JPH065779B2 - Method for manufacturing solar cell device - Google Patents

Method for manufacturing solar cell device

Info

Publication number
JPH065779B2
JPH065779B2 JP61036813A JP3681386A JPH065779B2 JP H065779 B2 JPH065779 B2 JP H065779B2 JP 61036813 A JP61036813 A JP 61036813A JP 3681386 A JP3681386 A JP 3681386A JP H065779 B2 JPH065779 B2 JP H065779B2
Authority
JP
Japan
Prior art keywords
solar cell
metal
metal electrode
layer
cell device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61036813A
Other languages
Japanese (ja)
Other versions
JPS62195184A (en
Inventor
和美 丸山
広喜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP61036813A priority Critical patent/JPH065779B2/en
Publication of JPS62195184A publication Critical patent/JPS62195184A/en
Publication of JPH065779B2 publication Critical patent/JPH065779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は、アモルファスシリコンなどを主成分とする薄
膜半導体を用いた太陽電池のユニットセルを直列接続し
てなる太陽電池装置の製造方法に関する。
The present invention relates to a method for manufacturing a solar cell device in which unit cells of a solar cell using a thin film semiconductor containing amorphous silicon as a main component are connected in series.

【従来技術とその問題点】[Prior art and its problems]

原料ガスのグロー放電分解や光CVDにより形成される
アモルファス半導体薄膜は気相成長法によって得られる
ために大面積化が容易であり、低コスト太陽電池用材料
として期待されている。こうしたアモルファス太陽電池
から発電した電力を効率良く取り出すために、太陽電池
の装置を、例えば第2図に示すような形状とし、ユニッ
トセルが直列接続されるような構造にすることが望まし
い。この構造は、ガラス基板等の透光性絶縁基板1上に
ITOやSnO2などからなる透明電極21,22,23…を短冊
状に形成し、その上に光起電力発生部であるアモルファ
ス半導体層31,32,33…,次いで金属電極41,42,43…
を順に積層する。そして、一つのユニットセルの透明電
極が隣接するユニットセルの金属電極と一部接触する構
造となるように両電極及びアモルファス層のパターンを
構成する。 この種の太陽電池では、透光性絶縁基板側から入射した
光のうち、アモルファス半導体層で吸収されずに金属電
極まで到達した光を効率よく反射させ再びアモルファス
半導体層で吸収させることによって、発電量を増大させ
るために、金属電極として、通常用いられているような
Al,Cr,Ni,Tiなどに加えて更に高反射率を有するAg,
Au,Cuなどの金属やこれらの合金を用いることが得策で
ある。金属膜の形成は通常蒸着法,スパッタ法及びイオ
ンプレーティング法などによって行われるが、上記高反
射率金属であるAg,Au,Cuなどはどの薄膜形成法によっ
てもアモルファス半導体層との十分な密着強度が得られ
にくい。従って、金属膜全面形成後にスクリーン印刷に
よるマスクやフォトマスクを用いる選択エッチング法に
よってパターニングを行う際に、エッチングに伴って露
出してくる金属とアモルファス半導体層の間の界面内へ
エッチング液が浸入し、金属膜の剥離が生ずる。従って
これまでパターニング工程を伴う太陽電池では高反射率
金属の適用による発電量の増大、すなわち高変換効率化
は難しいという欠点があった。
An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo CVD is easily obtained in a large area because it is obtained by a vapor phase growth method and is expected as a low cost solar cell material. In order to efficiently take out the electric power generated from such an amorphous solar cell, it is desirable that the device of the solar cell has, for example, a shape shown in FIG. 2 and a structure in which unit cells are connected in series. In this structure, transparent electrodes 21, 22, 23, etc. made of ITO, SnO 2, etc. are formed in a strip shape on a transparent insulating substrate 1 such as a glass substrate, and an amorphous semiconductor which is a photovoltaic generation portion is formed thereon. Layers 31, 32, 33 ... Then metal electrodes 41, 42, 43 ...
Are laminated in order. Then, the pattern of both electrodes and the amorphous layer is formed so that the transparent electrode of one unit cell partially contacts the metal electrode of the adjacent unit cell. In this type of solar cell, of the light incident from the translucent insulating substrate side, the light that reaches the metal electrode without being absorbed by the amorphous semiconductor layer is efficiently reflected and again absorbed by the amorphous semiconductor layer to generate electricity. As commonly used as a metal electrode to increase the amount
In addition to Al, Cr, Ni, Ti, etc., Ag which has higher reflectance,
It is a good idea to use metals such as Au and Cu or alloys of these. The metal film is usually formed by a vapor deposition method, a sputtering method, an ion plating method, or the like, but the above-mentioned high-reflectance metals Ag, Au, Cu, etc. have sufficient adhesion to the amorphous semiconductor layer by any thin film formation method. It is difficult to obtain strength. Therefore, when patterning is performed by the selective etching method using a mask by screen printing or a photomask after the entire surface of the metal film is formed, the etching solution penetrates into the interface between the metal and the amorphous semiconductor layer exposed by the etching. The peeling of the metal film occurs. Therefore, there has been a drawback that it is difficult to increase the amount of power generation, that is, to increase the conversion efficiency by applying a high-reflectance metal in a solar cell including a patterning process.

【発明の目的】[Object of the Invention]

本発明は、上述の欠点を除去してパターニング工程にお
いて金属電極膜とアモルファス半導体層の界面へのエッ
チング液の浸入によって生ずる金属電極の剥離等による
製造の歩留り低下を防ぐことにより、高反射率金属の適
用を可能にする高効率の太陽電池装置の製造方法を提供
することを目的とする。
The present invention eliminates the above-mentioned drawbacks and prevents a reduction in manufacturing yield due to peeling of a metal electrode caused by infiltration of an etching solution into an interface between a metal electrode film and an amorphous semiconductor layer in a patterning process, thereby providing a high reflectance metal. It is an object of the present invention to provide a method for manufacturing a highly efficient solar cell device that enables the application of

【発明の要点】[Points of the Invention]

上記の目的を達成するために、本発明によれば、それぞ
れ透光性絶縁基板上に積層された透明電極,アモルファ
ス半導体層,金属電極からなり、直列接続される複数の
ユニットセルの金属電極を、金属膜をエッチングにより
分割することによって形成する太陽電池装置の製造方法
において、分割される部分の近傍のみの金属膜とアモル
ファス半導体層の間に予め前記金属膜および前記アモル
ファス半導体層に対する接着強度の強い接着層を介在さ
せることとする。これによりエッチングにより露出する
金属膜とアモルファス半導体層は、接着層により強い強
度で接着されており、エッチング液の金属電極と半導体
層との界面への浸入による金属電極の剥離が防止されて
上記の目的が達成される。
In order to achieve the above object, according to the present invention, metal electrodes of a plurality of unit cells, each of which is composed of a transparent electrode, an amorphous semiconductor layer, and a metal electrode laminated on a translucent insulating substrate, are connected in series. In the method for manufacturing a solar cell device which is formed by dividing a metal film by etching, the adhesive strength to the metal film and the amorphous semiconductor layer is previously set between the metal film and the amorphous semiconductor layer only in the vicinity of the divided portion. A strong adhesive layer is interposed. As a result, the metal film exposed by etching and the amorphous semiconductor layer are bonded to each other with a higher strength by the adhesive layer, and the peeling of the metal electrode due to the penetration of the etching solution into the interface between the metal electrode and the semiconductor layer is prevented. The purpose is achieved.

【発明の実施例】Examples of the invention

第1図は、本発明の一実施例による太陽電池装置を断面
図で示し、第2図あるいは以下の各図と共通の部分には
同一の符号が付されている。ガラス板などの透光性絶縁
基板1の上に、ITOもしくはSnO2のような透明導電物
質により透明電極を成膜し、フォトエッチングあるいは
レーザースクライブ法により分割して短冊状のパターン
21,22,23…を形成する。そして、その上にグロー放電
分解法によりp型のアモルファスシリコン層(a−SiC:
H),真性のアモルファスシリコン層(a−Si:H)及び
n型のアモルファスシリコン層(a−Si:H)をそれぞれ
100〜150Å,5000〜7000Å及び150〜500Åの厚さに成膜
し、透明電極と同様に短冊状パターン31,32,33…を形
成する。さらにこの上に、アモルファス層及び透明電極
との接着強度の強い金属、例えばTi,W,Mo,Co,Ni,
Cr,TaなどかもしくはITOなどの導電性物質よりなる
短冊状部51,52,53…を形成する。この場合、短冊状に
パターン形成する方法としては、マスクを用いた選択蒸
着法でもよいが、スクリーン印刷によるマスクやフォト
マスクを用いたエッチング法でもよい。そしてさらに、
裏面の金属電極としてAg,Au,Cu,Alなどの高反射率金
属膜を形成し、同様にスクリーン印刷やフォトエッチン
グ法を用いて分割されたパターン41,42,43…を図示の
ように形成する。このパターニングは、接着物質層51,
52,53の形成されている領域で行うため、最初に先ず金
属膜をエッチングした後さらに下部の接着物質をエッチ
ングする。例えば接着物質としてTi、金属電極としてAg
を用いた場合には、先ずアンモニア,過酸化水素及び水
を1:1:5の比で混合した溶液中でAgをエッチング
(エッチング速度としては約1000Å/秒が得られる)
し、次いで弗酸,硝酸及び水を1:1:100〜300の比で
混合した溶液中へ移してTiをエッチング(エッチング速
度は約20Å/秒)する。なお、接着物質層51,52,53は
上記金属電極の被エッチング部分の下側に形成するが、
第1図に示すように透明電極21,22,23及びアモルファ
ス層31,32,33の分割部を覆う領域にわたって形成すれ
ば、接着物質のパターニング時,金属電極の形成時及び
金属電極のパターニング時に各パターンの縁部で起こる
問題、例えば透明電極のエッジ部を覆うアモルファス層
が接着物質のパターニング時に剥離して透明電極と金属
電極とが短絡するという問題を回避することができると
いう利点がある。さらに、ユニットセル間を直列に接続
する金属電極と透明電極、例えば金属電極41と透明電極
22との接続が接着物質層52と透明電極22とで実行される
ため、ここでの接着強度も改善されるという利点があ
る。図ではユニットセルの接続部を誇張して示している
が、実際には接着物質層により減少する金属電極の光反
射面積はそれほど大きくない。 尚、本明細書でいう「分割される部分の近傍のみの金属
膜とアモルファス半導体層の間に予め前記金属膜および
前記アモルファス半導体層に対する接着強度の強い接着
層を介在させる」という構成は、第1図の実施例の構成
を含むものである。 第3図は、本発明の異なる実施例による太陽電池装置の
断面図を示すもので、第1図と異なる点は金属電極の分
割部の下側のアモルファス層の領域にのみ短冊状接着物
質層51,52,53…を形成したことで、接着物質層の幅を
狭くしても第1図の構造と同様の効果を得ることができ
る特長がある。 第4図は本発明のさらに異なる実施例を示したもので、
第3図と異なる点は、接着物質層51,52,53…をSiO2
TiO2,SiNx,SiCなどの絶縁物としたことで、この場合
には金属電極のパターニングのみで接着物質のパターニ
ングが不要となるため工程が簡略化されるばかりか、金
属電極のパターニング法としてフォトエッチング法など
の湿式法ばかりでなく、エキシマレーザやYAGレーザ
などを用いたレーザスクライブ法が適用できる。これ
は、例えばArFのエキシマレーザでは紫外域に発振線を
もつため、レーザが照射されるとレーザビームは絶縁物
までで阻止されて、その下のアモルファス層には達しな
いので、アモルファス層上に直接金属電極膜を形成した
場合にはできなかった金属電極のレーザによる選択的な
パターニングが可能となる利点がある。
FIG. 1 is a sectional view showing a solar cell device according to an embodiment of the present invention, and the same reference numerals are given to the same parts as in FIG. 2 or each of the following drawings. A transparent electrode is formed on a transparent insulating substrate 1 such as a glass plate with a transparent conductive material such as ITO or SnO 2 , and is divided by photoetching or laser scribing to form a striped pattern.
Form 21, 22, 23 ... Then, a p-type amorphous silicon layer (a-SiC:
H), an intrinsic amorphous silicon layer (a-Si: H) and an n-type amorphous silicon layer (a-Si: H), respectively.
Films are formed to a thickness of 100 to 150Å, 5000 to 7000Å and 150 to 500Å, and strip-shaped patterns 31, 32, 33 ... Are formed in the same manner as the transparent electrodes. On top of this, a metal having a strong adhesive strength with the amorphous layer and the transparent electrode, such as Ti, W, Mo, Co, Ni,
Strip-shaped portions 51, 52, 53, ... Made of a conductive material such as Cr, Ta or ITO are formed. In this case, as a method for forming a pattern in a strip shape, a selective vapor deposition method using a mask may be used, or an etching method using a mask by screen printing or a photomask may be used. And further,
As a metal electrode on the back surface, a high-reflectance metal film such as Ag, Au, Cu, and Al is formed, and similarly, divided patterns 41, 42, 43 ... Are formed by screen printing or photoetching as shown in the figure. To do. This patterning is performed by the adhesive material layer 51,
Since this is performed in the region where 52 and 53 are formed, first, the metal film is first etched, and then the adhesive material below is further etched. For example, Ti as an adhesive substance and Ag as a metal electrode
In the case of using Ag, first, Ag is etched in a solution in which ammonia, hydrogen peroxide and water are mixed at a ratio of 1: 1: 5 (an etching rate of about 1000Å / sec is obtained).
Then, it is transferred into a mixed solution of hydrofluoric acid, nitric acid and water in a ratio of 1: 1: 100 to 300 to etch Ti (etching rate is about 20Å / sec). The adhesive material layers 51, 52, 53 are formed below the etched portion of the metal electrode.
As shown in FIG. 1, if the transparent electrodes 21, 22, 23 and the amorphous layers 31, 32, 33 are formed over a region covering the divided parts, patterning of an adhesive material, formation of a metal electrode and patterning of a metal electrode can be performed. There is an advantage that it is possible to avoid the problem that occurs at the edge of each pattern, for example, the problem that the amorphous layer covering the edge of the transparent electrode is peeled off when the adhesive material is patterned and the transparent electrode and the metal electrode are short-circuited. Furthermore, a metal electrode and a transparent electrode that connect the unit cells in series, for example, a metal electrode 41 and a transparent electrode.
Since the connection with 22 is performed by the adhesive material layer 52 and the transparent electrode 22, there is an advantage that the adhesive strength here is also improved. Although the connection portion of the unit cell is exaggerated in the drawing, the light reflection area of the metal electrode which is reduced by the adhesive material layer is not so large actually. In the present specification, the configuration of “interposing an adhesive layer having a high adhesive strength with respect to the metal film and the amorphous semiconductor layer in advance between the metal film and the amorphous semiconductor layer only in the vicinity of the divided portion” is The configuration of the embodiment shown in FIG. 1 is included. FIG. 3 is a cross-sectional view of a solar cell device according to another embodiment of the present invention. The difference from FIG. 1 is that the strip-shaped adhesive material layer is formed only in the region of the amorphous layer below the divided portion of the metal electrode. By forming 51, 52, 53, ... Even if the width of the adhesive material layer is narrowed, it is possible to obtain the same effect as the structure of FIG. FIG. 4 shows a further different embodiment of the present invention.
The Figure 3 differs, the adhesive material layer 51, 52, 53 ... of SiO 2,
By using an insulating material such as TiO 2 , SiNx, or SiC, in this case, only the patterning of the metal electrode does not require the patterning of the adhesive material, which simplifies the process, and the patterning method of the metal electrode is used. Not only a wet method such as an etching method but also a laser scribing method using an excimer laser or a YAG laser can be applied. This is because, for example, an ArF excimer laser has an oscillation line in the ultraviolet region, so that when the laser is irradiated, the laser beam is blocked by the insulator and does not reach the amorphous layer below it. There is an advantage that a metal electrode can be selectively patterned by a laser, which was not possible when a metal electrode film was directly formed.

【発明の効果】【The invention's effect】

本発明によれば、直列接続型のアモルファス太陽電池装
置の金属電極をパターニングする場合に、切断しようと
する金属膜部の下側に予め金属膜およびアモルファス層
との接着強度の強い接着物質層を形成することにより、
金属電極のパターニング時にアモルファス層と金属電極
界面へのエッチング液の浸入による剥離が回避され、従
来実用化できなかったAg,Cuなどの高反射率を有し、ア
モルファス層との接着強度が比較的弱い金属の裏面金属
電極への適用が可能となる。本発明を面積100cm2の直列
接続型の太陽電池の製造に適用したところ、変換効率7
%以上の良品率で定義する歩留りが従来方法の場合の68
%から81%まで向上し高い量産性が得られた。
According to the present invention, when patterning a metal electrode of a series connection type amorphous solar cell device, an adhesive material layer having a high adhesive strength with the metal film and the amorphous layer is previously formed under the metal film portion to be cut. By forming
Peeling due to infiltration of the etching solution into the interface between the amorphous layer and the metal electrode during patterning of the metal electrode is avoided, and it has a high reflectance of Ag, Cu, etc., which could not be practically used in the past, and the adhesive strength with the amorphous layer is relatively high. It is possible to apply a weak metal to the back surface metal electrode. When the present invention was applied to the production of a series-connected solar cell having an area of 100 cm 2 , the conversion efficiency was 7
The yield defined by the non-defective product rate of 80% or more is 68 when the conventional method is used.
% To 81%, and high mass productivity was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の太
陽電池による太陽電池装置の断面図、第3図及び第4図
はそれぞれ本発明の異なる実施例による太陽電池装置の
断面図を示す。 1:透光性絶縁基板、21,22,23:透明電極、31,32,
33:アモルファス層、41,42,43:金属電極、51,52,
53:接着物質層。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of a conventional solar cell device using solar cells, and FIGS. 3 and 4 are views of solar cell devices according to different embodiments of the present invention. A sectional view is shown. 1: translucent insulating substrate, 21, 22, 23: transparent electrode, 31, 32,
33: Amorphous layer, 41, 42, 43: Metal electrode, 51, 52,
53: Adhesive material layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】それぞれ透光性絶縁基板上に積層された透
明電極,アモルファス半導体層,金属電極からなり、直
列接続される複数のユニットセルの金属電極を、金属膜
をエッチングにより分割することによって形成する太陽
電池装置の製造方法において、分割される部分の近傍の
みの金属膜とアモルファス半導体層の間に予め前記金属
膜および前記アモルファス半導体層に対する接着強度の
強い接着層を介在させることを特徴とする太陽電池装置
の製造方法。
1. A metal electrode of a plurality of unit cells, each of which is composed of a transparent electrode, an amorphous semiconductor layer, and a metal electrode which are laminated on a translucent insulating substrate and which are connected in series, is divided by etching the metal film. In the method for manufacturing a solar cell device to be formed, an adhesive layer having a high adhesive strength to the metal film and the amorphous semiconductor layer is previously interposed between the metal film and the amorphous semiconductor layer only in the vicinity of the divided portion, Method for manufacturing a solar cell device.
JP61036813A 1986-02-21 1986-02-21 Method for manufacturing solar cell device Expired - Fee Related JPH065779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61036813A JPH065779B2 (en) 1986-02-21 1986-02-21 Method for manufacturing solar cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61036813A JPH065779B2 (en) 1986-02-21 1986-02-21 Method for manufacturing solar cell device

Publications (2)

Publication Number Publication Date
JPS62195184A JPS62195184A (en) 1987-08-27
JPH065779B2 true JPH065779B2 (en) 1994-01-19

Family

ID=12480208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036813A Expired - Fee Related JPH065779B2 (en) 1986-02-21 1986-02-21 Method for manufacturing solar cell device

Country Status (1)

Country Link
JP (1) JPH065779B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189473A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Photosensor and manufacturing method therefor
JP5230222B2 (en) * 2008-02-21 2013-07-10 三洋電機株式会社 Solar cell
JP5174114B2 (en) * 2010-09-30 2013-04-03 三洋電機株式会社 Solar cell
JP5094949B2 (en) * 2010-11-30 2012-12-12 三洋電機株式会社 Solar cell

Also Published As

Publication number Publication date
JPS62195184A (en) 1987-08-27

Similar Documents

Publication Publication Date Title
JP3510740B2 (en) Manufacturing method of integrated thin-film solar cell
AU2004204637B2 (en) Transparent thin-film solar cell module and its manufacturing method
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US4824488A (en) Photovoltaic device
JP2986875B2 (en) Integrated solar cell
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
JPH0851229A (en) Integrated solar battery and its manufacture
JPH065779B2 (en) Method for manufacturing solar cell device
JPH05251723A (en) Integrated solar battery module
JPS5996779A (en) Photoelectric conversion device
JP3746410B2 (en) Method for manufacturing thin film solar cell
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JP4636689B2 (en) Method for structuring transparent electrode layers
JP2000277764A (en) Solar cell module
JPH0519835B2 (en)
JP4162373B2 (en) Photovoltaic device manufacturing method
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPH0543306B2 (en)
JP2001068709A (en) Thin-film solar battery
JP2808005B2 (en) Manufacturing method of amorphous solar cell
JPH0521890Y2 (en)
JPS59110175A (en) Manufacture of solar battery
JPH06163952A (en) Solar cell element
JPS6261376A (en) Solar battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees