JPS6272145A - Mos integrated circuit device and manufacture thereof - Google Patents

Mos integrated circuit device and manufacture thereof

Info

Publication number
JPS6272145A
JPS6272145A JP21155285A JP21155285A JPS6272145A JP S6272145 A JPS6272145 A JP S6272145A JP 21155285 A JP21155285 A JP 21155285A JP 21155285 A JP21155285 A JP 21155285A JP S6272145 A JPS6272145 A JP S6272145A
Authority
JP
Japan
Prior art keywords
wiring
oxidation
region
integrated circuit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21155285A
Other languages
Japanese (ja)
Inventor
Makoto Noda
誠 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21155285A priority Critical patent/JPS6272145A/en
Publication of JPS6272145A publication Critical patent/JPS6272145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce the wiring capacities of the wiring regions without being affected by any bird's beak even in a case where the the integration degree of the titled device is enhanced as well as to improve the high-speed operating characteristics of the device by forming an insulating film thicker than element isolation layers in the wiring region part on the silicon substrate. CONSTITUTION:A first oxidation-resistant film 31 to cover the whole of an element region part 1 is formed (a) on a silicon substrate 20. After that, wiring region parts 3 only are selectively heat-oxidized and silicon dioxide films having a thick film thickness are formed, and the oxidation-resistant film 31 is peeled (b). Then, a second oxidation-resistant film 32 is formed (c) on the silicon substrate 20 within the extent to cover the element parts only which are source drain and gate parts of an MOS transistor arranged at the element region part 1. Thereafter, when element isolation layers 22 are formed by performing a selective oxidation, the oxide films of the wiring regions 3 are simultaneously re-oxidized and thick oxide film insulating layers 21 are formed (d). The film thickness of the element isolation layers 22 may be a film thickness enough to perform an interelement isolation. That is, wiring layers are primarily formed on the thick oxide film insulating layers 21, whereby wiring capacities CW of the wiring regions can be lessened. Accordingly, an element can be made to carry out a high-speed operation at high speed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、論理大規模集積回路などのMOS集積回路装
置およびその製造方法に関jIる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a MOS integrated circuit device, such as a large-scale logic integrated circuit, and a method for manufacturing the same.

〔発明の技術向背m〕[Technical background of invention m]

MOSトランジスタによるMOS集積回路装置は、チッ
プ上に素子領域と配線領域を配向して形成される。素子
領域とはMOSトランジスタによって機能ゲート部など
を構成するために要する領域で、配線領域とは各ゲート
間等を相りに接続する配線にために要する領域である。
A MOS integrated circuit device using MOS transistors is formed by orienting an element region and a wiring region on a chip. The element area is an area required for constructing a functional gate section using MOS transistors, and the wiring area is an area required for wiring interconnecting gates.

ところで、論理大規模集積回路(以下、論理LSIと称
する)では、一般にチップ上の配Fil領域が占める面
積は素子領域が占める面積より圧倒的に大きく、例えば
配線領域が占める割合が60乃至70%にもなる。この
ように、集積回路の大規模化は1チツプに集積されるゲ
ート数の増大とともに配線総数や平均配線長を増大化し
、その結果、配線領域を肥大化し、チップサイズも拡大
するものである。
By the way, in large-scale logic integrated circuits (hereinafter referred to as logic LSIs), the area occupied by the distribution area on the chip is generally overwhelmingly larger than the area occupied by the element area, for example, the proportion occupied by the wiring area is 60 to 70%. It also becomes. As described above, increasing the scale of integrated circuits increases the number of gates integrated on one chip, increases the total number of wiring lines and the average wiring length, and as a result, increases the wiring area and increases the chip size.

かかる肥大化傾向に対して、多層メタル配線プロセスは
配線の柔軟性と自由度を得ることができ、電子泪算機支
援によるカスタムLSIの設計などで広く採用され、配
線領域の拡大防止に効果をあげている。例えば、ゲート
アレイでは、ゲート間の接続配線は固定された配線領域
内の第1層アルミニウムと第2層アルミニウムとの多層
メタル配線が行われ、また、スタンダードセル方式では
上記と同様に2層のアルミニウム配線による他、ポリシ
リコンの配線層をも付加した多層メタル配線が行われる
場合もある。
In response to this tendency toward enlargement, the multilayer metal wiring process allows flexibility and freedom in wiring, and is widely adopted in custom LSI designs using electronic computer support, and is effective in preventing expansion of wiring areas. I'm giving. For example, in a gate array, the connection wiring between the gates is a multilayer metal wiring of the first layer aluminum and the second layer aluminum within a fixed wiring area, and in the standard cell method, the connection wiring between the gates is a multilayer metal wiring of the first layer aluminum and the second layer aluminum. In addition to aluminum wiring, multilayer metal wiring including a polysilicon wiring layer may also be used.

しかしながら、上記の多層メタル配線プロセスによる配
線技術を駆使して配線領域の縮小化を図っても、なお、
現在の典型的なCMOSブOセス(2,0μルール)に
よるゲートアレイあるいはスタンダードセル方式でのL
SIでは、その平均配線長が1ネット当り2Illff
iに達する。
However, even if we try to reduce the wiring area by making full use of the wiring technology using the multilayer metal wiring process described above,
Gate array or standard cell method using current typical CMOS bus process (2.0μ rule)
In SI, the average wiring length is 2Illff per net.
Reach i.

このため、配線容量が大きな値となり、1ゲートの総負
荷容jjlに占める配線層H)の割合いが大である。例
えば、絶縁膜である二酸化シリコンの比誘電率ε、を3
.9、gllilを1.0μm、配線幅を2μmとして
配線長21111の配線のシリコン基板間の配線容量C
Wを平行平板モデルによって求めると、Cwは約0.1
4pFとなる。
Therefore, the wiring capacitance has a large value, and the ratio of the wiring layer H) to the total load capacity jjl of one gate is large. For example, the dielectric constant ε of silicon dioxide, which is an insulating film, is 3
.. 9. Wire capacitance C between silicon substrates for a wire with a wire length of 21111 when gllil is 1.0 μm and wire width is 2 μm
When W is determined using a parallel plate model, Cw is approximately 0.1
It becomes 4pF.

一方、MOSトランジスタのゲート容量c6は、平均フ
ァンアウト数を3、ゲート酸化膜の膜厚を500人、ゲ
ート幅を2.0層mとし、Pヂpンネル及びNチレンネ
ルMOSl−ランジスタの総ゲート長を80μmとして
も、近似的にCIL4は0.11pFである。即ら、1
ゲートの総負荷容量に占める配線容量は約60%にもな
ることがわかる。なお、上記の割合はMOS集積回路で
2次元あるいは3次元方向でのスケーリングを行っても
変わらず、配′0容Eはゲート遅延の支配的要因となっ
ている。
On the other hand, the gate capacitance c6 of the MOS transistor is calculated by setting the average fan-out number to 3, the thickness of the gate oxide film to 500 layers, the gate width to 2.0 layers, and the total gate of the PDP channel and N channel MOS transistor. Even if the length is 80 μm, CIL4 is approximately 0.11 pF. That is, 1
It can be seen that the wiring capacitance accounts for about 60% of the total load capacitance of the gate. Note that the above ratio does not change even if the MOS integrated circuit is scaled in two or three dimensions, and the layout E is a dominant factor in gate delay.

ところで、論理LSIを高速化するためには、上記の配
線容量を低減させることが組方である。
By the way, in order to speed up a logic LSI, the method is to reduce the above-mentioned wiring capacitance.

従来、この為の方法として絶縁基板上に素子を構成づる
例えばSO8構造が提案されている。しかしながらサフ
ァイア基板は高価であり、配線容jを低減する為の有効
な技術ではあるが一般的ではなかった。
Conventionally, as a method for this purpose, an SO8 structure, for example, in which an element is constructed on an insulating substrate has been proposed. However, sapphire substrates are expensive, and although it is an effective technique for reducing wiring capacity j, it has not been common.

そこで、安価なシリコン基板を用いて¥J造されるMo
8型LSIにおいて、シリコン基板と配線間の絶縁膜の
膜厚を厚くする試みがなされている。
Therefore, Mo
In 8-inch LSIs, attempts have been made to increase the thickness of the insulating film between the silicon substrate and the wiring.

シリコンゲートのMo8型LSIを製造する際、素子部
11WlJ法としてコブシナ−法あるいはしacosと
称される選択酸化法が用いられる。
When manufacturing a silicon gate Mo8 type LSI, a selective oxidation method called Kobusina method or Shiacos is used as the element part 11WlJ method.

これは、MOSトランジスタのソース、ドレイン及びゲ
ート領域を耐酸化膜で耐い、配線領域となる素子間領域
を選択的に熱酸化するもので、絶縁膜である二酸化シリ
コンの膜厚を酸化時間と温度の調整により適宜に成長さ
せ、絶縁膜厚を厚くするものである。
This method protects the source, drain, and gate regions of a MOS transistor with an oxidation-resistant film, and selectively thermally oxidizes the inter-element region, which serves as the wiring region. The insulating film is grown appropriately by adjusting the temperature to increase the thickness of the insulating film.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記従来技術によって二酸化シリコンの
lil厚を厚くすると、バーズビークと言われる素子領
域への酸化膜の喰い込み減少が大きく現われ、その結果
、素子領域を狭めてしまうという問題を有していた。ま
た、集積回路の集積度を高めるために素子間隔を狭める
場合には、逆にバーズビークを押え込む必要が生じ、そ
の結果、二酸化シリコンの膜厚を厚くできないという制
約を受けるものであった。
However, when the lil thickness of silicon dioxide is increased using the above-mentioned conventional technique, there is a problem in that the oxide film digs into the device region, which is called a bird's beak, and as a result, the device region is narrowed. Furthermore, when reducing the element spacing in order to increase the degree of integration of an integrated circuit, it becomes necessary to suppress the bird's beak, and as a result, there is a restriction that the thickness of the silicon dioxide film cannot be increased.

このため配線層Φを低減することができず、高速動作が
出来るMo8型LSIを実現する上での大きな妨げとな
っていた。
For this reason, the wiring layer Φ could not be reduced, which was a major hindrance to realizing a Mo8 type LSI capable of high-speed operation.

(発明の目的〕 本発明は上記の従来技術の問題点を克服するためになさ
れたちので、集積度を損うことなく配線容量を低減し、
高速動作性に優れたMOS集積回路装置およびその!l
造方法を提供する事を目的どする。
(Objective of the Invention) The present invention has been made to overcome the problems of the prior art described above, and therefore reduces wiring capacitance without impairing the degree of integration.
MOS integrated circuit device with excellent high-speed operation and its! l
The purpose is to provide a manufacturing method.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明は、シリコン基板上
の配線領域に形成される酸化膜絶縁層の厚さを、素子領
域の素子部111層の厚さより大きくしたMOS集積回
路装置を提供するものである。
To achieve the above object, the present invention provides a MOS integrated circuit device in which the thickness of an oxide film insulating layer formed in a wiring region on a silicon substrate is greater than the thickness of an element portion 111 layer in an element region. It is something.

また本発明は、配線領域および素子領域の素子分離領域
を酸化する工程の他に、配線領域のみを再酸化する工程
をも備えるようにしたMOS梁積回路装置の製造方法を
提供するものである。
The present invention also provides a method for manufacturing a MOS beam stack circuit device, which includes a step of re-oxidizing only the wiring region in addition to the step of oxidizing the wiring region and the element isolation region of the element region. .

(発明の実施例〕 以下、添付図面の第1図乃至第5図を参照して本発明の
詳細な説明する。
(Embodiments of the Invention) The present invention will be described in detail below with reference to FIGS. 1 to 5 of the accompanying drawings.

第1図および第2図は、ゲートアレイあるいはスタンダ
ードセル方式によって設計された一実施例に係るMOS
集積回路装2の素子領域と配線領域とを模式的に示して
おり、第2図は部分平面図、第1図はそのA−A’線断
面図である。
FIGS. 1 and 2 show an example of a MOS designed using a gate array or standard cell method.
The element area and wiring area of the integrated circuit device 2 are schematically shown, with FIG. 2 being a partial plan view and FIG. 1 being a cross-sectional view taken along the line AA'.

第2図において、素子領域部1はMo8 l−ランジス
タを高密度にレイアウトして論理ゲートを配列しており
、MoSトランジスタの拡散領域2はソース、ドレイン
及びゲート部である素子部分を形成Jる。配線領域部3
では多層メタル配線によって論理ゲート間の接続配線が
行われる。多層メタル配線は、通常はアルミニウムの2
層配線によるが、更に、ポリシリコンの配線層を加えた
3層配線による場合もある。ポリシリコン配線層4およ
び第1のアルミニウム配置i1層5は配線領域部3に形
成され、第2のアルミニウム配線層6は素子領域部1に
形成される。これら配¥A層4,5.6はコンタクトホ
ール7、スルーホール8を介して互いに接続される。
In FIG. 2, an element region 1 has Mo8 L-transistors arranged in a high-density layout and logic gates arranged therein, and a diffusion region 2 of the MoS transistor forms the element parts, which are the source, drain, and gate parts. . Wiring area section 3
In this case, connection wiring between logic gates is performed using multilayer metal wiring. Multilayer metal wiring is typically made of aluminum.
Although it depends on the layer wiring, there is also a case where a three-layer wiring including a polysilicon wiring layer is used. The polysilicon wiring layer 4 and the first aluminum arrangement i1 layer 5 are formed in the wiring region section 3, and the second aluminum wiring layer 6 is formed in the element region section 1. These A layers 4, 5.6 are connected to each other via contact holes 7 and through holes 8.

第2図に示すvt置の断面構造は、第1図に示すように
なっている。すなわら、配線領域部3の酸化膜絶縁層2
1の厚さは素子領域部1の素子分離層22の厚さより大
きくなっている。イして、第2図に示す配線層4.5は
主としてこの厚い酸化膜絶縁層21の上に形成されてい
る。このため配線容量C8を少なくすることかでき、従
って素子の高速動作を可能にすることができる。
The cross-sectional structure of the vt position shown in FIG. 2 is as shown in FIG. That is, the oxide film insulating layer 2 in the wiring region portion 3
1 is larger than the thickness of the element isolation layer 22 in the element region portion 1. Accordingly, the wiring layer 4.5 shown in FIG. 2 is mainly formed on this thick oxide film insulating layer 21. Therefore, the wiring capacitance C8 can be reduced, and therefore the device can operate at high speed.

次に、第3図の工程別断面図を参照して、製iTh工程
の第1の例を説明する。
Next, a first example of the iTh manufacturing process will be described with reference to the step-by-step sectional views in FIG.

まず、第3図(a)のように素子領域部1の全体(第2
図の符号って示す部分)を覆う第1の耐酸化l!31を
シリコン基板20上に形成する。その後、第3図(b)
のように配線領域部3のみを選択的に熱酸化して、配線
領域部3に所望の膜厚の厚い二酸化シリコン膜を形成す
る。そして、第1の耐酸化膜31を剥aする。
First, as shown in FIG. 3(a), the entire element region 1 (second
The first oxidation-resistant l! 31 is formed on the silicon substrate 20. After that, Fig. 3(b)
A thick silicon dioxide film having a desired thickness is formed in the wiring region 3 by selectively thermally oxidizing only the wiring region 3 as shown in FIG. Then, the first oxidation-resistant film 31 is peeled off.

次いで、第3図(C)のように素子領域部1に配設され
たMOS t−ランジスタのソース、ドレイン及びゲー
ト部である素子部分(第2図に符号2で示す部分)のみ
を覆う範囲(第2図に符号10で示す範囲)に第2の耐
酸化g132をシリコン基板20上に形成する。その後
、選択酸化を行って第3図(d)のように素子部m層2
2を形成し、素子分離を行う。このとき、同時に配線領
域3の酸化膜を再酸化し、厚い酸化膜絶縁層21を形成
する。なお、素子分子111層22は素子間をアイソレ
ーションするに足りる膜厚でよい。
Next, as shown in FIG. 3(C), a region that covers only the element portion (the portion indicated by reference numeral 2 in FIG. 2), which is the source, drain, and gate portion of the MOS t-transistor disposed in the element region 1, is formed. A second oxidation-resistant layer 132 is formed on the silicon substrate 20 (in the area indicated by reference numeral 10 in FIG. 2). After that, selective oxidation is performed to form the element part m layer 2 as shown in FIG. 3(d).
2 is formed and element isolation is performed. At this time, the oxide film in the wiring region 3 is simultaneously reoxidized to form a thick oxide film insulating layer 21. Note that the element molecule 111 layer 22 may have a thickness sufficient to provide isolation between elements.

この実施例の方法によれば、MOS集積回路の集積瓜を
高めるために素子間隔を狭めた場合にも、素子領域部1
は上記の膜厚の薄い二酸化シリコン膜で素子分離が行な
われるだけであり、バーズビークによる悪影響を受ける
ことがない。また、素子分離用の第2の選択酸化時には
配線領域部3も共に酸化されるため、配線領域部3に形
成された二酸化シリコン模の膜厚は更に厚く成長し、配
線領域部3に形成される配線の配線容量CWを減少させ
ることができる。
According to the method of this embodiment, even when the element spacing is narrowed in order to increase the integration density of the MOS integrated circuit, the element region portion 1
In this case, only the thin silicon dioxide film mentioned above performs element isolation, and there is no adverse effect caused by bird's beak. In addition, during the second selective oxidation for element isolation, the wiring region 3 is also oxidized, so the silicon dioxide pattern formed in the wiring region 3 grows even thicker, and the silicon dioxide pattern formed in the wiring region 3 grows thicker. The wiring capacitance CW of the wiring can be reduced.

なお、上記実施例では素子部1i11の耐酸化膜31を
除去したのらに素子部分に1lil化膜32を形成する
ようにしているが、素子部1ii1の耐酸化膜31をパ
ターニングして素子部分にのみ酸化膜32を残存形成さ
せるようにしてもよい。
In the above embodiment, after removing the oxidation-resistant film 31 of the element part 1i11, the 1liil film 32 is formed on the element part, but the oxidation-resistant film 31 of the element part 1ii1 is patterned and The oxide film 32 may be formed to remain only on the surface.

次に、第4図を参照して製造工程の第2の例を説明する
。そしてこれが第1の例と異なる点は、素子力wi層の
形成が先の工程でなされるようになっている点である。
Next, a second example of the manufacturing process will be explained with reference to FIG. This differs from the first example in that the element layer is formed in the previous step.

まず、第4図(a)のようにシリコン基板20上の素子
領域1中の素子部分にのみ耐酸化膜33を形成し、第4
図(b)のように熱酸化を行う。
First, as shown in FIG. 4(a), an oxidation-resistant film 33 is formed only on the element portion in the element region 1 on the silicon substrate 20, and a fourth
Thermal oxidation is performed as shown in Figure (b).

次いで、第4図(C)のように耐酸化膜33を除去した
後に素子領域1を覆う耐酸化膜34を形成する。その後
、熱酸化を行うと、第4図(d)のように配線層hi3
のみが再酸化され、1りい酸化膜絶縁層21が形成され
る。
Next, as shown in FIG. 4C, after removing the oxidation-resistant film 33, an oxidation-resistant film 34 covering the element region 1 is formed. After that, when thermal oxidation is performed, the wiring layer hi3 is formed as shown in FIG. 4(d).
Only the oxide film is reoxidized, and a single oxide film insulating layer 21 is formed.

なお、上記実施例では素子部分の耐酸化11233を除
去した後に素子領域部1に耐酸化膜34を形成づるよう
にしているが、耐酸化膜33を残したままでその上にi
′f1酸化膜34を形成してもよい。
In the above embodiment, the oxidation resistant film 34 is formed in the element region 1 after removing the oxidation resistant 11233 from the element portion, but the oxidation resistant film 33 is left and i
'f1 oxide film 34 may be formed.

以上、実施例に従って本発明に係る製造方法を詳細に説
明したが、これに限定されるものでない。
Although the manufacturing method according to the present invention has been described above in detail according to Examples, the present invention is not limited thereto.

すへねf5、シリコン基板上の配線領域に膜厚の厚い絶
縁膜を形成し、素子領域の素子部分に素子分雛筈を形成
するものであれば、いがなるものでもよい。また、第5
図に示すように配線領域に隣接Jる部分にはλ9い酸化
膜を設けないようにしてしよい。但し、この場合には配
線層の段切れ等の問題が生じる可能性がある。
As for f5, any material may be used as long as a thick insulating film is formed in the wiring region on the silicon substrate and an element structure is formed in the element portion of the element region. Also, the fifth
As shown in the figure, the oxide film having a wavelength of λ9 may not be provided in the portion adjacent to the wiring region. However, in this case, problems such as disconnection of the wiring layer may occur.

(発明の効果) 以上の如く本発明では、シリコン基板上の配線層Vi、
 is +、:素子分離層より厚い絶縁膜を形成するよ
うにしたので、集積度を高めた場合にもバーズビークの
影響を受けることなく、配線領域の配線容量を低減させ
ることができ、従って高速動作性にそれたMOS集積回
路装置およびその製造方法を1!?ることができる。
(Effects of the Invention) As described above, in the present invention, the wiring layer Vi on the silicon substrate,
is+: Since an insulating film is formed that is thicker than the element isolation layer, the wiring capacitance in the wiring area can be reduced without being affected by bird's beak even when the degree of integration is increased, thus achieving high-speed operation. A unique MOS integrated circuit device and its manufacturing method! ? can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るMOS集積回路装置の
部分断面図、第2図は同実施例に係る集積回路装置の部
分平面図、第3図および第4図はそれぞれ本発明に係る
集積回路装置の製造工程別断面図、第5図は本発明の他
の実施例に係るMOSO8集積回路装置分断面図である
。 1・・・素子領域部、2・・・MOS t−ランジスタ
の素子部分、3・・・配線領域部、4・・・ポリシリコ
ン配線層、5・・・第1のアルミニウム配線層、6・・
・第2のアルミニウム配線層、9・・・第1の耐酸化膜
が形成される位置、10・・・第2の耐酸化膜が形成さ
れる位置、20・・・シリコン基板、31.34・・・
第1の耐酸化l19.32.33・・・第2の耐酸化膜
。 出願人代理人  Fi   藤  −雄63 図 も5 z も4 ロ
FIG. 1 is a partial cross-sectional view of a MOS integrated circuit device according to an embodiment of the present invention, FIG. 2 is a partial plan view of an integrated circuit device according to the same embodiment, and FIGS. 3 and 4 are respectively according to the present invention. FIG. 5 is a cross-sectional view of a MOSO8 integrated circuit device according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Element region part, 2... Element part of MOS t-transistor, 3... Wiring region part, 4... Polysilicon wiring layer, 5... First aluminum wiring layer, 6...・
・Second aluminum wiring layer, 9...Position where first oxidation resistant film is formed, 10...Position where second oxidation resistant film is formed, 20...Silicon substrate, 31.34 ...
First oxidation resistant l19.32.33...Second oxidation resistant film. Applicant's agent Fi Fuji - Yu 63 Figure 5 z Mo 4 Ro

Claims (1)

【特許請求の範囲】 1、シリコン基板上に素子領域と配線領域とを有して形
成されるMOS集積回路装置において、前記配線領域の
シリコン基板上に形成される酸化膜絶縁層の厚さを、前
記素子領域の素子分離層の厚さより大きくしたことを特
徴とするMOS集積回路装置。 2、シリコン基板上に素子領域と配線領域とを有して形
成されるMOS集積回路装置の製造方法において、 前記素子領域を耐酸化膜で被覆して前記配線領域に酸化
膜を形成する第1の工程と、前記素子領域の素子部分を
耐酸化膜で被覆して素子分離層の酸化及び前記配線領域
の再酸化を行う第2の工程とを備えることを特徴とする
MOS集積回路装置の製造方法。 3、前記第2の工程において耐酸化膜で被覆する前記素
子部分はMOSトランジスタのソース、ドレイン及びゲ
ート部分である特許請求の範囲第2項記載のMOS集積
回路装置の製造方法。 4、前記第1の工程における前記配線領域の酸化と、前
記第2の工程における前記素子分離層の酸化及び前記配
線領域の再酸化はいずれも熱酸化により行われる特許請
求の範囲第2項記載のMOS集積回路装置の製造方法。 5、前記第2の工程は前記第1の工程で形成された耐酸
化膜を除去したのち、前記素子領域の素子部分を他の耐
酸化膜で被覆する工程を有する特許請求の範囲第2項記
載のMOS集積回路装置の製造方法。 6、シリコン基板上に素子領域と配線領域とを有して形
成されるMOS集積回路装置の製造方法において、 前記素子領域の素子部分を耐酸化膜で被覆して素子分離
層の酸化及び前記配線領域の酸化を行う第1の工程と、
前記素子領域を耐酸化膜で被覆して前記配線領域の再酸
化を行う第2の工程とを備えることを特徴とするMOS
集積回路装置の製造方法。 7、前記第1の工程において耐酸化膜で被覆する前記素
子部分はMOSトランジスタのドレイン・ソース及びゲ
ート部分である特許請求の範囲第6項記載のMOS集積
回路装置の製造方法。 8、前記第1の工程における素子分離層及び配線領域の
酸化と、前記第2の工程における配線領域の再酸化膜は
いずれも熱酸化により行う特許請求の範囲第6項記載の
MOS集積回路装置の製造方法。 9、前記第2の工程は前記第1の工程で形成された耐酸
化膜を除去したのち、前記素子領域を他の耐酸化膜で被
覆する工程を有する特許請求の範囲第6項記載のMOS
集積回路装置の製造方法。
[Claims] 1. In a MOS integrated circuit device formed on a silicon substrate having an element region and a wiring region, the thickness of an oxide film insulating layer formed on the silicon substrate in the wiring region is , a MOS integrated circuit device characterized in that the thickness is greater than the thickness of the element isolation layer in the element region. 2. In a method of manufacturing a MOS integrated circuit device formed on a silicon substrate and having an element region and a wiring region, the first step includes covering the element region with an oxidation-resistant film and forming an oxide film on the wiring region. and a second step of covering the element portion of the element region with an oxidation-resistant film to oxidize the element isolation layer and re-oxidize the wiring region. Method. 3. The method of manufacturing a MOS integrated circuit device according to claim 2, wherein the element portions covered with the oxidation-resistant film in the second step are the source, drain, and gate portions of a MOS transistor. 4. The oxidation of the wiring region in the first step, the oxidation of the element isolation layer and the re-oxidation of the wiring region in the second step are all performed by thermal oxidation. A method of manufacturing a MOS integrated circuit device. 5. Claim 2, wherein the second step includes the step of removing the oxidation-resistant film formed in the first step and then covering the element portion of the element region with another oxidation-resistant film. A method of manufacturing the described MOS integrated circuit device. 6. In a method for manufacturing a MOS integrated circuit device formed on a silicon substrate and having an element region and a wiring region, the element portion of the element region is covered with an oxidation-resistant film to prevent oxidation of the element isolation layer and the wiring. a first step of oxidizing the region;
a second step of covering the element region with an oxidation-resistant film and reoxidizing the wiring region.
A method of manufacturing an integrated circuit device. 7. The method of manufacturing a MOS integrated circuit device according to claim 6, wherein the element portions covered with the oxidation-resistant film in the first step are the drain/source and gate portions of a MOS transistor. 8. The MOS integrated circuit device according to claim 6, wherein the oxidation of the element isolation layer and wiring region in the first step and the re-oxidation film of the wiring region in the second step are performed by thermal oxidation. manufacturing method. 9. The MOS according to claim 6, wherein the second step includes a step of removing the oxidation-resistant film formed in the first step and then covering the element region with another oxidation-resistant film.
A method of manufacturing an integrated circuit device.
JP21155285A 1985-09-25 1985-09-25 Mos integrated circuit device and manufacture thereof Pending JPS6272145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21155285A JPS6272145A (en) 1985-09-25 1985-09-25 Mos integrated circuit device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21155285A JPS6272145A (en) 1985-09-25 1985-09-25 Mos integrated circuit device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6272145A true JPS6272145A (en) 1987-04-02

Family

ID=16607701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21155285A Pending JPS6272145A (en) 1985-09-25 1985-09-25 Mos integrated circuit device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6272145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113554A (en) * 1988-10-22 1990-04-25 Nec Corp Wiring structure of semiconductor integrated circuit
US5831323A (en) * 1995-05-16 1998-11-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an element isolating oxide film and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113554A (en) * 1988-10-22 1990-04-25 Nec Corp Wiring structure of semiconductor integrated circuit
US5831323A (en) * 1995-05-16 1998-11-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an element isolating oxide film and method of manufacturing the same
US6033971A (en) * 1995-05-16 2000-03-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having an element isolating oxide film and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH0521557A (en) Semiconductor device
KR100190365B1 (en) Semiconductor device manufacturing of photomask & forming method thereof
JPS5919354A (en) Semiconductor device
JPS6272145A (en) Mos integrated circuit device and manufacture thereof
JPH08330518A (en) Semiconductor integrated circuit and its manufacturing method
JPS63143845A (en) Semiconductor integrated circuit device
JP2840150B2 (en) Semiconductor integrated circuit and interlayer connection method thereof
JPS5877245A (en) Semiconductor integrated circuit device
JP3024878B2 (en) Master slice type semiconductor integrated circuit device and method of manufacturing the same
JPH0426162A (en) Floating gate semiconductor memory and manufacture thereof
JPH0427125A (en) Method of producing wiring member
JP2001223275A (en) Semiconductor device and manufacturing method for the same
JPH07263631A (en) Wiring structure of semiconductor integrated circuit device
KR19990007182A (en) Semiconductor device and manufacturing method thereof
JPS63224342A (en) Semiconductor device and manufacture thereof
JPH0677442A (en) Manufacture of semiconductor integrated circuit
JPS6276533A (en) Semiconductor integrated circuit device and its manufacture
JP2940484B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0382031A (en) Semiconductor integrated circuit and manufacture thereof
KR20020055152A (en) method for manufacturing of transistor of semiconductor device
JPS58192376A (en) Semiconductor device and manufacture thereof
JPH03222456A (en) Element isolation structure of semiconductor device
JPH04111465A (en) Manufacture of non-volatile semiconductor memory device
JPS5858746A (en) Manufacture of semiconductor device
JPS6038863A (en) Manufacture of semiconductor device