 μm.

次に、第2の電極(62)としてアルミニウムAIを圧
力5 X 10−”Torrの下で、アモルファスシリ
コン半導体層58の上に所定のパターンに蒸着した。厚
さは約2000人であった。スクライブ部60をB察す
ると第5図(a)又は(b)に示す断面を呈していて、
ある発電領域の透明電極56と隣接する発電領域のA!
電極62とはスクライブ部60で接続されていた。また
、接続箇所の抵抗値を測定すると、lΩ/C11以下で
あり、実用上問題のない値であった。
Next, aluminum AI was deposited as a second electrode (62) in a predetermined pattern on the amorphous silicon semiconductor layer 58 under a pressure of 5 x 10-'' Torr.The thickness was about 2,000. When inspecting the scribe portion 60, it has a cross section shown in FIG. 5(a) or (b),
A of the transparent electrode 56 of a certain power generation area and the adjacent power generation area!
It was connected to the electrode 62 through a scribe portion 60 . Furthermore, when the resistance value of the connection point was measured, it was less than 1Ω/C11, which was a value that caused no problem in practical use.

なお、本実施例においては比較のため、有効発電領域外
周部と基板との間隔を1ma+に設定し、隣合う発電領
域の間隔を0.5mmに設定した。また、集積部の幅は
本発明方法によれば0.5mm以下に形成し得るが、本
実施例ではla+nで形成した。
In this example, for comparison, the distance between the outer periphery of the effective power generation area and the substrate was set to 1 ma+, and the distance between adjacent power generation areas was set to 0.5 mm. Further, the width of the stacking portion can be formed to be 0.5 mm or less according to the method of the present invention, but in this example, it was formed to be la+n.

このようにして得られたアモルファスシリコン太陽電池
の有効発電領域の面積率は78%であった。また、この
太陽電池の出力をFL1001uxO下で調べた。その
結果を第17図に横軸に出力電圧を、縦軸に出力電流を
とって示す。
The area ratio of the effective power generation area of the amorphous silicon solar cell thus obtained was 78%. Further, the output of this solar cell was investigated under FL1001uxO. The results are shown in FIG. 17, with the horizontal axis representing the output voltage and the vertical axis representing the output current.

比較例1 第20図に示す構造の太陽電池を実施例1と同様の条件
で製造し、同一の条件で、得られた太陽電池の有効発電
領域の面積率と出力とを調べた。
Comparative Example 1 A solar cell having the structure shown in FIG. 20 was manufactured under the same conditions as in Example 1, and the area ratio of the effective power generation area and output of the obtained solar cell were examined under the same conditions.

但し、有効発電領域外周部と基板との間隔はll+1f
fiに設定したが、集積部の幅は従来方法にて実施した
結果、l+uwであった。
However, the distance between the outer periphery of the effective power generation area and the substrate is ll+1f.
fi, but the width of the accumulation part was l+uw as a result of implementing the conventional method.

その結果、有効発電領域の面積率は74.3%であった
。また、その出力は第17図に一点禎腺で示す通りであ
った。      ゛ 比較例2 第21図に示す構造の太陽電池を実施例1と同様の条件
で製造し、同一の条件で、得られた太陽電池の有効発電
領域の面積率と出力とを調べた。
As a result, the area ratio of the effective power generation area was 74.3%. Moreover, the output was as shown by a single dot in FIG. 17. Comparative Example 2 A solar cell having the structure shown in FIG. 21 was manufactured under the same conditions as in Example 1, and the area ratio of the effective power generation area and output of the obtained solar cell were examined under the same conditions.

但し、有効発電領域外周部と基板との間隔は1mmに設
定し、隣合う発電領域の間隔0 、5mmに設定した。
However, the distance between the outer periphery of the effective power generation area and the substrate was set to 1 mm, and the distance between adjacent power generation areas was set to 0.5 mm.

また、集積部の幅は従来方法にて実施した結果、211
I11であった。
In addition, the width of the accumulation part was 211 mm as a result of implementing the conventional method.
It was I11.

その結果、有効発電領域の面積率は72%であった。ま
た、その出力は第17図に二点鎖線で示す通りであった
As a result, the area ratio of the effective power generation area was 72%. Moreover, the output was as shown by the two-dot chain line in FIG.

実施例2 第18図に示すように、透明電極56の延長部を含む他
の透明電極56と隣接する周縁部に、幅0.2 mmの
クロムCrから成る薄膜64を蒸着させた構造の太陽電
池を、前記実施例1と同様の条件で製造した。
Embodiment 2 As shown in FIG. 18, a solar cell has a structure in which a thin film 64 made of chromium Cr having a width of 0.2 mm is deposited on the peripheral edge adjacent to other transparent electrodes 56, including the extended portion of the transparent electrode 56. A battery was manufactured under the same conditions as in Example 1 above.

得られた太陽電池の出力をソーラーシュミレータAM(
Air Mass)  1 (100mW/cm”)で
調べた。その結果を第19図に、横軸に出力電圧を、縦
軸に出力電流をとって示す。
The output of the solar cells obtained is measured using a solar simulator AM (
Air Mass) 1 (100 mW/cm"). The results are shown in FIG. 19, with the horizontal axis representing the output voltage and the vertical axis representing the output current.

比較例3 前述の比較例1と同じ太陽電池を用いて、その出力を実
施例2と同じ条件で調べた。
Comparative Example 3 Using the same solar cell as in Comparative Example 1 described above, its output was examined under the same conditions as in Example 2.

その結果を第19図に一点鎖線で示す。The results are shown in FIG. 19 by a dashed line.

〔発明の効果] 本発明方法は、高エネルギービームにてアモルファス半
導体層の一部を線条に除去したスクライブ部で、ある発
電領域の第1の電極と隣接する発電領域の第2の電極と
を接続したため、接続部すなわち集積部の幅を小さくで
き、もって集積部面積の減少換言すれば有効発電領域の
増加が可能となった。しかも、アモルファス半導体層の
形成に際し、マスクなどを用いないため、さらに集積部
面積の減少が可能となるだけでなく、マスクなどの影響
によるアモルファス半導体の堆積不良や細孔の発生など
、不具合が生ずることはない。更に、スクライブ部はあ
る発電領域の第1の電極又は隣接する発電領域の第2の
電極のいずれか一方又は双方から延び出す延長部で形成
され、その延長部は発電には寄与しないため、高エネル
ギービームの照射に伴うアモルファス半導体層の変質な
どによる影響を考慮する必要がないなど、本発明は価れ
た効果を奏する。
[Effects of the Invention] The method of the present invention has a scribe portion in which a part of the amorphous semiconductor layer is removed in lines using a high-energy beam, and a first electrode in a certain power generation region and a second electrode in an adjacent power generation region are connected to each other. Because of the connection, the width of the connection part, that is, the accumulation part, can be reduced, thereby making it possible to reduce the area of the accumulation part, or in other words, to increase the effective power generation area. Moreover, since a mask is not used when forming the amorphous semiconductor layer, not only is it possible to further reduce the area of the integrated area, but also problems such as poor deposition of the amorphous semiconductor and the formation of pores due to the influence of the mask etc. can occur. Never. Furthermore, the scribe portion is formed by an extension extending from either or both of the first electrode of a certain power generation region or the second electrode of an adjacent power generation region, and the extension does not contribute to power generation. The present invention has excellent effects, such as the fact that there is no need to consider the effects of deterioration of the amorphous semiconductor layer due to energy beam irradiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で製造された半導体装置の一例を示
す正面図である。第2図乃至第5図は第1図に示す半導
体装置の製造工程の要点を説明するための図であり、第
2図は絶縁基板上に第1の電極を形成した状態を示す正
面図、第3図(a)はアモルファス半導体層にスクライ
ブ部を形成した状態を示す正面図、同図(b)はアモル
ファス半導体層を形成した状態を示す断面図、第4図(
a)及び同図(b)はそれぞれスクライブ部を示す断面
図、第5図(a)は第1図に示す半導体装置の断面図、
同図(b)及び同図(C)はそれぞれ集積部の断面図で
ある。 第6図乃至第15図は本発明方法の他の実施例を説明す
るだめの図であり、第6図は他の実施形態を示す正面図
、第7図乃至第8図は更に他の実施形態を示す図であり
、第7図は絶縁基板に第1の電極を形成した状態を示す
正面図、第8図は得られた半導体装置の正面図である。 第9図乃至第10図は更に他の実施形態を示す図であり
、第9図は一工程を示す部分正面図、第10図は得られ
た半導体装置の部分正面図である。第11図は更に他の
実施形態を示す正面図であり、第12図乃至第13図及
び第14図乃至第15図はそれぞれ更に他の実施形態を
示す図であり、第12図は一工程を示す部分正面図、第
13図は得られた半導体装置の部分正面図、第14図は
一工程を示す部分正面図、第15図は得られた半導体装
置の部分正面図である。 第16図は実施例1−で用いた半導体装置の正面図であ
り、第17図はFLlooluxにおける半導体装置の
出力を示す図である。第18図は実施例2で用いた半導
体装置の正面図であり、第19図はソーラーシュミレー
タA M  1 、100mW/am”における半導体
装置の出力を示す図である。 第20図は従来の半導体装置の一例を示す図であり、同
図(a)は正面図、同図(b)は側面図である。第21
図は従来の半導体装置の他の一例を示す図であり、同図
(a)は正面図、同図(b)は断面図である。 10i半導体装置    12;発電領域14.54;
絶縁基板 ′ 17.34,42i延長部(第1の電極)IEI、3B
、40.48.5G、第1の電極20.58;アモルフ
ァス半導体層 22、.60.スクライブ部 25.36,52;延長部(第2の電極)26.46,
50,62i第2の電極 30;メタル      32;薄膜 第2図 第3図 (b) ]4 第43 (a)           (b) 第5図 (b)      (c) 第6図 第7図 第9図 第12図 第15 図 第16図 第18図 第!7図 (V) 第19図 (V)
FIG. 1 is a front view showing an example of a semiconductor device manufactured by the method of the present invention. 2 to 5 are diagrams for explaining the main points of the manufacturing process of the semiconductor device shown in FIG. 1, and FIG. 2 is a front view showing a state in which a first electrode is formed on an insulating substrate; FIG. 3(a) is a front view showing the state in which the scribe portion is formed in the amorphous semiconductor layer, FIG. 3(b) is a cross-sectional view showing the state in which the amorphous semiconductor layer is formed, and FIG.
5(a) and 5(b) are cross-sectional views showing the scribe portion, respectively, FIG. 5(a) is a cross-sectional view of the semiconductor device shown in FIG. 1,
Figures (b) and (c) are sectional views of the stacking section, respectively. 6 to 15 are diagrams for explaining other embodiments of the method of the present invention, FIG. 6 is a front view showing another embodiment, and FIGS. 7 to 8 are diagrams showing still another embodiment. FIG. 7 is a front view showing a state in which a first electrode is formed on an insulating substrate, and FIG. 8 is a front view of the obtained semiconductor device. FIGS. 9 and 10 are diagrams showing still another embodiment, with FIG. 9 being a partial front view showing one step, and FIG. 10 being a partial front view of the obtained semiconductor device. FIG. 11 is a front view showing still another embodiment, FIGS. 12 to 13 and FIGS. 14 to 15 are views showing still other embodiments, and FIG. 12 shows one step. 13 is a partial front view of the obtained semiconductor device, FIG. 14 is a partial front view showing one step, and FIG. 15 is a partial front view of the obtained semiconductor device. FIG. 16 is a front view of the semiconductor device used in Example 1-, and FIG. 17 is a diagram showing the output of the semiconductor device in FLloolux. FIG. 18 is a front view of the semiconductor device used in Example 2, and FIG. 19 is a diagram showing the output of the semiconductor device in a solar simulator A M 1 of 100 mW/am. It is a figure which shows an example of an apparatus, the same figure (a) is a front view, and the same figure (b) is a side view.
The figures are diagrams showing another example of a conventional semiconductor device, in which figure (a) is a front view and figure (b) is a cross-sectional view. 10i semiconductor device 12; power generation area 14.54;
Insulating substrate ' 17.34, 42i extension (first electrode) IEI, 3B
, 40.48.5G, first electrode 20.58; amorphous semiconductor layer 22, . 60. Scribe portion 25.36, 52; extension portion (second electrode) 26.46,
50,62i Second electrode 30; Metal 32; Thin film Fig. 2 Fig. 3 (b)] 4 43 (a) (b) Fig. 5 (b) (c) Fig. 6 Fig. 7 Fig. 9 Figure 12 Figure 15 Figure 16 Figure 18! Figure 7 (V) Figure 19 (V)

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁基板上に第1の電極、アモルファス半導体層
及び該第1の電極に相対向する第2の電極が積層されて
なる複数の発電領域が集積された半導体装置の製造方法
において、 前記絶縁基板上に複数の第1の電極を形成するとともに
該複数の第1の電極の上にアモルファス半導体を被着し
た後、相隣合う第1の電極のうちいずれか一方の第1の
電極上に形成されたアモルファス半導体層の一部を高エ
ネルギービームにて除去し、次いでアモルファス半導体
層が除去された部分から他方の第1の電極上に被着され
たアモルファス半導体層の上に跨がって第2の電極を複
数形成するようにしたことを特徴とする半導体装置の製
造方法。
(1) A method for manufacturing a semiconductor device in which a plurality of power generation regions each including a first electrode, an amorphous semiconductor layer, and a second electrode facing the first electrode are stacked on an insulating substrate, comprising: After forming a plurality of first electrodes on an insulating substrate and depositing an amorphous semiconductor on the plurality of first electrodes, on one of the adjacent first electrodes. A part of the amorphous semiconductor layer formed on the first electrode is removed using a high-energy beam, and then the amorphous semiconductor layer deposited on the other first electrode is straddled from the part where the amorphous semiconductor layer was removed. 1. A method of manufacturing a semiconductor device, characterized in that a plurality of second electrodes are formed using a plurality of second electrodes.
(2)前記第1の電極又は第2の電極のいずれか一方又
は双方に隣接する他の第1の電極側又は第2の電極側に
延び出す延長部を有し、該延長部において高エネルギー
ビームによりアモルファス半導体層を除去して、任意の
発電領域の第1の電極と隣接する発電領域の第2の電極
とを接続するようにしたことを特徴とする特許請求の範
囲第1項に記載の半導体装置の製造方法。
(2) The first electrode or the second electrode has an extension portion extending to the other first electrode side or the second electrode side adjacent to either one or both, and the extension portion has a high energy Claim 1, characterized in that the amorphous semiconductor layer is removed by a beam to connect the first electrode of any power generation region to the second electrode of an adjacent power generation region. A method for manufacturing a semiconductor device.
(3)前記第1の電極を形成した後、該第1の電極の少
なくとも前記高エネルギービームにてアモルファス半導
体層の一部が除去される側であって他の第1の電極と隣
接する周縁部に、電気的良導体からなる薄膜を被着する
ことを特徴とする特許請求の範囲第1項又は第2項に記
載の半導体装置の製造方法。
(3) After forming the first electrode, at least the peripheral edge of the first electrode on the side where a portion of the amorphous semiconductor layer is removed by the high-energy beam and adjacent to another first electrode; 3. The method of manufacturing a semiconductor device according to claim 1, wherein a thin film made of a good electrical conductor is applied to the portion of the semiconductor device.
JP62251317A 1987-10-05 1987-10-05 Manufacture of semiconductor device Pending JPH0193174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251317A JPH0193174A (en) 1987-10-05 1987-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251317A JPH0193174A (en) 1987-10-05 1987-10-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0193174A true JPH0193174A (en) 1989-04-12

Family

ID=17221011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251317A Pending JPH0193174A (en) 1987-10-05 1987-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0193174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131954A (en) * 1990-10-15 1992-07-21 United Solar Systems Corporation Monolithic solar cell array and method for its manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124175A (en) * 1982-12-29 1984-07-18 Kanegafuchi Chem Ind Co Ltd Photovoltaic device
JPS59220978A (en) * 1983-05-31 1984-12-12 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS61199672A (en) * 1985-02-28 1986-09-04 Fuji Electric Co Ltd Photovoltaic device
JPS6276786A (en) * 1985-09-30 1987-04-08 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS62232175A (en) * 1986-03-31 1987-10-12 Kyocera Corp Manufacture of photovoltaic device
JPS62232176A (en) * 1986-03-31 1987-10-12 Kyocera Corp Photovoltaic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124175A (en) * 1982-12-29 1984-07-18 Kanegafuchi Chem Ind Co Ltd Photovoltaic device
JPS59220978A (en) * 1983-05-31 1984-12-12 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS61199672A (en) * 1985-02-28 1986-09-04 Fuji Electric Co Ltd Photovoltaic device
JPS6276786A (en) * 1985-09-30 1987-04-08 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPS62232175A (en) * 1986-03-31 1987-10-12 Kyocera Corp Manufacture of photovoltaic device
JPS62232176A (en) * 1986-03-31 1987-10-12 Kyocera Corp Photovoltaic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131954A (en) * 1990-10-15 1992-07-21 United Solar Systems Corporation Monolithic solar cell array and method for its manufacturing

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US5268037A (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
JPH04276665A (en) Integrated solar battery
GB2146173A (en) Photoelectric conversion device and manufacture thereof
JP2010251667A (en) Solar cell
WO2019148774A1 (en) Manufacturing method of thin film solar cell
US11646387B2 (en) Laser assisted metallization process for solar cell circuit formation
TWI529954B (en) Solar cell, module comprising the same and method of manufacturing the same
JPS616828A (en) Manufacture of semiconductor device
JP2000164901A (en) Solar battery
JP4171166B2 (en) Photovoltaic device and manufacturing method thereof
JPH0193174A (en) Manufacture of semiconductor device
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JPH09219530A (en) Chalcopyirite structure semiconductor thin film solar battery and manufacture thereof
JPS6213829B2 (en)
JPS62142368A (en) Manufacture of thin film semiconductor device
JP3155459B2 (en) Manufacturing method of integrated amorphous semiconductor solar cell and integrated amorphous semiconductor solar cell
JP2000252490A (en) Integrated thin-film solar cell and its manufacture
JP2003101048A (en) Method for manufacturing photovoltaic device
JPH0519991B2 (en)
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JPS63261883A (en) Manufacture of photovoltaic device
JPH065779B2 (en) Method for manufacturing solar cell device
JPS6261376A (en) Solar battery
JP2021057425A (en) Solar battery cell and solar battery module