JPS61270849A - Integrated circuit device - Google Patents

Integrated circuit device

Info

Publication number
JPS61270849A
JPS61270849A JP11161285A JP11161285A JPS61270849A JP S61270849 A JPS61270849 A JP S61270849A JP 11161285 A JP11161285 A JP 11161285A JP 11161285 A JP11161285 A JP 11161285A JP S61270849 A JPS61270849 A JP S61270849A
Authority
JP
Japan
Prior art keywords
wiring
conductor
parasitic capacitance
width
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11161285A
Other languages
Japanese (ja)
Inventor
Masaharu Kobayashi
正治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11161285A priority Critical patent/JPS61270849A/en
Publication of JPS61270849A publication Critical patent/JPS61270849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce the wiring capacity by a method wherein a floating conductor layer not directly impressed with potential is provided between the first wiring conductor layer and the second wiring conductor layer. CONSTITUTION:A floating conductor 16, an upper layer wiring 15 are formed on an Si substrate 11. Assuming the parasitic capacity per unit length to be CA between the wiring 15 and the conductor 16 and CB between the conductor 16 and the substrate 11, the total parasitic capacity of wiring 15 shall be CAXCB /(CA+CB), making it feasible to reduce the parasitic capacity of wiring 15 by restricting the width of conductor 15 to 10mum or less to accelerate an IC device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発BAは集積回路装置に関し、%にその配線の布設方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present BA relates to integrated circuit devices, and particularly to a method for laying wiring thereof.

〔従来の技術〕[Conventional technology]

一般に集積回路装置は半導体基板上に形成された複数の
半導体集子とこれら複数の半導体素子を相互に接続して
いる配線よシ構成される。従来の集積回路においては個
々の半導体素子のサイズは比較的大きく、これら複数の
半導体素子を相互に接続している配線にも比較的配′1
M@の太い配線が使用されている。これは、半導体基板
上ひに配線のバタン形成が製造技術並ひにプロセス技術
上の制約によシ決定されていたためである。
Generally, an integrated circuit device is composed of a plurality of semiconductor chips formed on a semiconductor substrate and wiring interconnecting the plurality of semiconductor elements. In conventional integrated circuits, the size of individual semiconductor elements is relatively large, and the wiring interconnecting these multiple semiconductor elements is also relatively small.
M@ thick wiring is used. This is because the formation of wiring patterns on a semiconductor substrate is determined by constraints on manufacturing technology and process technology.

従来の集積口′路装置に使用されている半導体素子に寄
生する容量は大きくこのような寄生容量の大きい半導体
素子を用いて樽成される基本回路の動作速度は比較的遅
く、また配線の配線幅が太いことから配線の寄生容量が
大きく、配線の寄生容量による遅延も比較的大きかった
The parasitic capacitance of semiconductor elements used in conventional integrated circuit devices is large, and the operating speed of basic circuits constructed using semiconductor elements with such large parasitic capacitances is relatively slow, and the wiring Due to the large width, the parasitic capacitance of the wiring was large, and the delay due to the parasitic capacitance of the wiring was also relatively large.

近年において線条積回路装置は裂造技術韮ひにプロセス
技術の進歩によシ半導体素子の一層の微細加工が可能に
なっている。この微細加工技術を用いることによシ半尋
体素子のサイズの小型化が可能に々〕個々の半等体素子
に寄生する容量を減少できる。同様に半導体素子間を相
互に接続している配線の配線幅を細くすることが可能に
々ル配線の単位長当シの寄生容量を減少できる@このた
め近年の集積回路装置において社基本回路の動作速度は
比較的速く%また配線の寄生容量による遅延も比較的小
さくなっている。しかしながら半導体素子自体の動作速
度が速く々るに従い相対的に配線の奇生容量による遅延
が大きく見えてくるようKなシ、集積回路装置としての
動作速度を高速化することが難かしくなってきている。
In recent years, advances in fabrication technology and process technology have enabled even finer processing of semiconductor elements in wire integrated circuit devices. By using this microfabrication technique, it is possible to reduce the size of the hemispherical elements, and it is possible to reduce the parasitic capacitance of each hemispherical element. Similarly, it is possible to narrow the wiring width of the wiring interconnecting semiconductor elements, which reduces the parasitic capacitance per unit length of the wiring. The operating speed is relatively fast and the delay due to parasitic capacitance of wiring is relatively small. However, as the operating speed of semiconductor elements themselves becomes faster and faster, the delay due to the parasitic capacitance of wiring becomes relatively larger, and it is becoming difficult to increase the operating speed of integrated circuit devices. There is.

〔発明が解訣しようとする問題点〕[Problems that the invention attempts to solve]

このため、配線の奇生容量を減少させる必要が高まって
いるが、一般に配線の寄生容量を減少させる方法として
は、配線の配線幅を細くする。配線の配線長を短かくす
る。配線の8曲の層間絶縁膜の膜厚を厚くして配線の相
互間隔を拡げる。層間絶縁膜に誘電率の低い材料を使用
する0の4方法が挙けられる。以下それぞれの方法につ
いて問題点を述べる。
For this reason, there is an increasing need to reduce the parasitic capacitance of wiring, and the general method for reducing the parasitic capacitance of wiring is to reduce the width of the wiring. Shorten the wiring length. The thickness of the interlayer insulating film of the eight wires is increased to widen the mutual spacing between the wires. There are four methods that use a material with a low dielectric constant for the interlayer insulating film. Problems with each method are discussed below.

第1の配線幅を細くする方法は、製造技術の進歩に応じ
て可能になった方法であル、従来のように配線幅が比較
的太いときKは配線の底面或いは上面の寄生容量が支配
的であシ配線の端効果による側面の容量については殆ん
ど考慮する必要はなく、配線幅を細くすれはその細くし
た割合にほぼ比例して配線の奇生容量は減少していたが
、配線幅が細くなり配線の底面或いは上面の寄生容量が
減少すると配線の端効果による側面の寄生容量が相対的
に大きく見えてくるようKなル、微細加工技術を用いて
配線の配線幅を細くしても単位長当シO配線の寄生容量
紘さはど減少しないようになる。この配線の側面の寄生
容量の影響を具体例を挙げて説明する。
The first method of narrowing the wiring width is a method that has become possible due to advances in manufacturing technology.As in the past, when the wiring width is relatively thick, K is dominated by the parasitic capacitance on the bottom or top surface of the wiring. There is almost no need to consider the side capacitance due to the edge effect of the wiring, and as the wiring width is made thinner, the parasitic capacitance of the wiring decreases in approximately proportion to the rate of thinning. As the wiring width becomes thinner and the parasitic capacitance on the bottom or top surface of the wiring decreases, the parasitic capacitance on the sides due to the edge effect of the wiring will appear relatively larger. Even if the unit length is increased, the parasitic capacitance of the O wiring does not decrease. The influence of the parasitic capacitance on the side surface of the wiring will be explained using a specific example.

第3図は本発明を用いていまい従来の配線の断面図であ
〕、31紘半導体基板、32.33Uそれぞれ第1.第
2の層間絶縁膜、35は着目している配線、34は保護
膜である。なお、お3図には示していないがthlの層
間絶縁膜32と第2の層間絶に膜33との間には別の配
線或いは抵抗等が配置され回路を構成しているものとす
る0尚。
FIG. 3 is a cross-sectional view of a conventional wiring without using the present invention. The second interlayer insulating film, 35 is the wiring of interest, and 34 is a protective film. Although not shown in Figure 3, it is assumed that another wiring or resistor is arranged between the THL interlayer insulating film 32 and the second interlayer insulating film 33 to form a circuit. still.

半導体基板とはエピタキシャル層をも含む総称である。A semiconductor substrate is a general term that also includes an epitaxial layer.

第3図において第1.第2の層間絶Ij7&膜3233
の膜厚をそれぞれ05μm%抛1.第2の層間絶縁膜3
2,330比誘電率をともに4.0配線35の配線幅3
μm1配@35の長さ1μmとした場合の単位長当シの
配線の容量を基準値とすると配線35の配線幅を1.6
μmとして他の条件が全て同一であるとき単位長当シの
配線の寄生容量は基準値に比べ23%減少し、また配線
35の配線幅を1μmとして他の条件が全て同一である
とき、単位長当シの配線の寄生容量は基準値に比べ33
チ減少するにすぎない。このように配線の配線幅を細く
しても、配線の端効果による側面の容量のために配線の
寄生容量の減少の割合は配線幅の減少の割合に比べてわ
ずかであシ、今後−微細加工技術が進歩して配線の配線
幅を一層細くできるように一層りても配線の寄生容量の
減少にはあまシ寄与しないよう11ってゆく。
In Figure 3, 1. Second interlayer Ij7 & film 3233
The film thickness was reduced to 05 μm%, respectively.1. Second interlayer insulating film 3
2,330 relative permittivity both 4.0 wiring width 35
If the capacitance of the wiring per unit length is taken as the standard value when the length of the wiring 35 is 1 μm, the wiring width of the wiring 35 is 1.6
When all other conditions are the same, the parasitic capacitance of a wire with a unit length is reduced by 23% compared to the reference value, and when the width of the wire 35 is 1 μm and all other conditions are the same, The parasitic capacitance of long wiring is 33% compared to the standard value.
It only decreases. Even if the wiring width of the wiring is reduced in this way, the rate of decrease in the parasitic capacitance of the wiring due to the side capacitance due to the edge effect of the wiring is small compared to the rate of decrease in the wiring width. As processing technology advances and the wiring width of the wiring can be made even thinner, the wiring width will be further reduced so that it does not significantly contribute to reducing the parasitic capacitance of the wiring.

また、MOS)ランジスタで構成されている回路の様に
消費電力の少い場合には配線の配線幅を細くしても差し
仕えないが、パイボーラトランジ。
Also, if the power consumption is low, such as in a circuit made up of MOS (MOS) transistors, there is no harm in making the wiring width thinner, but it is a pibora transistor.

スタで構成される回路の様に消am力の多い場合には配
線を流れる電流密度を一定値以下に保持する必要がある
ため配線の配線幅を細くするととKも限度があシ、今後
、配線の配線幅を細くすることKよって配線の寄生容量
を減少させるのは難かしい。
In cases where there is a large amount of dissipation force, such as in a circuit composed of stars, it is necessary to maintain the current density flowing through the wiring below a certain value, so if the wiring width is made thinner, there will be a limit to K. It is difficult to reduce the parasitic capacitance of the wiring by narrowing the width of the wiring.

第2の配線の配線長を短かくする方法は集積回路装置内
部において特に速度を豊水される回路部分を配線長が短
かくなるようにレイアウトすることのできる製品の場合
には有効な方法ではあるが、配線工程の変更によシ複数
の品種を展開するマスタースライス品については回路構
成上配線の配線長を短かくできない場合が生じる。
The method of shortening the wiring length of the second wiring is an effective method within an integrated circuit device, especially in the case of products where circuit parts that are subject to increased speed can be laid out so that the wiring length is shortened. However, due to the circuit configuration, it may not be possible to shorten the length of the wiring for master slice products that are available in multiple products by changing the wiring process.

第3の層間絶縁膜の膜厚を厚くする方法は半導体基板上
に形成されている半導体素子と配線とを接続するための
コンタクト開孔部の段差が急峻になり配線が断線を起こ
し易くなるという信頼性上の問題が生じる。或いは、コ
ンタクト開孔部の段差を緩和させるためにコンタクト開
孔部周辺にテーパーを設ける等の新なプロセス技術を用
いる必要が生じる。
The third method of increasing the thickness of the interlayer insulating film is that the step of the contact opening for connecting the semiconductor element and the wiring formed on the semiconductor substrate becomes steep, making the wiring more likely to break. Reliability issues arise. Alternatively, it becomes necessary to use a new process technique such as providing a taper around the contact opening in order to reduce the level difference in the contact opening.

第40層間絶縁膜に誘電率の低い材料を用いる方法は、
現在のところ誘電率の低い層間絶縁膜には絶縁性、耐湿
性、耐熱性等に信頼性上の問題かあるものが多く実用に
至ってい々い。
The method of using a material with a low dielectric constant for the 40th interlayer insulating film is as follows:
At present, many interlayer insulating films with low dielectric constants have reliability problems such as insulation, moisture resistance, heat resistance, etc., and are not suitable for practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は特に製造技術並ひにプロセス技術上の一変更を
することなしに配線の寄生容量を減少させることKよシ
配線の寄生容量による遅延を小さくして集積回路装置の
高速化を実現するものである。
In particular, the present invention aims to reduce the parasitic capacitance of interconnects without making any changes in manufacturing technology or process technology, thereby reducing the delay due to the parasitic capacitance of interconnects and achieving higher speed integrated circuit devices. It is something.

不発BA紘第1の配線層の第1の導体と第2の配線層の
第2の導体との間の第3の配線層に直接電位が印加され
ていない第3の導体(以下フローティング導体とする。
Unexploded BA Hiro A third conductor (hereinafter referred to as a floating conductor) to which a potential is not directly applied to the third wiring layer between the first conductor of the first wiring layer and the second conductor of the second wiring layer. do.

)が存在することを特徴とするO 〔実施例〕 以下本発明を実施例を用いて説明する。第1図は本発明
を用いた場合の一実施例であjollij:半導体基板
、12.12はそれぞれ第1.第2の層間絶&膜、15
は着目している配線、16はフローティング導体である
) [Examples] The present invention will be described below using Examples. FIG. 1 shows an embodiment in which the present invention is used. jollij: semiconductor substrate, 12 and 12 are the first . Second interlayer & membrane, 15
is the wiring of interest, and 16 is a floating conductor.

第1図のように配線15と半導体基板11との間にフロ
ーティング導体16が存在する仁とによシ配線15と半
導体基板11との間の寄生容量は等価的#c#&2図の
様に表わすことができ、配fil15と70−ティング
導体16との間の単位長当シの寄生容量をCム、フロー
ティング導体16と半導体基板11との単位長当シの寄
生容量をCIIとするとCA@CI 配線150全寄生容量は単位長当”=CA+CBとなる
。第1図において、第1.第2゛の層間絶縁膜12.1
3の膜厚をそれぞれ0.5μm%第1゜第2の層間絶縁
膜12.130比誘電率をともに4.0.配@15の配
線幅3 μm 、配線15の厚さ1μm、フローティン
グ導体16の幅3μm、フローティング導体16の厚ぢ
が1μmの場合、前述した本発明を用いていない場合の
基準値に比べ単位長年りの寄生容量は30%減少してお
シ、さらに配置1115の配線幅を1.0μmとして他
の条件が全て同一であるとき、配@15の単位長当郵の
寄生容量は40%減少している。
As shown in Figure 1, the floating conductor 16 exists between the wiring 15 and the semiconductor substrate 11, so the parasitic capacitance between the wiring 15 and the semiconductor substrate 11 is equivalent to If the parasitic capacitance per unit length between the wiring conductor 15 and the 70-ring conductor 16 is C, and the parasitic capacitance per unit length between the floating conductor 16 and the semiconductor substrate 11 is CII, then CA@ The total parasitic capacitance of the CI wiring 150 is "per unit length" = CA + CB. In FIG.
The film thickness of 3 was 0.5 μm%, respectively. The first and second interlayer insulating films were 12.130 and the dielectric constants were both 4.0. When the width of the wiring @15 is 3 μm, the thickness of the wire 15 is 1 μm, the width of the floating conductor 16 is 3 μm, and the thickness of the floating conductor 16 is 1 μm, the unit long time is 3 μm compared to the standard value when the present invention is not used. The parasitic capacitance of the wiring is reduced by 30%, and furthermore, when the wiring width of placement 1115 is 1.0 μm and all other conditions are the same, the parasitic capacitance of the unit length of wiring @15 is reduced by 40%. ing.

〔発明の効果〕〔Effect of the invention〕

このように本発明を用いると本発明を用いていない場合
に比べて配線の寄生容量を減少させることができる。
As described above, when the present invention is used, the parasitic capacitance of wiring can be reduced compared to the case where the present invention is not used.

また、第4図に示すようにフローティング導体46は配
線45と半導体基板上の半導体素子47とのコンタクト
開孔部周辺には配置しないことKよシ、本発明を用いた
場合と、本発明を用いていない場合との、第1.第2の
層間絶縁膜の膜厚がそれぞれ同一であれば、コンタクト
開孔部の段差は、同一であシ、本発明を用いたことによ
シ特に、コンタクト開孔部の段差が急峻となって配線が
断線を起こすことはない。また、フローティング導体に
は電流が流れることはないためポリシリ抵抗ポリシリ抵
抗等でもよく金属材料にこだわらない。
Furthermore, as shown in FIG. 4, the floating conductor 46 should not be placed around the contact opening between the wiring 45 and the semiconductor element 47 on the semiconductor substrate. 1st with the case where it is not used. If the film thicknesses of the second interlayer insulating films are the same, the height differences in the contact openings will be the same, but by using the present invention, the height difference in the contact openings will be particularly steep. This will prevent the wiring from breaking. Further, since no current flows through the floating conductor, a polysilicon resistor or the like may be used instead of the metallic material.

以上詳細に説明したように不発BAKよれは単位長当シ
の配線の寄生容量を減少できるため配線の寄生容量によ
る遅延が小さくなり集積回路装置の高速化が実現でき、
しかも従来の製造技術に比較して何ら特殊な製造工程を
必要としない。
As explained in detail above, unexploded BAK deflection can reduce the parasitic capacitance of the wiring per unit length, so the delay due to the parasitic capacitance of the wiring is reduced, and the speed of the integrated circuit device can be increased.
Moreover, compared to conventional manufacturing techniques, no special manufacturing process is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を用いた配線の断面図、第2図社第1図
の等価回路図、第3図は本発明を用いていない配線の断
面図、第4図は本発明を用いた配線と半導体基板上の半
導体素子との接続部分の断面図である。 11.31.41・・・・・・半導体基板、−12,3
2,42・・・・・・第1の層間111!!縁膜、13
,33.43・・・・・・IK2の層間絶縁膜、14,
34.44・・・・・・保護膜%15゜35.45・・
・・・・k線、16.46・・・・・・フローティング
導体、47・・・・・・半導体基板上に形成された半導
体素子、Cム・・・・・・配線とフローティング導体と
の単位長自ヤの容量、CB・・・・・・70−ティング
導体と半導体基板との単位長当シの容量。 代理人 弁理士  内 原   晋ぐ7゛・、    
X 〈 第 Jl!1
Figure 1 is a cross-sectional view of wiring using the present invention, Figure 2 is an equivalent circuit diagram of Figure 1, Figure 3 is a cross-sectional view of wiring that does not use the present invention, and Figure 4 is a cross-sectional diagram of wiring using the present invention. FIG. 2 is a cross-sectional view of a connection portion between wiring and a semiconductor element on a semiconductor substrate. 11.31.41... Semiconductor substrate, -12,3
2,42...First interlayer 111! ! lamina, 13
,33.43...IK2 interlayer insulating film, 14,
34.44...Protective film%15゜35.45...
...K-line, 16.46...Floating conductor, 47...Semiconductor element formed on semiconductor substrate, C-line...Connection between wiring and floating conductor Capacitance per unit length, CB: Capacitance per unit length between the 70-ring conductor and the semiconductor substrate. Agent: Patent attorney Susumu Uchihara 7゛.
X〈No. Jl! 1

Claims (4)

【特許請求の範囲】[Claims] (1)第1の配線層の第1の導体と第2の配線層の第2
の導体との間の第3の配線層に直接電位が印加されてい
ない第3の導体が存在することを特徴とする集積回路装
置。
(1) The first conductor of the first wiring layer and the second conductor of the second wiring layer
An integrated circuit device characterized in that there is a third conductor to which a potential is not directly applied to a third wiring layer between the conductor and the third conductor.
(2)前記第1の導体は半導体基板であることを特徴と
する特許請求の範囲第1項記載の集積回路装置。
(2) The integrated circuit device according to claim 1, wherein the first conductor is a semiconductor substrate.
(3)前記第3の導体の幅は10μm未満にしたことを
特徴とする特許請求の範囲第1項記載の集積回路装置。
(3) The integrated circuit device according to claim 1, wherein the width of the third conductor is less than 10 μm.
(4)前記第3の導体の幅は10μm未満にしたことを
特徴とする特許請求の範囲第2項記載の集積回路装置。
(4) The integrated circuit device according to claim 2, wherein the width of the third conductor is less than 10 μm.
JP11161285A 1985-05-24 1985-05-24 Integrated circuit device Pending JPS61270849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11161285A JPS61270849A (en) 1985-05-24 1985-05-24 Integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11161285A JPS61270849A (en) 1985-05-24 1985-05-24 Integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61270849A true JPS61270849A (en) 1986-12-01

Family

ID=14565746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11161285A Pending JPS61270849A (en) 1985-05-24 1985-05-24 Integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61270849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276245A (en) * 1987-05-08 1988-11-14 Nec Corp Semiconductor integrated circuit
JPH04307739A (en) * 1991-04-04 1992-10-29 Nec Ic Microcomput Syst Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276245A (en) * 1987-05-08 1988-11-14 Nec Corp Semiconductor integrated circuit
JPH04307739A (en) * 1991-04-04 1992-10-29 Nec Ic Microcomput Syst Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US5135889A (en) Method for forming a shielding structure for decoupling signal traces in a semiconductor
JPH05211239A (en) Interconnection structure of integrated circuit and method for formation of it
JPS6321351B2 (en)
US10090215B2 (en) System and method for dual-region singulation
JPS61270849A (en) Integrated circuit device
JPH0576174B2 (en)
US5219771A (en) Method of producing a thin film transistor device
JPS59171140A (en) Semiconductor device
US7566589B2 (en) Apparatus and method for signal bus line layout in semiconductor device
US5801421A (en) Staggered contact placement on CMOS chip
US7245027B2 (en) Apparatus and method for signal bus line layout in semiconductor device
US6914300B2 (en) Semiconductor device
EP0035793B1 (en) Semiconductor integrated circuit device
JPH02183536A (en) Semiconductor device
JPH03278533A (en) Semiconductor integrated circuit device
JPH0430452A (en) Semiconductor integrated circuit device
JP3189797B2 (en) Manufacturing method of semiconductor integrated circuit
JPH02143446A (en) Semiconductor device
JPH02170537A (en) Semiconductor device
JPS61112349A (en) Semiconductor integrated circuit device
JPS6143471A (en) Wiring structure of semiconductor device
JPS594051A (en) Semiconductor element
JPH06334157A (en) Integrated circuit and manufacture thereof
JPS61131548A (en) Semiconductor device
JPH07263631A (en) Wiring structure of semiconductor integrated circuit device