JPS6249734B2 - - Google Patents

Info

Publication number
JPS6249734B2
JPS6249734B2 JP16304781A JP16304781A JPS6249734B2 JP S6249734 B2 JPS6249734 B2 JP S6249734B2 JP 16304781 A JP16304781 A JP 16304781A JP 16304781 A JP16304781 A JP 16304781A JP S6249734 B2 JPS6249734 B2 JP S6249734B2
Authority
JP
Japan
Prior art keywords
wiring
electrode
power supply
wiring electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16304781A
Other languages
Japanese (ja)
Other versions
JPS5864048A (en
Inventor
Katsuhiko Suyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16304781A priority Critical patent/JPS5864048A/en
Publication of JPS5864048A publication Critical patent/JPS5864048A/en
Publication of JPS6249734B2 publication Critical patent/JPS6249734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体集積回路装置(IC)の構造に
係り、特に半絶縁性半導体基板を用いる高速、高
集積ICに於ける配線の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a semiconductor integrated circuit device (IC), and particularly to the structure of wiring in a high-speed, highly integrated IC using a semi-insulating semiconductor substrate.

高集積度の半導体ICに於ては、一般にチツ
プ・サイズが大きくなり電源配線の長も長くな
る。そのため配線の自己インダクタンスや抵抗が
大きくなり、受電端(論理素子が接続されている
部分)で電源インピーダンスが高くなるので雑音
等の誘導を受け易くなる。
In highly integrated semiconductor ICs, the chip size generally becomes larger and the length of the power supply wiring becomes longer. Therefore, the self-inductance and resistance of the wiring increases, and the power source impedance increases at the power receiving end (the part to which the logic element is connected), making it susceptible to induction of noise and the like.

そしてその結果(1)スイツチング速度が遅くな
る、(2)正常なスイツチング動作をしない、(3)誤動
作をする、等の問題が生ずる。この点を改善する
には電源配線の要所にバイパス・コンデンサを入
れて電源インピーダンスを下げれば良い。従つて
シリコン(Si)等比較的低抵抗の半導体基板を用
いる従来のMOSICやバイポーラICに於ては、基
板の上面部に異種導電型領域を設け、該異種導電
型領域上に直かに電源配線を施す方法が一般に用
いられる。そして該方法に於ては、異種導電型領
域と基板間に形成されるPN接合が逆方向にバイ
アスされるような電位を電源配線と基板間に付与
することにより、PN接合に於ける空乏層の拡が
りによつて生ずる容量が、電源配線のバイパス・
コンデンサとして寄与するので電源インピーダン
スが低下する。
As a result, problems such as (1) slow switching speed, (2) failure of normal switching operation, and (3) malfunction occur. To improve this point, you can lower the power supply impedance by inserting bypass capacitors at important points in the power supply wiring. Therefore, in conventional MOSICs and bipolar ICs that use relatively low-resistance semiconductor substrates such as silicon (Si), regions of different conductivity types are provided on the upper surface of the substrate, and a power source is directly connected to the regions of different conductivity types. A method of wiring is generally used. In this method, a depletion layer in the PN junction is created by applying a potential between the power supply wiring and the substrate so that the PN junction formed between the different conductivity type region and the substrate is biased in the opposite direction. The capacitance generated by the expansion of the
Since it contributes as a capacitor, the power source impedance decreases.

しかし最近、高速用に開発されている半導体
ICに於ては、該ICが半絶縁性の半導体基板上に
形成されるために、上記手段が有効に適用できな
い。従つて半絶縁性基板を用いる高速ICに於て
は、電源インピーダンスを下げるために、電源配
線の幅を広くしたり又その長さを短かくするとい
う手段に頼らざるを得ず、従つて高集積度(高密
度・大面積)のICを実現することは極めて困難
であるという問題があつた。
However, recently, semiconductors developed for high speed
In the case of an IC, the above means cannot be effectively applied because the IC is formed on a semi-insulating semiconductor substrate. Therefore, in high-speed ICs using semi-insulating substrates, in order to lower the power supply impedance, it is necessary to resort to widening the power supply wiring or shortening its length. The problem was that it was extremely difficult to realize an IC with high integration (high density, large area).

本発明は上記問題点を除去する目的で、半絶縁
性半導体基板上に形成することが可能な、低下イ
ンピーダンスを有する配線構造を提供する。
In order to eliminate the above-mentioned problems, the present invention provides a wiring structure having reduced impedance that can be formed on a semi-insulating semiconductor substrate.

即ち本発明は、半絶縁性半導体基板を用いる半
導体ICに於て、半絶縁性半導体基板に低比抵抗
領域を設け、該低比抵抗領域上に直かに接する第
1の配線電極と絶縁膜を設け、前記絶縁膜上に第
1の配線電極に隣接して第2の配線電極を設け、
低比抵抗領域と第2の配線電極間の絶縁膜の容量
を第2の配線電極のバイパス・コンデンサとして
用いることを特徴とする。
That is, the present invention provides a semiconductor IC using a semi-insulating semiconductor substrate, in which a low resistivity region is provided in the semi-insulating semiconductor substrate, and a first wiring electrode and an insulating film that are in direct contact with the low resistivity region are provided on the semi-insulating semiconductor substrate. a second wiring electrode is provided on the insulating film adjacent to the first wiring electrode,
A feature is that the capacitance of the insulating film between the low resistivity region and the second wiring electrode is used as a bypass capacitor for the second wiring electrode.

以下本発明を、図を用いて実施例について詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the figures.

第1図a及びbは本発明の機能を説明するため
の部分断面図、第2図a乃至fは本発明の構造を
形成する方法に於ける一実施例の工程断面図、第
3図及び第4図は異なる一実施例の透視平面模式
図、第5図aは他の一実施例の透視平面模式図、
第5図bはそのA−A′矢視断面図、第6図aは
更に他の一実施例の透視平面模式図、第6図b及
びcはそのB−B′及びC−C′矢視断面図であ
る。
1A and 1B are partial cross-sectional views for explaining the functions of the present invention, FIGS. 2A to 2F are process cross-sectional views of an embodiment of the method for forming the structure of the present invention, and FIGS. FIG. 4 is a schematic perspective view of a different embodiment, FIG. 5a is a schematic perspective view of another embodiment,
FIG. 5b is a sectional view taken along the line A-A', FIG. 6a is a schematic perspective view of another embodiment, and FIGS. FIG.

本発明の構造に於ては、例えば第1図a或るい
はbに示すように、カリウム砒素(GaAs)等の
半絶縁性半導体基板1の上面部に例えば低比抵抗
を有するN+型領域2が設けられており、該N+
領域2の上面の一部に該領域と直かに接する比較
的広い面積の金ゲルマニウム/金(AuGeAu)等
の第1の配線電極3が形成されており、該第1の
配線電極3及び前記N+型領域2上にこれらを覆
う二酸化シリコン(SiO2)等の絶縁膜4形成され
ており、該絶縁膜4上に前記第1の配線電極3に
隣接して一本或るいは二本のチタン/白金/金
(Ti/Pt/Au)等からなる第2の配線電極5或る
いは5a,5bが形成されてなつている。そして
上記構造に於て、例えば第1の配線電極3を接地
Gし、第2の配線5,5a,5bに所望の駆動電
源B,Ba,Bbを接続した際には、接地Gされた
第1の配線電極3にオーミツクに接続するN+
領域2と第2の配線5,5a,5bの間には絶縁
膜の誘導率、厚さに見合つた容量C,Ca,Cbが
形成される。従つてこれら第2の配線5,5a,
5bは前記容量からなるバイパス・コンデンサで
接地された形になり、配線のインピーダンスは低
下する。
In the structure of the present invention, for example, as shown in FIG . 2 is provided, and a first wiring electrode 3 made of gold germanium/gold (AuGeAu) or the like is formed on a part of the upper surface of the N + type region 2 and has a relatively wide area and is in direct contact with the region. An insulating film 4 such as silicon dioxide (SiO 2 ) is formed on the first wiring electrode 3 and the N + type region 2 to cover them, and the first wiring electrode 3 is formed on the insulating film 4. One or two second wiring electrodes 5 or 5a, 5b made of titanium/platinum/gold (Ti/Pt/Au) or the like are formed adjacent to the electrodes. In the above structure, for example, when the first wiring electrode 3 is grounded and the desired drive power supplies B, Ba, and Bb are connected to the second wirings 5, 5a, and 5b, the first wiring electrode 3 is grounded. Capacitances C, Ca, and Cb commensurate with the dielectric constant and thickness of the insulating film are formed between the N + type region 2 ohmicly connected to the first wiring electrode 3 and the second wirings 5, 5a, and 5b. . Therefore, these second wirings 5, 5a,
5b is grounded by the bypass capacitor made of the above-mentioned capacitance, and the impedance of the wiring is reduced.

本発明の構造は上記のような機能を有するが、
該構造を形成する際に、従来に比べて特に複雑な
工程を追加する必要はない。次にその方法の一例
を第2図a乃至fに沿つて工程順に説明する。
Although the structure of the present invention has the above functions,
When forming this structure, there is no need to add particularly complicated steps compared to the conventional method. Next, an example of the method will be explained in order of steps along FIGS. 2a to 2f.

第2図aは半絶縁性GaAs基板11面にSiO2
等をマスクとして選択的に例えばシリコン・イオ
ン(Si+)を注入エネルギー54〔KeV〕、注入力
1.08×1012〔atm/cm2〕程度の条件で注入した
後、該基板面をSiO2膜等で覆つて800〔℃〕程度
のアニール処理を施して、素子を設けようとする
N型活性領域12を形成した状態を示している。
次いで第2図bは通常のスパツタリング法及びプ
ラズマ・エツチング法を用い、前記N型活性領域
12上にチタン/タングステン(TiW)シリサ
イド等からなるシヨツトキ・ゲート電極13を形
成した状態を示している。次いで第2図cは該基
板上に本発明の配線構造に用いられるN+領域形
成面及び前記活性領域面を表出する窓を有する
SiO2膜等を形成し、該SiO2膜等及び前記シヨツ
トキ・ゲート電極をマスクとして、例えば注入エ
ネルギー175(KeV)、注入量1.7×1013〔atm/
cm2〕程度の条件でSi+を選択的に注入した後、前
記同様のアニール処理を施して、活性領域12内
にN+型ソース領域14及びN+型ドレイン領域1
5を、又GaAs基板11の上面部に1×1018
〔atm/cm3〕程度のSiピーク濃度を有するN+型領
域16を形成した状態を示している。なおこの状
態で活性領域にはFETが形成される。次いで第
2図bは通常のフオト・プロセス、蒸着、リフト
オフ法を順次用いて、前記ソース、ドレイン領域
上に例えば金ゲルマニウム/金からなるソース電
極17、ドレイン電極18を、又前記N+型領域
16上に第1の配線電極19を形成した状態を示
している。なおこれら電極は下部の半導体層とオ
ーミツク接続させるために450〔℃〕程度のアロ
イング処理がなされる。次いで第2図eは化学気
相成長(CVD)法等を用いて、上記電極上を覆
う例えばSiO2膜20を形成した状態を示してい
る。次いで第2図fは、プラズマ・エツチング法
等により前記SiO2膜20に所望のスルーホール
を形成した後、スパツタリング、イオン・ミーリ
ング等の工程を経て、SiO2膜20上に、Ti/
Pt/Au等の三層構造を有し、前記ソース電極1
7に接するソース配線、前記ドレイン電極18に
接するドレイン配線22、及び電源配線23を形
成した状態を示している。なお上記ドレイン配線
22に接続する電源配線23は、前記N+型領域
16の上部領域に形成する。従つて該電源配線2
3即ち第2の配線電極は接地電極即ち第1の配線
電極19にオーミツク接続するN+型領域と、
SiO2膜20を誘電体層とするコンデンサにより
バイパスされた構造になる。
Figure 2a shows that, for example, silicon ions (Si + ) are selectively implanted onto the surface of a semi-insulating GaAs substrate 11 using a SiO 2 film or the like as a mask at an energy of 54 [KeV] and an implantation force of 54 [KeV].
After implantation under conditions of approximately 1.08×10 12 [atm/cm 2 ], the substrate surface is covered with a SiO 2 film, etc., and annealing treatment is performed at approximately 800 [°C] to form an N-type active material in which devices are to be provided. A state in which a region 12 is formed is shown.
Next, FIG. 2b shows a state in which a shot gate electrode 13 made of titanium/tungsten (TiW) silicide or the like is formed on the N-type active region 12 using a conventional sputtering method and plasma etching method. Next, FIG. 2c shows that the substrate has a window that exposes the N + region forming surface and the active region surface used in the wiring structure of the present invention.
A SiO 2 film or the like is formed, and the injection energy is 175 (KeV) and the implantation amount is 1.7×10 13 [ atm /
After selectively implanting Si + under conditions of approximately 1 cm 2 ], the same annealing process as described above is performed to form an N + type source region 14 and an N + type drain region 1 in the active region 12.
5 and 1×10 18 on the upper surface of the GaAs substrate 11.
A state in which an N + type region 16 having a Si peak concentration of about [atm/cm 3 ] is formed is shown. Note that in this state, an FET is formed in the active region. Next, FIG. 2b shows that a source electrode 17 and a drain electrode 18 made of, for example, gold germanium/gold are formed on the source and drain regions by sequentially using a conventional photo process, vapor deposition, and lift-off method, and also on the N + type region. 16 shows a state in which a first wiring electrode 19 is formed on top of the wiring electrode 16. Note that these electrodes are subjected to an alloying process at about 450 [° C.] in order to establish ohmic connection with the underlying semiconductor layer. Next, FIG. 2e shows a state in which, for example, a SiO 2 film 20 is formed to cover the electrodes using a chemical vapor deposition (CVD) method or the like. Next, as shown in FIG. 2f, after forming desired through holes in the SiO 2 film 20 by plasma etching or the like, Ti/Ti/N film is formed on the SiO 2 film 20 through processes such as sputtering and ion milling.
The source electrode 1 has a three-layer structure such as Pt/Au.
7, a drain wiring 22 in contact with the drain electrode 18, and a power supply wiring 23 are shown. Note that the power supply wiring 23 connected to the drain wiring 22 is formed in the upper region of the N + type region 16. Therefore, the power supply wiring 2
3, that is, the second wiring electrode has an N + type region that is ohmicly connected to the ground electrode, that is, the first wiring electrode 19;
The structure is bypassed by a capacitor having the SiO 2 film 20 as a dielectric layer.

次に本発明の構造を高速ICに適用した実施例
について、透視平面模式図及び要部断面図を用い
て説明する。
Next, an embodiment in which the structure of the present invention is applied to a high-speed IC will be described using a schematic perspective plan view and a cross-sectional view of a main part.

第3図は第1図の電源配線(例えば接地電極)
31を幅広く(低インピーダンス形状)形成し、
これに隣接しN+型領域33上部に一本の第2の
電源配線(例えば電源配線)32を設けた単一電
源ICの一実施例である。そして図中31′,3
2′は枝配線、34a〜34xは単位回路、Bは
駆動電源、Gは接地を示す。
Figure 3 shows the power supply wiring (e.g. ground electrode) in Figure 1.
31 is formed widely (low impedance shape),
This is an embodiment of a single power supply IC in which a single second power supply wiring (for example, power supply wiring) 32 is provided adjacent to this and above an N + type region 33. And 31', 3 in the figure
2' is a branch wiring, 34a to 34x are unit circuits, B is a drive power supply, and G is a ground.

第5図aは第1の配線電極を二箇所に設け、そ
れぞれの配線電極を接地電極或るいは駆動電源電
極として用い二要部にバイパス・コンデンサを介
在せしめた単一電源ICの一実施例に於ける透視
平面模式図で、第5図bはそのA−A′矢視断面
図である。そして図中31a,31bは第1の配
線電極、31a′,31b′は支配線、32a,32
bは第2の配線電極、33a,33bはN+型領
域、34a〜34xは単位回路、35はSiO2
膜、36はスルーホール、Bは駆動電源、Gは接
地を示す。なお該構造に於ては第1の配線電極3
1aと31bは下層に形成され、これら第1の配
線電極はスルーホール36を介して上層に導出さ
れた枝配線31a′,31b′により、他のN+型領域
上の第2の配線電極23a或るいは32bと接続
される。
Figure 5a shows an embodiment of a single power supply IC in which first wiring electrodes are provided at two locations, each wiring electrode is used as a ground electrode or a drive power supply electrode, and a bypass capacitor is interposed between the two main parts. FIG. 5b is a sectional view taken along the line A-A'. In the figure, 31a and 31b are first wiring electrodes, 31a' and 31b' are control lines, and 32a and 32
b is a second wiring electrode, 33a and 33b are N + type regions, 34a to 34x are unit circuits, and 35 is SiO 2
36 is a through hole, B is a driving power supply, and G is a ground. Note that in this structure, the first wiring electrode 3
1a and 31b are formed in the lower layer, and these first wiring electrodes are connected to the second wiring electrode 23a on the other N + type region by branch wirings 31a' and 31b' led out to the upper layer through the through hole 36. Alternatively, it is connected to 32b.

第6図aはN+型領域を二箇所に設け、相互に
接続された第1の配線電極を両N+型領域上の下
層部に設け、相互に接続された第2の配線電極を
両N+型領域上の上層部に設けるとにより、二要
部にバイパス・コンデンサを介在せしめた単一電
源ICの一実施例に於ける透視平面模式図で、第
6図b及びcはそのB−B′及びC−C′矢視断面
図である。そして図中31a,31bは第1の配
線電極、31′はその枝配線、32a,32bは
第2の配線電極、32′はその枝配線、33a,
33bはN+型領域34a〜34xは単位回路、
35はSiO2膜、Bは駆動電源、Gは接地を示
す。
In Figure 6a, N + type regions are provided at two locations, first wiring electrodes connected to each other are provided in the lower layer above both N + type regions, and second wiring electrodes connected to each other are provided at both locations. This is a perspective plan view schematic diagram of an embodiment of a single power supply IC in which a bypass capacitor is provided in the upper layer above the N + type region, and FIGS. 6b and 6c are B. -B' and CC' arrow sectional views. In the figure, 31a and 31b are first wiring electrodes, 31' are branch wirings thereof, 32a and 32b are second wiring electrodes, 32' are branch wirings, 33a,
33b is an N + type region 34a to 34x is a unit circuit;
35 is a SiO 2 film, B is a drive power supply, and G is a ground.

以上説明したように本発明の構造を適用すれ
ば、GaAs等の半絶縁性半導体基板を用いて形成
する高速ICに於ける電源配線にバイパス・コン
デンサを付加することが極めて容易である。
As explained above, by applying the structure of the present invention, it is extremely easy to add a bypass capacitor to the power supply wiring in a high-speed IC formed using a semi-insulating semiconductor substrate such as GaAs.

従つて本発明によれば、スイツチング速度が速
く、しかも誤動作のない高集積度の高速半導体
ICを形成することが出来る。
Therefore, according to the present invention, a highly integrated high-speed semiconductor with high switching speed and no malfunction can be realized.
IC can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは本発明の機能を説明するため
の部分断面図、第2図a乃至fは本発明の構造を
形成する方法に於ける一実施例の工程断面図、第
3図及び第4図は異なる一実施例の透視平面模式
図、第5図aは他の一実施例の透視平面模式図、
第5図bはそのA−A′矢視断面図、第6図aは
更に他の一実施例の透視平面模式図、第6図b及
びcはそのB−B′及びC−C′矢視断面図であ
る。 図に於て、1は半絶縁性半導体基板、2,3
3,33a,33bはN+型領域、3,31,3
1a,31bは第一の配線電極、4は絶縁膜、
5,32,32a,32bは第二の配線電極、3
1′,31a′,31b′,32′,32a′,32b′は
枝配線、34a〜34xは単位回路、35は二酸
化シリコン膜、36はスルーホール、C,Ca,
Cbは容量、Gは接地、B,Ba,Bb,−Bは駆動
電源を示す。
1A and 1B are partial cross-sectional views for explaining the functions of the present invention, FIGS. 2A to 2F are process cross-sectional views of an embodiment of the method for forming the structure of the present invention, and FIGS. FIG. 4 is a schematic perspective view of a different embodiment, FIG. 5a is a schematic perspective view of another embodiment,
FIG. 5b is a sectional view taken along the line A-A', FIG. 6a is a schematic perspective view of another embodiment, and FIGS. FIG. In the figure, 1 is a semi-insulating semiconductor substrate, 2, 3
3, 33a, 33b are N + type regions, 3, 31, 3
1a and 31b are first wiring electrodes, 4 is an insulating film,
5, 32, 32a, 32b are second wiring electrodes, 3
1', 31a', 31b', 32', 32a', 32b' are branch wirings, 34a to 34x are unit circuits, 35 is a silicon dioxide film, 36 is a through hole, C, Ca,
Cb is the capacitance, G is the ground, and B, Ba, Bb, -B are the drive power supplies.

Claims (1)

【特許請求の範囲】[Claims] 1 半絶縁性の半導体基板を用いる半導体集積回
路装置に於て、低比抵抗領域上に直かに形成され
た第1の配線電極と絶縁膜、及び前記絶縁膜上に
形成され且つ前記第1の配線電極に隣接する第2
の配線電極を有してなることを特徴とする半導体
集積回路装置。
1. In a semiconductor integrated circuit device using a semi-insulating semiconductor substrate, a first wiring electrode and an insulating film formed directly on a low resistivity region, and a first wiring electrode and an insulating film formed on the insulating film and the first wiring electrode formed directly on the low resistivity region. The second electrode adjacent to the wiring electrode of
1. A semiconductor integrated circuit device comprising a wiring electrode.
JP16304781A 1981-10-13 1981-10-13 Semiconductor integrated circuit device Granted JPS5864048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16304781A JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16304781A JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5864048A JPS5864048A (en) 1983-04-16
JPS6249734B2 true JPS6249734B2 (en) 1987-10-21

Family

ID=15766164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16304781A Granted JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5864048A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228732A (en) * 1983-06-10 1984-12-22 Toshiba Corp Master slice type semiconductor device
JPS62243345A (en) * 1986-04-15 1987-10-23 Toshiba Corp Semiconductor integrated circuit device
US6124625A (en) * 1988-05-31 2000-09-26 Micron Technology, Inc. Chip decoupling capacitor
US5687109A (en) 1988-05-31 1997-11-11 Micron Technology, Inc. Integrated circuit module having on-chip surge capacitors
US6114756A (en) * 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
JPH11330378A (en) 1998-05-19 1999-11-30 Murata Mfg Co Ltd Semiconductor device
US6414391B1 (en) 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly

Also Published As

Publication number Publication date
JPS5864048A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
US5168340A (en) Semiconductor integrated circuit device with guardring regions to prevent the formation of an MOS diode
US4954855A (en) Thin film transistor formed on insulating substrate
US4890142A (en) Power MOS transistor structure
KR0161520B1 (en) Semiconductor memory device
US5598029A (en) Power supply wiring for semiconductor device
US6023086A (en) Semiconductor transistor with stabilizing gate electrode
JPH11163339A (en) Mos gate schottky tunnel transistor and integrated circuit using the same
US4677736A (en) Self-aligned inlay transistor with or without source and drain self-aligned metallization extensions
US5254867A (en) Semiconductor devices having an improved gate
KR19980066427A (en) Semiconductor device and manufacturing method thereof
JPS634683A (en) Field-effect transistor
JPS6249734B2 (en)
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US4251829A (en) Insulated gate field-effect transistor
JPS62174968A (en) Semiconductor device
JPS63129647A (en) Semiconductor device
US4857975A (en) GaAs field effect transistor having a WSi Schottky gate electrode improved for high-speed operation
KR0148565B1 (en) Semiconductor integrated circuit device
JPS59207652A (en) Semiconductor integrated circuit device and manufacture thereof
JP2765871B2 (en) Semiconductor device
JPS63114172A (en) Integrated circuit
KR910007513B1 (en) Wiring connection of semiconductor device
JPH02228071A (en) Semiconductor device including p-channel type field effect transistor
JPS6243552B2 (en)
US4611237A (en) Semiconductor integrated circuit device