JPH06163952A - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JPH06163952A
JPH06163952A JP43A JP31744292A JPH06163952A JP H06163952 A JPH06163952 A JP H06163952A JP 43 A JP43 A JP 43A JP 31744292 A JP31744292 A JP 31744292A JP H06163952 A JPH06163952 A JP H06163952A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor substrate
solar cell
surface side
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP43A
Other languages
Japanese (ja)
Inventor
Michihiro Takayama
道寛 高山
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP43A priority Critical patent/JPH06163952A/en
Publication of JPH06163952A publication Critical patent/JPH06163952A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make it possible for the irradiation light on a region to contribute to power generation, by forming the region containing opposite conductivity type impurities so as to be continuous to a region containing opposite conductivity type impurities of one main surface side, on the side surface of a semiconductor substrate and on the peripheral part of the other main surface side. CONSTITUTION:On the surface side of a semiconductor substrate 1, on the side surface part, and on the peripheral part of the rear side, regions (N-layers) 1a, 1c containing opposite type impurities like phosphorus are continuously formed. A surface electrode 2 is formed on the surface side of the semiconductor substrate 1. A rear electrode 3 is formed in the central part of the rear side. No electrodes are formed on the side surface part of the substrate 1, and on the region 1c containing opposite conductivity type impurities which is formed on the side surface part of the substrate 1 and on the peripheral part of the rear. Opposite conductivity type impurities are included in the surface part except the central part of the rear side of the substrate 1 containing impurities of a conductivity type, and the surface electrode 2 is formed only on the surface side of the substrate 1. Hence the irradiation light on the surface side part and on the peripheral part of the rear side also can contribute to power generation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池素子に関し、特
に半導体基板の側面部および裏面側周縁部にも逆導電型
不純物を含有する領域を設けた太陽電池素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell element, and more particularly to a solar cell element in which a side surface portion and a rear surface side peripheral portion are provided with regions containing impurities of opposite conductivity type.

【0002】[0002]

【従来の技術および発明が解決しようとする問題点】従
来の太陽電池素子は、図3に示すように、ボロン(B)
などの一導電型不純物を含有する半導体基板1の表面側
に、例えばリン(P)などの逆導電型不純物を含有する
領域を1aを設けると共に、半導体基板1の裏面側にア
ルミニウム(Al)などから成る一導電型不純物を多量
に含有する領域1bを設け、半導体基板1の裏面側に櫛
歯状の表面電極2を形成すると共に、半導体基板1の裏
面側に裏面電極3を設けて構成されていた。半導体基板
1は、例えばシリコンなどで形成され、表面電極2およ
び裏面電極3は、例えば銀(Ag)あるいはチタン(T
i)、ニッケル(Ni)、クロム(Cr)などで形成さ
れる。なお、半導体基板1の表面側には、例えば窒化シ
リコン膜などから成る反射防止膜4が形成される。ま
た、櫛歯状の表面電極2は、図示されていないが、櫛歯
状の表面電極2と交差して形成されるバスバーによっ
て、全て接続されている。
2. Description of the Related Art A conventional solar cell element has a boron (B) element as shown in FIG.
A region 1a containing an opposite conductivity type impurity such as phosphorus (P) is provided on the front surface side of the semiconductor substrate 1 containing one conductivity type impurity such as, and aluminum (Al) etc. is formed on the back surface side of the semiconductor substrate 1. Is formed by forming a comb-shaped front surface electrode 2 on the back surface side of the semiconductor substrate 1 and a back surface electrode 3 on the back surface side of the semiconductor substrate 1. Was there. The semiconductor substrate 1 is formed of, for example, silicon, and the front surface electrode 2 and the back surface electrode 3 are formed of, for example, silver (Ag) or titanium (T).
i), nickel (Ni), chromium (Cr), or the like. An antireflection film 4 made of, for example, a silicon nitride film is formed on the front surface side of the semiconductor substrate 1. Although not shown, the comb-teeth-shaped surface electrodes 2 are all connected by a bus bar formed so as to intersect with the comb-teeth-shaped surface electrodes 2.

【0003】このような太陽電池素子をモジュール化す
る場合、図4に示すように、インナーリード(不図示)
で接続された複数の太陽電池素子5をエチレンビニルア
セテートなどの透光性樹脂6中に配設して、ガラス基板
7とポリフッ化ビニル樹脂やアルミニウム箔などから成
るバックシート8で挟持することにより行われる。な
お、光はガラス基板7側から照射される。
When such a solar cell element is modularized, inner leads (not shown) are provided as shown in FIG.
By disposing a plurality of solar cell elements 5 connected with each other in a translucent resin 6 such as ethylene vinyl acetate, and sandwiching them with a glass substrate 7 and a back sheet 8 made of polyvinyl fluoride resin, aluminum foil or the like. Done. The light is emitted from the glass substrate 7 side.

【0004】ところが、この従来の太陽電池素子では、
半導体基板1の表面側にしか逆導電型不純物を含有する
領域1aが形成されておらず、モジュール化した際に、
半導体基板1の側面部に照射される光や、バックシート
8で反射して半導体基板1の裏面側に照射される光は、
発電に寄与できない。そのため、この従来の太陽電池素
子では、光を有効に利用できないという問題があった。
However, in this conventional solar cell element,
The region 1a containing the opposite conductivity type impurity is formed only on the front surface side of the semiconductor substrate 1, and when formed into a module,
The light applied to the side surface of the semiconductor substrate 1 and the light reflected by the back sheet 8 and applied to the back surface of the semiconductor substrate 1 are
Cannot contribute to power generation. Therefore, this conventional solar cell element has a problem that light cannot be effectively used.

【0005】また、図5に示すように、一導電型不純物
を含有する半導体基板1の表面側から側面を経由して、
裏面側の周縁部に逆導電型不純物を含有する領域1aを
設け、裏面側の中央部に一導電型不純物を多量に含有す
る領域1bを設け、逆導電型不純物を含有する領域の表
面に電極2を形成すると共に、一導電型不純物を多量に
含有する領域の表面に電極3を設けた太陽電池素子も提
案されている(CH1644-4/81/0000-0102 1981 IEEE p102
〜p106)。この太陽電池素子は、逆導電型不純物を含有
する領域の表面に形成される電極2を、半導体基板1の
裏面側に引き出し、電極の取り出し面を裏面側に揃えよ
うとするものである。
Further, as shown in FIG. 5, from the front surface side of the semiconductor substrate 1 containing an impurity of one conductivity type to the side surface,
A region 1a containing an impurity of opposite conductivity type is provided in the peripheral portion on the back surface side, a region 1b containing a large amount of one conductivity type impurity is provided in the central portion on the back surface side, and an electrode is provided on the surface of the region containing an impurity of opposite conductivity type. 2 has been proposed, and a solar cell element in which an electrode 3 is provided on the surface of a region containing a large amount of one conductivity type impurities has also been proposed (CH1644-4 / 81 / 0000-0102 1981 IEEE p102).
~ P106). In this solar cell element, the electrode 2 formed on the surface of a region containing impurities of opposite conductivity type is drawn out to the back surface side of the semiconductor substrate 1 so that the extraction surface of the electrode is aligned with the back surface side.

【0006】ところが、この従来の太陽電池素子は、半
導体基板1の側面や裏面側の周縁部にも電極2が形成さ
れていることから、モジュール化した際に、半導体基板
1の側面に照射される光や、バックシートで反射して半
導体基板1の裏面側に照射される光は、電極2で遮ら
れ、半導体基板1の側面部や裏面側周縁部に形成された
逆導電型不純物を含有する領域1aは、発電には寄与で
きない。そのため、この従来の太陽電池素子でも、光を
有効に利用できないという問題があった。
However, in this conventional solar cell element, the electrodes 2 are formed also on the side surface of the semiconductor substrate 1 and on the peripheral portion on the back surface side. Therefore, when it is modularized, the side surface of the semiconductor substrate 1 is irradiated. The light that is reflected by the back sheet and the light that is reflected by the back sheet and radiated to the back surface side of the semiconductor substrate 1 is blocked by the electrode 2 and contains impurities of the opposite conductivity type formed on the side surface portion or the back surface side peripheral portion of the semiconductor substrate 1. The region 1a that does not contribute to power generation. Therefore, even this conventional solar cell element has a problem that light cannot be effectively used.

【0007】[0007]

【課題を解決するための手段】本発明に係る太陽電池素
子は、このような従来技術の問題点に鑑みてなされたも
のであり、その特徴とするところは、一導電型不純物を
含有する半導体基板の一主面側に、逆導電型不純物を含
有する領域を設け、この半導体基板の表裏面に電極を形
成した太陽電池素子において、前記半導体基板の側面部
および他の主面側周縁部に、前記半導体基板の一主面側
の逆導電型不純物を含有する領域に連続して逆導電型不
純物を含有する領域を設け、この逆導電型不純物を含有
する領域で光を受光できるようにした点にある。
The solar cell element according to the present invention has been made in view of the above problems of the prior art, and is characterized by a semiconductor containing one conductivity type impurity. On the one main surface side of the substrate, a region containing impurities of opposite conductivity type is provided, and in a solar cell element in which electrodes are formed on the front and back surfaces of this semiconductor substrate, the side surface portion of the semiconductor substrate and the peripheral portion on the other main surface side are formed. A region containing an impurity of opposite conductivity type is continuously provided in a region containing an impurity of opposite conductivity type on the one main surface side of the semiconductor substrate, and light can be received in the region containing an impurity of opposite conductivity type. In point.

【0008】[0008]

【作用】上記のように構成すると、太陽電池素子の側面
や他の主面側周縁部に照射される光も発電に寄与でき、
もって高出力の太陽電池素子が得られる。
With the above structure, the light radiated to the side surface of the solar cell element and the peripheral portion of the other main surface side can also contribute to power generation,
Therefore, a high-power solar cell element can be obtained.

【0009】[0009]

【実施例】以下、本発明の実施例を添付図面に基づき詳
細に説明する。図1は、本発明に係る太陽電池素子の一
実施例を示す図であり、(a)は断面図、(b)は裏面
から見た図である。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. 1A and 1B are views showing an embodiment of a solar cell element according to the present invention, in which FIG. 1A is a sectional view and FIG.

【0010】太陽電池素子は、半導体基板1と、表面電
極2と、裏面電極3で主として構成される。
The solar cell element is mainly composed of a semiconductor substrate 1, a front surface electrode 2 and a back surface electrode 3.

【0011】半導体基板1は、例えば引き上げ法や鋳造
法によって形成される単結晶シリコンや多結晶シリコン
などで構成され、0.3mm程度の厚みにスライスされ
ている。この半導体基板1は、例えばボロン(B)など
の一導電型不純物を含有する。
The semiconductor substrate 1 is made of, for example, single crystal silicon or polycrystalline silicon formed by a pulling method or a casting method, and is sliced to a thickness of about 0.3 mm. The semiconductor substrate 1 contains one conductivity type impurity such as boron (B).

【0012】前記半導体基板1の表面側には、例えばリ
ン(P)などの逆導電型不純物を含有する領域(n層)
1aが形成されている。また、半導体基板1の側面部と
裏面側の周縁部にも、例えばリン(P)などの逆導電型
不純物を含有する領域(n層)1cが形成されている。
この逆導電型不純物を含有する領域1aと1cは、連続
して形成されている。すなわち、半導体基板1の表面側
の中央部を除いて、半導体接合部が形成される。なお、
図1(b)に示すように、半導体基板1の裏面側の逆導
電型不純物を含有する領域1cのうち、隣接する太陽電
池素子と接続するインナーリード(不図示)が配置され
る部分1dには、逆導電型不純物を含有させないことが
望ましい。
On the surface side of the semiconductor substrate 1, for example, a region (n layer) containing an impurity of opposite conductivity type such as phosphorus (P).
1a is formed. Further, a region (n layer) 1c containing an impurity of the opposite conductivity type such as phosphorus (P) is also formed on the side surface portion and the peripheral portion on the back surface side of the semiconductor substrate 1.
The regions 1a and 1c containing the opposite conductivity type impurities are formed continuously. That is, the semiconductor junction is formed except for the central portion on the front surface side of the semiconductor substrate 1. In addition,
As shown in FIG. 1B, in a region 1c on the back surface side of the semiconductor substrate 1 containing an impurity of opposite conductivity type, in a portion 1d where an inner lead (not shown) connected to an adjacent solar cell element is arranged. It is desirable not to include impurities of the opposite conductivity type.

【0013】また、半導体基板1の裏面側の中央部に
は、例えばアルミニウム(Al)などを多量に含有する
領域(p+ 層)1bが形成されている。
A region (p + layer) 1b containing a large amount of aluminum (Al), for example, is formed in the central portion on the back surface side of the semiconductor substrate 1.

【0014】さらに、半導体基板1の表面側には、表面
電極2が形成されると共に、裏面側の中央部には裏面電
極3が形成されている。この表面電極2は、例えば1.
2mm程度のピッチで形成され、バスバー部(不図示)
でそれぞれ接続されている。なお、半導体基板1の側面
部と裏面側周縁部に形成した逆導電型不純物を含有する
領域1c部には、電極は形成されていない。しかしなが
ら、半導体基板1の厚みが厚い場合や、裏面側周縁部に
形成される領域aが大きくなる場合は、照射される光を
できるだけ遮らないように、部分的に表面電極2を形成
してもよい。
Further, a front surface electrode 2 is formed on the front surface side of the semiconductor substrate 1, and a back surface electrode 3 is formed in the central portion on the back surface side. This surface electrode 2 is, for example, 1.
Formed with a pitch of about 2 mm, the bus bar part (not shown)
Are connected respectively. No electrode is formed in the region 1c containing the opposite conductivity type impurities formed in the side surface portion and the back surface side peripheral portion of the semiconductor substrate 1. However, when the thickness of the semiconductor substrate 1 is large, or when the area a formed on the peripheral portion on the back surface side is large, the front surface electrode 2 may be partially formed so as not to block the irradiated light as much as possible. Good.

【0015】このように、一導電型不純物を含有する半
導体基板1の裏面側の中央部を除く表面部に逆導電型不
純物を含有させ、且つ表面電極2を半導体基板1の表面
側のみに形成すると、半導体基板1の側面部や裏面側の
周縁部に照射される光も発電に寄与できる。
As described above, the opposite conductivity type impurities are contained in the surface portion of the semiconductor substrate 1 containing the one conductivity type impurity except the central portion on the back surface side, and the surface electrode 2 is formed only on the surface side of the semiconductor substrate 1. Then, the light radiated to the side surface portion or the back surface side peripheral portion of the semiconductor substrate 1 can also contribute to power generation.

【0016】すなわち、10cm×10cmの太陽電池
素子の場合、半導体基板1の裏面側のn層の長さaを
0.5cmにすると、裏面のn層1cの面積は19cm
2 になる。半導体基板1の厚みが300μmの場合、側
面のn層1cの面積は1.2cm2 になる。太陽電池の
電流密度を30mA/cm2 とし、光の有効利用率を
0.3%とした場合、30×(19+1.2)×0.3
=180となり、180mAの電流が得られる。したが
って、変換効率が13%の太陽電池素子であれば、1
3.8%の太陽電池素子とすることができる。
That is, in the case of a solar cell element of 10 cm × 10 cm, if the length a of the n layer on the back surface side of the semiconductor substrate 1 is 0.5 cm, the area of the n layer 1c on the back surface is 19 cm.
Become 2 . When the thickness of the semiconductor substrate 1 is 300 μm, the area of the n layer 1c on the side surface is 1.2 cm 2 . When the current density of the solar cell is 30 mA / cm 2 and the effective utilization rate of light is 0.3%, 30 × (19 + 1.2) × 0.3
= 180, and a current of 180 mA is obtained. Therefore, if the conversion efficiency of the solar cell element is 13%, 1
It can be a solar cell element of 3.8%.

【0017】次に、上述の太陽電池素子の製造方法を説
明する。まず、p型のシリコン基板をフッ酸と硝酸の混
合比率が1:9の混酸により、5分間エッチングして水
洗を行う。
Next, a method for manufacturing the above solar cell element will be described. First, a p-type silicon substrate is etched with a mixed acid having a mixing ratio of hydrofluoric acid and nitric acid of 1: 9 for 5 minutes and washed with water.

【0018】次に、図2(a)に示すように、半導体基
板1の裏面側の略中央部に、酸化シリコン膜(Si
2 )や窒化シリコン膜(SiNx )などから成るマス
ク2を、厚み0.5μm以上に形成する。なお、この酸
化シリコン膜は、プラズマCVD法や熱酸化法などで形
成され、窒化シリコン膜は、プラズマCVD法などで形
成される。
Next, as shown in FIG. 2 (a), a silicon oxide film (Si
A mask 2 made of O 2 ) or a silicon nitride film (SiN x ) is formed to a thickness of 0.5 μm or more. The silicon oxide film is formed by a plasma CVD method or a thermal oxidation method, and the silicon nitride film is formed by a plasma CVD method.

【0019】次に、図2(b)に示すように、シリコン
基板1を熱拡散炉に投入して、オキシ塩化リン(POC
3 )を拡散源として、900℃の温度で気相反応によ
りリン(P)を拡散して、シリコン基板1の表面にn層
1aを形成する。この場合、リンの濃度は1×1019
1×1020atoms/cm3 になるような時間、具体
的には30分程度の間、拡散する。
Next, as shown in FIG. 2 (b), the silicon substrate 1 is placed in a thermal diffusion furnace and phosphorus oxychloride (POC) is added.
l 3 ) as a diffusion source, phosphorus (P) is diffused by a gas phase reaction at a temperature of 900 ° C. to form an n layer 1 a on the surface of the silicon substrate 1. In this case, the phosphorus concentration is 1 × 10 19 to
Diffusion is performed for a time such that 1 × 10 20 atoms / cm 3 , specifically about 30 minutes.

【0020】この拡散後、図2(c)に示すように、マ
スク5をフッ酸と純水の1:3の混合液によりエッチン
グ除去する。なお、マスク2を形成してリンを拡散させ
た後に、このマスクをエッチング除去する場合に限ら
ず、リンを拡散させた後に、半導体基板1の裏面側の中
央部のn層をエッチング除去することにより、半導体基
板1の表面および側面、裏面の周縁部にn層を形成して
もよい。
After this diffusion, as shown in FIG. 2C, the mask 5 is removed by etching with a mixed solution of hydrofluoric acid and pure water of 1: 3. Not only the case where the mask 2 is formed and the phosphorus is diffused and then the mask is removed by etching, but the phosphorus is diffused and then the central n-layer on the back surface side of the semiconductor substrate 1 is removed by etching. Thus, the n layer may be formed on the peripheral portions of the front surface, the side surface, and the back surface of the semiconductor substrate 1.

【0021】この後、図2(d)に示すように、シリコ
ン基板1の表面に窒化シリコン膜(SiNX )から成る
反射防止膜4をプラズマCVD法で、基板温度を250
℃程度に設定して形成する。体積に使用するガスおよび
その量は、シラン(SiH4):400cc/min、
アンモニア(NH3 ):1000cc/minで、厚み
は800Å程度である。なお、この反射防止膜4を形成
する前に、表面パシベーションのため、50Å以上の酸
化シリコン(SiO2 )を形成してもよい。
Thereafter, as shown in FIG. 2D, an antireflection film 4 made of a silicon nitride film (SiN x ) is formed on the surface of the silicon substrate 1 by plasma CVD at a substrate temperature of 250.
It is formed by setting the temperature to about ° C. The gas used for the volume and its amount are silane (SiH 4 ): 400 cc / min,
Ammonia (NH 3): at 1000 cc / min, the thickness is about 800 Å. Before forming the antireflection film 4, silicon oxide (SiO 2 ) of 50 Å or more may be formed for surface passivation.

【0022】このように形成した反射防止膜4に、電極
を形成するために電極パターンに相当する部分の反射防
止膜を除去する目的で、図2(e)に示すように、電極
パターンの逆パターンを形づくるようにエッチングレジ
ストを塗布した後、フッ酸と純水の1:3の混合液によ
り露出した反射防止膜の部分4aをエッチングして除去
する。反射防止膜をパターン抜きした後にエッチングレ
ジストを有機溶剤により除去する。
In order to remove the antireflection film in the portion corresponding to the electrode pattern for forming the electrode on the antireflection film 4 thus formed, as shown in FIG. After applying an etching resist so as to form a pattern, the exposed portion 4a of the antireflection film is removed by etching with a mixed solution of hydrofluoric acid and pure water of 1: 3. After removing the pattern of the antireflection film, the etching resist is removed with an organic solvent.

【0023】この後、図2(f)に示すように、シリコ
ン基板1の裏面にアルミニウム(Al)粉末を主成分と
する電極ペースト3aを印刷塗布後、焼成してp+ 層1
bを形成する。
After that, as shown in FIG. 2 (f), after the electrode paste 3a containing aluminum (Al) powder as a main component is applied by printing on the back surface of the silicon substrate 1, the paste is baked and the p + layer 1 is formed.
b is formed.

【0024】次に、シリコン基板1の表面および裏面に
銀(Ag)粉末を主成分とする銀ペーストを印刷塗布
し、焼成して表面電極と裏面電極を形成する。この印刷
に際し、先に反射防止膜のパターン抜きを行った部分に
電極材料が印刷されるようにスクリーン印刷パターンを
調整する。このとき、図1に示す太陽電池素子が完成す
る。
Next, a silver paste containing silver (Ag) powder as a main component is printed and applied on the front surface and the back surface of the silicon substrate 1 and baked to form a front electrode and a back electrode. At the time of this printing, the screen printing pattern is adjusted so that the electrode material is printed on the portion of the antireflection film where the pattern is removed. At this time, the solar cell element shown in FIG. 1 is completed.

【0025】最後に、半田溶液中に浸して、銀から成る
表面電極2と裏面電極3上に、半田被覆層(不図示)を
形成する。
Finally, a solder coating layer (not shown) is formed on the front electrode 2 and the back electrode 3 made of silver by immersing in a solder solution.

【0026】[0026]

【発明の効果】以上のように、本発明に係る太陽電池素
子によれば、一導電型不純物を含有する半導体基板の側
面側および他の主面側の周縁部に、逆導電型不純物を含
有する領域を設け、この逆導電型不純物を含有する領域
で光を受光できるようにしたことから、太陽電池素子の
側面や他の主面側の周縁部に照射される光も発電に寄与
でき、もって高出力の太陽電池素子が得られる。
As described above, according to the solar cell element of the present invention, the opposite conductivity type impurities are contained in the peripheral portions on the side surface side and the other main surface side of the semiconductor substrate containing one conductivity type impurity. By providing a region to allow light to be received in the region containing impurities of the opposite conductivity type, the light irradiated to the side surface of the solar cell element or the peripheral portion of the other main surface side can also contribute to power generation, Therefore, a high-power solar cell element can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池素子の一実施例を示す図
であり、(a)は断面図、(b)は裏面側から見た図で
ある。
1A and 1B are diagrams showing an embodiment of a solar cell element according to the present invention, in which FIG. 1A is a sectional view and FIG. 1B is a view seen from a back surface side.

【図2】本発明に係る太陽電池素子の製造方法を説明す
るための工程図である。
FIG. 2 is a process drawing for explaining the method for manufacturing a solar cell element according to the present invention.

【図3】従来の太陽電池素子を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional solar cell element.

【図4】従来の太陽電池素子を用いて太陽電池モジュー
ルを形成した場合の断面図である。
FIG. 4 is a cross-sectional view when a solar cell module is formed using a conventional solar cell element.

【図5】従来の他の太陽電池素子を示す断面図である。FIG. 5 is a cross-sectional view showing another conventional solar cell element.

【符号の説明】[Explanation of symbols]

1・・・半導体基板、1a・・・一主面側の逆導電型不
純物を含有する領域、1b・・・一導電型不純物を多量
に含有する領域、1c・・・半導体基板の側面部および
裏面側周縁部に形成した逆導電型不純物を含有する領
域、2・・・表面電極、3・・・裏面電極。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 1a ... One main surface side area | region containing impurities of opposite conductivity type, 1b ... Area containing a large amount of one conductivity type impurity, 1c. Areas containing impurities of opposite conductivity type formed on the peripheral portion on the back surface side, 2 ... front surface electrode, 3 ... back surface electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一導電型不純物を含有する半導体基板の
一主面側に、逆導電型不純物を含有する領域を設け、こ
の半導体基板の表裏面に電極を形成した太陽電池素子に
おいて、前記半導体基板の側面部および他の主面側周縁
部に、前記半導体基板の一主面側の逆導電型不純物を含
有する領域に連続して逆導電型不純物を含有する領域を
設け、この逆導電型不純物を含有する領域で光を受光で
きるようにしたことを特徴とする太陽電池素子。
1. A solar cell element in which a region containing impurities of opposite conductivity type is provided on one main surface side of a semiconductor substrate containing impurities of one conductivity type, and electrodes are formed on the front and back surfaces of the semiconductor substrate. A region containing an impurity of opposite conductivity type is continuously provided on a side surface portion of the substrate and a peripheral portion on the side of the other principal surface, the region containing an impurity of opposite conductivity type on the one principal surface side of the semiconductor substrate. A solar cell element, characterized in that light can be received in a region containing impurities.
JP43A 1992-11-26 1992-11-26 Solar cell element Pending JPH06163952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163952A (en) 1992-11-26 1992-11-26 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43A JPH06163952A (en) 1992-11-26 1992-11-26 Solar cell element

Publications (1)

Publication Number Publication Date
JPH06163952A true JPH06163952A (en) 1994-06-10

Family

ID=18088268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP43A Pending JPH06163952A (en) 1992-11-26 1992-11-26 Solar cell element

Country Status (1)

Country Link
JP (1) JPH06163952A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283479A (en) * 2008-05-19 2009-12-03 Sharp Corp Solar battery cell, solar battery module, and manufacturing method of solar battery cell
KR101338642B1 (en) * 2012-04-03 2013-12-06 고려대학교 산학협력단 Methods of manufacturing crystalline-silicon solar cells
WO2016158299A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Solar cell, method for manufacturing same, solar cell module and wiring sheet
JP2017509153A (en) * 2014-03-26 2017-03-30 サンパワー コーポレイション Passivation of the light-receiving surface of solar cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283479A (en) * 2008-05-19 2009-12-03 Sharp Corp Solar battery cell, solar battery module, and manufacturing method of solar battery cell
KR101338642B1 (en) * 2012-04-03 2013-12-06 고려대학교 산학협력단 Methods of manufacturing crystalline-silicon solar cells
JP2017509153A (en) * 2014-03-26 2017-03-30 サンパワー コーポレイション Passivation of the light-receiving surface of solar cells
WO2016158299A1 (en) * 2015-03-31 2016-10-06 株式会社カネカ Solar cell, method for manufacturing same, solar cell module and wiring sheet
US10008622B2 (en) 2015-03-31 2018-06-26 Kaneka Corporation Solar cell, method for manufacturing same, solar cell module and wiring sheet
US10205040B2 (en) 2015-03-31 2019-02-12 Kaneka Corporation Solar cell, method for manufacturing same, solar cell module and wiring sheet

Similar Documents

Publication Publication Date Title
JP3722326B2 (en) Manufacturing method of solar cell
US4152824A (en) Manufacture of solar cells
JP2004221149A (en) Manufacturing method of solar cell
WO1993019492A1 (en) Solar cell with combined metallization and process for producing the same
JPH0575149A (en) Manufacture of solar cell device
JPH0572114B2 (en)
JP2000183379A (en) Method for manufacturing solar cell
JP3170445B2 (en) Method of forming solar cell element
JPH02177569A (en) Manufacture of solar cell
JP2006156646A (en) Solar cell manufacturing method
JPS62156881A (en) Solar battery device
JP2006332510A (en) Manufacturing method for solar cell element
JP2951061B2 (en) Solar cell manufacturing method
JP2006295212A (en) Method of producing solar cell and method of producing semiconductor device
JP2016139762A (en) Method of manufacturing solar cell element
JPH07326784A (en) Manufacture of solar battery element
JP4996025B2 (en) Manufacturing method of solar cell
JP2016051767A (en) Method of manufacturing solar battery element
JPH06163952A (en) Solar cell element
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method
JP3652128B2 (en) Method for manufacturing solar cell element
CN109041583B (en) Solar cell element and solar cell module
JP2004281569A (en) Method for producing solar cell element
JP2015106585A (en) Method for manufacturing solar cell element and solar cell module
JPH1197726A (en) Manufacture of solar battery