JPH02113554A - Wiring structure of semiconductor integrated circuit - Google Patents

Wiring structure of semiconductor integrated circuit

Info

Publication number
JPH02113554A
JPH02113554A JP26656288A JP26656288A JPH02113554A JP H02113554 A JPH02113554 A JP H02113554A JP 26656288 A JP26656288 A JP 26656288A JP 26656288 A JP26656288 A JP 26656288A JP H02113554 A JPH02113554 A JP H02113554A
Authority
JP
Japan
Prior art keywords
wiring
insulating film
oxide film
semiconductor substrate
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26656288A
Other languages
Japanese (ja)
Inventor
Kazuyuki Mizushima
水嶋 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26656288A priority Critical patent/JPH02113554A/en
Publication of JPH02113554A publication Critical patent/JPH02113554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a capacitance generating between a wiring and a semiconductor substrate without increasing the thickness of an oxide film by constituting a part of the oxide film for element isolation by using a thick insulating film, and forming a part of wiring on the insulating film. CONSTITUTION:A part of an oxide film 13 for element isolation formed on a semiconductor substrate 11 is constituted by using a thick insulating film 14, and at least a part of a wiring 16 formed on the oxide film 13 is formed on the insulating film 14. That is, it is not necessary for all wiring to be formed on the thick insulating film 14, and only the wiring whose parasitic capacitance becomes a serious problem is formed thereon. By this set-up, the capacitance between the semiconductor substrate 11, the first wiring 16 and a second wiring 18 scarcely changes, when the thickness of the oxide film between the semiconductor substrate and the wiring is changed. Only the capacitance of large value between the first wiring and the semiconductor substrate decreases remarkably, so that the parasitic capacitance can be reduced without reducing the surface area of the first wiring 16. Thereby, a thick insulating film can be formed without affecting miniaturization, and the reduction of parasitic capacitance is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の構造に関し、特に配線の寄生
容量を低減した配線構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor integrated circuit, and particularly to a wiring structure in which parasitic capacitance of wiring is reduced.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路の配線は半導体基板上に形成した
素子間分離用の絶縁膜或いは眉間絶縁膜上に形成される
。第5図に一例として酸化膜を素子分離膜として適用し
たバイポーラ集積回路の素子と配線を含む断面図を示す
。図において、11は半導体基板、12はエピタキシャ
ル成長層であり、素子間分離用の酸化膜13で素子領域
を画成し、この素子領域にバイポーラトランジスタ15
を形成している。そして、前記酸化膜13上にアルミニ
ウム等の第1配線16を形成し、これを眉間絶縁膜17
で被覆した上で、第2配線18を形成している。19は
保護絶縁膜である。
Conventionally, wiring of a semiconductor integrated circuit is formed on an insulating film for isolation between elements or a glabella insulating film formed on a semiconductor substrate. FIG. 5 shows, as an example, a cross-sectional view including elements and wiring of a bipolar integrated circuit in which an oxide film is used as an element isolation film. In the figure, 11 is a semiconductor substrate, 12 is an epitaxial growth layer, an element region is defined by an oxide film 13 for isolation between elements, and a bipolar transistor 15 is formed in this element region.
is formed. Then, a first wiring 16 made of aluminum or the like is formed on the oxide film 13, and this is connected to the glabella insulating film 17.
The second wiring 18 is formed after being coated with . 19 is a protective insulating film.

なお、前記酸化膜13は、通常ではエピタキシャル成長
1112よりやや厚く形成している。
Note that the oxide film 13 is normally formed to be slightly thicker than the epitaxial growth 1112.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、近年の半導体集積回路は高速動作が要求され
ている。特に、集積回路に形成する能動素子では、寸法
の微細化、PN接合の浅接合化により寄生容量、寄生抵
抗を減らし遮断周波数を上げ高速化が計られている。し
かし、素子の寸法が微細になっても高速動作のために必
要な電流は大きくとる必要があり、そのため配線幅はエ
レクトロマイグレーション耐性を確保するのに必要な幅
寸法以下には縮小できないのが現状である。
Incidentally, semiconductor integrated circuits in recent years are required to operate at high speed. In particular, in active elements formed in integrated circuits, efforts are being made to reduce parasitic capacitance and parasitic resistance, increase cut-off frequency, and increase speed by miniaturizing dimensions and making PN junctions shallower. However, even if the dimensions of the device become smaller, the current required for high-speed operation must be large, and therefore the wiring width cannot be reduced below the width required to ensure electromigration resistance. It is.

一方、上述した素子の高速動作化が進むに従い、配線負
荷によるチップ内部での信号遅延が無視できなくなって
いる。配線負荷は配線自身の抵抗と配線に生じる寄生容
量により決定され、これらを低減することが必要とされ
る。特に、配線容量は配線の表面積に関係しており、こ
の表面積を低減することで寄生容量を低減できる。しか
しながら、表面積を低減することは、配線抵抗を増大す
ることになり、かつエレクトロマイグレーション耐性も
悪化することになる。
On the other hand, as the above-mentioned elements become faster to operate, signal delays inside the chip due to wiring loads cannot be ignored. The wiring load is determined by the resistance of the wiring itself and the parasitic capacitance generated in the wiring, and it is necessary to reduce these. In particular, the wiring capacitance is related to the surface area of the wiring, and by reducing this surface area, the parasitic capacitance can be reduced. However, reducing the surface area increases interconnect resistance and also deteriorates electromigration resistance.

このため、表面積を低減する代わりに、配線間或いは配
線と半導体基板間の間隔を大きくし、換言すれば両者間
を絶縁する絶縁膜の厚さを厚くして容量を低減する試み
がなされている。しかしながら、絶縁膜を厚くしたとき
には、この絶縁膜を微細パターンに形成し、或いはエツ
チング等で微細加工することが困難になり、素子の微細
化が促進できず、素子の高速特性劣化につながるという
問題がある。
Therefore, instead of reducing the surface area, attempts have been made to reduce the capacitance by increasing the distance between wires or between the wires and the semiconductor substrate, or in other words, by increasing the thickness of the insulating film that insulates the two. . However, when the insulating film is made thicker, it becomes difficult to form the insulating film into a fine pattern or to microfabricate it by etching, etc., which prevents the miniaturization of devices from being promoted and leads to the problem of high-speed characteristics deterioration of the device. There is.

本発明は微細化を損なうことなく厚い絶縁膜の形成を可
能とし、寄生容量の低減を実現した半導体集積回路の配
線構造を提供することを目的とする。
An object of the present invention is to provide a wiring structure for a semiconductor integrated circuit that enables the formation of a thick insulating film without impairing miniaturization and reduces parasitic capacitance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路の配線構造は、半導体基板上に
形成した素子分離用酸化膜一部を膜厚の厚い絶縁膜、或
いは誘電率の小さい絶縁膜で構成し、酸化膜上に形成す
る配線の少なくとも一部をこの絶縁膜上に形成した構成
としている。
In the wiring structure of the semiconductor integrated circuit of the present invention, a part of the oxide film for element isolation formed on the semiconductor substrate is composed of a thick insulating film or an insulating film with a small dielectric constant, and the wiring formed on the oxide film is At least a portion of the insulating film is formed on the insulating film.

〔作用〕[Effect]

上述した構成では、酸化膜の厚さを増大させることなく
、酸化膜の一部に形成した絶縁膜上の配線と半導体基板
との間の間隔を電気的に増大させ、両者間に生じる容量
を低減する。
In the above structure, the distance between the wiring on the insulating film formed on a part of the oxide film and the semiconductor substrate is electrically increased without increasing the thickness of the oxide film, and the capacitance generated between the two is reduced. reduce

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例の縦断面図であり、ここで
はバイポーラ集積回路に本発明を適用した例を示してい
る。
FIG. 1 is a longitudinal sectional view of a first embodiment of the present invention, showing an example in which the present invention is applied to a bipolar integrated circuit.

図において、半導体基板11にはエピタキシャル成長層
12を形成し、素子間分離用の厚い酸化膜13で素子領
域を画成している。このとき、この酸化膜13の一部で
配線を形成する箇所には、酸化膜13よりも更に厚い絶
縁膜14を形成している。
In the figure, an epitaxial growth layer 12 is formed on a semiconductor substrate 11, and an element region is defined by a thick oxide film 13 for isolation between elements. At this time, an insulating film 14 that is thicker than the oxide film 13 is formed at a portion of the oxide film 13 where wiring is to be formed.

この厚い絶縁膜14は、ここではシリコン酸化膜で構成
しており、例えば次の方法によって形成する。即ち、エ
ピタキシャル成長層12を形成した後の半導体基板11
に対して、厚い絶縁膜14を形成する予定領域のみを必
要な深さだけ選択的にエツチングする。その上で、深さ
に対して十分厚いシリコン酸化膜を化学気相成長法(C
VD法)等で形成する。そして、表面を研磨し不必要な
シリコン酸化膜を除去することにより所望の形状が得ら
れる。
The thick insulating film 14 is made of a silicon oxide film here, and is formed, for example, by the following method. That is, the semiconductor substrate 11 after forming the epitaxial growth layer 12
On the other hand, only the area where the thick insulating film 14 is to be formed is selectively etched to a required depth. On top of that, a silicon oxide film that is sufficiently thick relative to the depth is grown using chemical vapor deposition (C
VD method) etc. A desired shape can then be obtained by polishing the surface and removing unnecessary silicon oxide films.

この後、従来と同様の選択酸化法等を用いてエピタキシ
ャル成長層12の厚さに適した素子間分離用の酸化膜1
3を形成する。この酸化膜13により画成される素子領
域には、公知の方法によってバイポーラトランジスタ1
5を形成する。
After this, an oxide film 1 for isolation between devices is formed using a selective oxidation method similar to the conventional method, etc., to suit the thickness of the epitaxial growth layer 12.
form 3. A bipolar transistor 1 is formed in the device region defined by this oxide film 13 by a known method.
form 5.

そして、前記厚い絶縁膜14上にアルミニウム等の導電
材料で所要のパターンに形成した第1配線16を形成す
る。この場合、全ての配線を厚い絶縁膜14上に形成す
る必要はなく、特に寄生容量が問題とされる配線のみを
形成すればよい。
Then, a first wiring 16 made of a conductive material such as aluminum and formed in a desired pattern is formed on the thick insulating film 14. In this case, it is not necessary to form all the wirings on the thick insulating film 14, and it is sufficient to form only the wirings where parasitic capacitance is a particular problem.

なお、17は眉間絶縁膜、18は第2配線、19は保護
膜である。
Note that 17 is an insulating film between the eyebrows, 18 is a second wiring, and 19 is a protective film.

第2図は第1図の半導体集積回路の配線部分を模式的に
示す斜視図であり、第1図と対応する部分には同一符号
を付しである。このようにモデル化された配線構造にお
いて、半導体基板と配線間の酸化膜厚を変えた時の半導
体基板11.第1配線16.第2配線18間の容量の変
化を計算によって求めた結果を第3図に示す。
FIG. 2 is a perspective view schematically showing the wiring portion of the semiconductor integrated circuit shown in FIG. 1, and parts corresponding to those in FIG. 1 are given the same reference numerals. In the wiring structure modeled in this way, the semiconductor substrate 11 when the oxide film thickness between the semiconductor substrate and the wiring is changed. First wiring 16. FIG. 3 shows the results of calculating the change in capacitance between the second wirings 18.

この図から、半導体基板と配線間酸化膜厚しが1.5倍
になるとC+−sum  (第1配線−半導体基板間容
量)成分は26%減少し、さらにtが2倍になると41
%減少することがわかる。またこのとき、同層配線間容
量C+−+  (隣接する第1配線間容量)。
From this figure, when the thickness of the oxide film between the semiconductor substrate and the wiring increases by 1.5 times, the C+-sum (capacitance between the first wiring and the semiconductor substrate) component decreases by 26%, and when t further doubles, it decreases by 41%.
% decrease. Also, at this time, the capacitance C+-+ between interconnects in the same layer (capacitance between adjacent first interconnects).

C2−□ (隣接する第2配線間容量)、及び異層配線
間容量C+−z  (第1配線−第2配線間容量)。
C2-□ (capacitance between adjacent second wirings), and capacitance between different layer wirings C+-z (capacitance between first wiring and second wiring).

CC2−5u  (第2配線−半導体基板間容量)は殆
ど変化せず、容量値の大きいCl−3LIII成分のみ
が飛躍的に減少することが判る。
It can be seen that CC2-5u (second wiring-semiconductor substrate capacitance) hardly changes, and only the Cl-3LIII component, which has a large capacitance value, decreases dramatically.

したがって、特に第1配線160表面積を低減しなくて
も寄生容量が低減できる。また、このとき厚い絶縁膜1
4は素子間分離用の酸化膜13とは別工程で形成してい
るので、素子間分離用の酸化膜13は必要最小限の厚さ
に抑えることができ、素子の@細加工を可能とする。
Therefore, the parasitic capacitance can be reduced without particularly reducing the surface area of the first wiring 160. In addition, at this time, the thick insulating film 1
4 is formed in a separate process from the oxide film 13 for isolation between elements, so the thickness of the oxide film 13 for isolation between elements can be kept to the minimum necessary thickness, making @ fine processing of elements possible. do.

第4図は本発明の第2実施例の縦断面図であり、第1図
と同−又は均等な部分には同一符号を付しである。
FIG. 4 is a longitudinal cross-sectional view of a second embodiment of the present invention, in which the same or equivalent parts as in FIG. 1 are given the same reference numerals.

この実施例では素子間分離用酸化膜13のうち、第1配
線16を形成する領域の表面を誘電率の低い物質20で
構成している。この物質としてはポリイミドなどの有機
系材料が通している。また、この物質20はバイポーラ
トランジスタ15等の素子を形成した後に、酸化膜13
の表面を深さ方向にエツチングし、形成された凹部内に
塗布法等により埋設することで形成することができる。
In this embodiment, the surface of the region where the first wiring 16 is to be formed in the oxide film 13 for element isolation is made of a material 20 with a low dielectric constant. Organic materials such as polyimide are used as this material. Further, this material 20 is applied to the oxide film 13 after forming elements such as the bipolar transistor 15.
It can be formed by etching the surface in the depth direction and embedding it in the formed recess by a coating method or the like.

この構成によれば、誘電率の低い物質20によって半導
体基板11と第1配線16との間の電気的な間隔を増大
させ、両者間に生じる容量を低減できる。また、実際に
は酸化膜13の厚さは従来通りであり、微細な加工が阻
害されることはない。
According to this configuration, the electrical distance between the semiconductor substrate 11 and the first wiring 16 can be increased by the material 20 having a low dielectric constant, and the capacitance generated between the two can be reduced. Furthermore, in reality, the thickness of the oxide film 13 is the same as before, and fine processing is not hindered.

特に、本発明を素子領域と配線チャネル領域とから成る
ゲートアレ一方式の半導体集積回路に適用した場合には
、チャネル領域に本発明構造を施すことにより、チップ
上で離れた位置にあるゲート間の配線容量をレイアウト
上の制限をつけずに低減することが可能となる。
In particular, when the present invention is applied to a gate array type semiconductor integrated circuit consisting of an element region and a wiring channel region, by applying the present invention structure to the channel region, it is possible to It becomes possible to reduce the wiring capacitance without imposing layout restrictions.

〔発明の効果] 以上説明したように本発明は、素子分離用酸化膜一部を
膜厚の厚い絶縁膜、或いは誘電率の小さい絶縁膜で構成
し、配線の少な(とも一部をこの絶縁膜上に形成してい
るので、酸化膜の厚さを増大させることなく、酸化膜の
一部に形成した絶縁膜上の配線と半導体基板との間の間
隔を電気的に増大させ、両者間に生じる容量を低減する
ことができる。これにより、酸化膜における微細加工を
実現して集積回路の微細化を実現する一方で、配線に寄
生する容量を低減して動作の高速化が達成できる。
[Effects of the Invention] As explained above, the present invention consists of a part of the oxide film for element isolation made of a thick insulating film or an insulating film with a small dielectric constant, and has a small number of interconnections (some of which are made of this insulating film). Since it is formed on a film, it is possible to electrically increase the distance between the wiring on the insulating film formed on a part of the oxide film and the semiconductor substrate without increasing the thickness of the oxide film, and to increase the distance between the two. This makes it possible to realize microfabrication of the oxide film and miniaturize the integrated circuit, while reducing the parasitic capacitance of the wiring and achieving faster operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の縦断面図、第2図は第1
図に示した半導体集積回路の配線構造を模式的に示す斜
視図、第3図は酸化膜の膜厚と寄生容量との関係を示す
図、第4図は本発明の第2実施例の縦断面図、第5図は
従来の配線構造の縦断面図である。 11・・・半導体基板、12・・・エピタキシャル成長
層、13・・・素子間分離用酸化膜、14・・・厚い絶
縁膜、15・・・バイポーラトランジスタ、16・・・
第1配線、17・・・層間絶縁膜、18・・・第2配線
、19・・・保護膜、20・・・低誘電率物質、 第2図
FIG. 1 is a vertical cross-sectional view of the first embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing the relationship between the thickness of the oxide film and the parasitic capacitance, and FIG. 4 is a vertical cross-section of the second embodiment of the present invention. The plan view and FIG. 5 are longitudinal cross-sectional views of a conventional wiring structure. DESCRIPTION OF SYMBOLS 11... Semiconductor substrate, 12... Epitaxial growth layer, 13... Oxide film for isolation between elements, 14... Thick insulating film, 15... Bipolar transistor, 16...
First wiring, 17... Interlayer insulating film, 18... Second wiring, 19... Protective film, 20... Low dielectric constant material, Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に素子分離用酸化膜で素子を画成し、
この素子領域に各種の素子を形成するとともに、前記酸
化膜上に配線を形成した半導体集積回路において、前記
酸化膜の一部を膜厚の厚い絶縁膜、或いは誘電率の小さ
い絶縁膜で構成し、前記配線の少なくとも一部をこの絶
縁膜上に形成したことを特徴とする半導体集積回路の配
線構造。
1. Define elements on a semiconductor substrate with an oxide film for element isolation,
In a semiconductor integrated circuit in which various elements are formed in this element region and wiring is formed on the oxide film, a part of the oxide film is formed of a thick insulating film or an insulating film with a small dielectric constant. . A wiring structure for a semiconductor integrated circuit, wherein at least a part of the wiring is formed on the insulating film.
JP26656288A 1988-10-22 1988-10-22 Wiring structure of semiconductor integrated circuit Pending JPH02113554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26656288A JPH02113554A (en) 1988-10-22 1988-10-22 Wiring structure of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26656288A JPH02113554A (en) 1988-10-22 1988-10-22 Wiring structure of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH02113554A true JPH02113554A (en) 1990-04-25

Family

ID=17432559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26656288A Pending JPH02113554A (en) 1988-10-22 1988-10-22 Wiring structure of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH02113554A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194742A (en) * 1985-02-22 1986-08-29 Nec Corp Semiconductor device
JPS6272145A (en) * 1985-09-25 1987-04-02 Toshiba Corp Mos integrated circuit device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194742A (en) * 1985-02-22 1986-08-29 Nec Corp Semiconductor device
JPS6272145A (en) * 1985-09-25 1987-04-02 Toshiba Corp Mos integrated circuit device and manufacture thereof

Similar Documents

Publication Publication Date Title
US6552383B2 (en) Integrated decoupling capacitors
EP0646959B1 (en) Metallization and bonding process for manufacturing power semiconductor devices
US7701057B1 (en) Semiconductor device having structures for reducing substrate noise coupled from through die vias
US5135889A (en) Method for forming a shielding structure for decoupling signal traces in a semiconductor
JPH11233727A (en) Inductor on silicon substrate and its manufacture
JPS61198780A (en) Manufacture of semiconductor device
US7227214B2 (en) Semiconductor device and method of manufacturing the same
US7790602B1 (en) Method of forming a metal interconnect with capacitive structures that adjust the capacitance of the interconnect
JPH02113554A (en) Wiring structure of semiconductor integrated circuit
JPS59144171A (en) Semiconductor integrated circuit device
JPS6249734B2 (en)
US6940132B2 (en) Semiconductor device and method of manufacturing the same
JPH021917A (en) Semiconductor integrated circuit
US7473624B2 (en) Method for manufacturing semiconductor device
JPH0834245B2 (en) Method for manufacturing semiconductor device
JPS5948958A (en) Semiconductor integrated circuit
US20230136674A1 (en) Self-aligned double patterning (sadp) integration with wide line spacing
JPH0964182A (en) Semiconductor integrated circuit device and manufacture thereof
JP3189797B2 (en) Manufacturing method of semiconductor integrated circuit
JP3024878B2 (en) Master slice type semiconductor integrated circuit device and method of manufacturing the same
JPH03278533A (en) Semiconductor integrated circuit device
JPS62237746A (en) Semiconductor integrated circuit
JPH07142480A (en) Semiconductor integrated circuit device and fabrication thereof
JPH07221190A (en) Semiconductor integrated circuit device
JPS61270849A (en) Integrated circuit device