JPS59207652A - Semiconductor integrated circuit device and manufacture thereof - Google Patents
Semiconductor integrated circuit device and manufacture thereofInfo
- Publication number
- JPS59207652A JPS59207652A JP58080875A JP8087583A JPS59207652A JP S59207652 A JPS59207652 A JP S59207652A JP 58080875 A JP58080875 A JP 58080875A JP 8087583 A JP8087583 A JP 8087583A JP S59207652 A JPS59207652 A JP S59207652A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- silicide
- layer
- wiring
- lower layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 14
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 19
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 13
- 239000011574 phosphorus Substances 0.000 abstract description 13
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 7
- 239000011521 glass Substances 0.000 abstract description 6
- 239000012535 impurity Substances 0.000 abstract description 6
- 238000005468 ion implantation Methods 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 230000008021 deposition Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 48
- 238000009792 diffusion process Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 229910021344 molybdenum silicide Inorganic materials 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000036581 peripheral resistance Effects 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Memories (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、配線中に抵抗素子を有する半導体集積回路装
置、ならびに、該半導体集積回路装置の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device having a resistance element in wiring, and a method for manufacturing the semiconductor integrated circuit device.
半導体集積回路装置(10)の近来の傾向は、高集積化
、高速化および低消費電力化である。このような傾向の
対策として、モリブデン(Mo)。Recent trends in semiconductor integrated circuit devices (10) include higher integration, higher speed, and lower power consumption. Molybdenum (Mo) is used as a countermeasure against this tendency.
タングステン(W)、タンタル(Ta)、チタン(T1
)等の高融点金属配線材料〔以下、単にシリサイド(S
ilicide)形成金属配線材料という〕、あるいは
、該シリサイド形成金属配線材料とシリコン(Si)材
料によって形成されたシリサイド配線材料を用いること
が考えられている。これらの配線材料は抵抗が小さく、
従って情報の伝搬速度は早く、かつ、低消費電力化に適
している優位面がある。Tungsten (W), tantalum (Ta), titanium (T1)
) and other high-melting point metal wiring materials [hereinafter simply referred to as silicide (S
It is considered to use a silicide-forming metal wiring material] or a silicide wiring material formed from the silicide-forming metal wiring material and a silicon (Si) material. These wiring materials have low resistance,
Therefore, the information propagation speed is fast, and it has the advantage of being suitable for reducing power consumption.
しかしながら、例えばスタティック・メモリ〔以下、単
にSRAM(Static RandomAccess
Memory)という〕の1メモリ素子を形成する
場合、素子内の配線上に抵抗が必要になっているが、現
在のところ、前記シリサイド配線材料では配線上に抵抗
を形成することができなかった。However, for example, static memory [hereinafter simply referred to as SRAM (Static Random Access)]
When forming a memory element (called "Memory"), a resistor is required on the wiring within the element, but at present it has not been possible to form a resistor on the wiring using the silicide wiring material.
本発明の目的は、シリサイド形成金属配線材料から形成
された配線中に抵抗領域を形成した半導体集積回路装置
、およびその製造方法を提供することにある。An object of the present invention is to provide a semiconductor integrated circuit device in which a resistance region is formed in a wiring formed from a silicide-forming metal wiring material, and a method for manufacturing the same.
以下、一実施例とともに本発明の詳細な説明する。Hereinafter, the present invention will be described in detail along with one embodiment.
なお、全図において、同様の機能を有するものは同一記
号を付け、重複するものについての説明は省略する。本
実施例は、一層の多結晶シリコンからなるSRAMのメ
モリ素子を形成するための絶縁ゲート型電界効果トラン
ジスタ(以下、単にMISFETと称する)と、該MI
SFETのドレイン側に接続される高抵抗値をもつ抵抗
素子とを有する半導体集積回路装置について説明する。In addition, in all the figures, parts having similar functions are given the same symbols, and explanations of overlapping parts are omitted. This embodiment describes an insulated gate field effect transistor (hereinafter simply referred to as MISFET) for forming an SRAM memory element made of a single layer of polycrystalline silicon, and the MISFET.
A semiconductor integrated circuit device having a resistance element having a high resistance value connected to the drain side of an SFET will be described.
第1図〜第10図は、本発明の一実施例を説明するため
の各製造工程に2ける半導体装置の部分断面図である。1 to 10 are partial cross-sectional views of a semiconductor device at each manufacturing step 2 for explaining an embodiment of the present invention.
第1図に示すように、p型の不純物を有するシリコン単
結晶からなり、20〔Ω・Cm〕程度の抵抗率を有する
半導体基板1上に、約1000℃の熱処理によって40
0A程度の二酸化シリコンの絶縁膜2を形成する。形成
された絶縁膜2上にシリコンナイトライド(SI3N4
)の絶縁膜をOvD (Ohemical Vapo
ur Deposition)法によって形成する。As shown in FIG. 1, a semiconductor substrate 1 made of silicon single crystal containing p-type impurities and having a resistivity of about 20 [Ω·Cm] is coated with a resistivity of 40% by heat treatment at about 1000°C.
An insulating film 2 of silicon dioxide having a current of about 0 A is formed. Silicon nitride (SI3N4
) insulating film with OvD (Ochemical Vapo)
It is formed by the ur Deposition method.
この絶縁膜の厚さは600A程度でよい。OvD法によ
って形成された絶縁膜の半導体素子形成部以外の絶縁膜
を除去して、耐酸化マスクの絶縁膜3を形成する。The thickness of this insulating film may be about 600A. The insulating film 3 of the oxidation-resistant mask is formed by removing the insulating film formed by the OvD method except for the semiconductor element forming portion.
前記工程の後に、第2図に示すように、耐酸化マスク用
絶縁膜3から露出する半導体基板1を約1000℃程度
の熱処理によって酸化させることにより、二酸化シリコ
ンのフィールド(Field)絶縁膜部20を形成する
。このフィールド絶縁膜部20の厚さは、例えば1μm
程度でよい。After the above step, as shown in FIG. 2, the semiconductor substrate 1 exposed from the oxidation-resistant mask insulating film 3 is oxidized by heat treatment at about 1000° C. to form a field insulating film portion 20 of silicon dioxide. form. The thickness of this field insulating film portion 20 is, for example, 1 μm.
It is enough.
第2図に示す工程の後に、絶縁膜3を除去して、半導体
素子形成部の半導体基板1の表面が露出するように、絶
縁膜2の全面をエンチング(Pitch−ing)する
。この後に、第3図に示すように、約1000℃の熱酸
化処理によりゲート絶縁膜ともなる絶縁膜2′を半導体
基板表面に形成する。この絶縁膜2′の厚さは、例えば
半導体素子形成部で400A程度でよい。After the step shown in FIG. 2, the insulating film 3 is removed and the entire surface of the insulating film 2 is etched (Pitch-ing) so that the surface of the semiconductor substrate 1 in the semiconductor element forming portion is exposed. Thereafter, as shown in FIG. 3, an insulating film 2' which also serves as a gate insulating film is formed on the surface of the semiconductor substrate by thermal oxidation treatment at about 1000°C. The thickness of this insulating film 2' may be, for example, about 400 Å in the semiconductor element forming portion.
形成された絶縁膜2′上に、第4図に示すように、第1
層配線の下層部4を形成する。この下層部4は、高抵抗
値を有するものであり、例えば、多結晶シリコンを低圧
OvD法によって3000A程度の厚さで形成すればよ
い。On the formed insulating film 2', as shown in FIG.
A lower layer portion 4 of layer wiring is formed. This lower layer portion 4 has a high resistance value, and may be formed, for example, of polycrystalline silicon to a thickness of about 3000 Å using a low-pressure OvD method.
前記形成された下層部4上に、シリコンナイトライドの
絶縁膜を500A程度に形成し、第5図に示すように、
抵抗を形成すべき領域以外の絶縁膜を除去し、拡散マス
クとなる絶縁膜5を形成する。この後に下層部4に、例
えば、リン(P)の不純物を拡散し、下層部4の抵抗値
を40〔Ω/口〕程度に低減した下層部4′を形成する
。なお、絶縁膜5の下部の下層部4の抵抗値は実質的に
変化なく、高抵抗の抵抗領域となる。An insulating film of silicon nitride with a thickness of about 500 A is formed on the lower layer portion 4 formed above, and as shown in FIG.
The insulating film other than the area where the resistor is to be formed is removed, and an insulating film 5 serving as a diffusion mask is formed. Thereafter, an impurity such as phosphorus (P), for example, is diffused into the lower layer 4 to form a lower layer 4' in which the resistance value of the lower layer 4 is reduced to about 40 [Ω/hole]. Note that the resistance value of the lower layer portion 4 under the insulating film 5 remains substantially unchanged and becomes a high resistance region.
次に、第6図に示すように、下層部4′に重合せるよう
に高融点金属のモリブデン、または、モリブデンとシリ
コンからなるモリブデンシリサイド(例えば、Mo5i
z)の上層部6を形成する。この上層部6の形成は、例
えば、スパッタ技術によって前記材料を4000A程度
に付着すればよい。Next, as shown in FIG. 6, molybdenum, a high melting point metal, or molybdenum silicide (for example, Mo5i
z) form the upper layer part 6. The upper layer portion 6 may be formed by depositing the above material to a thickness of about 4000 Å using, for example, sputtering technology.
また、本実施例においてはモリブデンまたはモリブデン
シリサイドの配線材料としたが、タングステン、タンタ
ル、チタン等のシリサイド形成金属配線材料、または、
該シリコン形成金属配線材料とシリコン材料からなるシ
リサイドの配線材料でもよい。また、下層部4′と上層
部6の配線材料は、前記上層部6を形成するためのスパ
ッタ技術、および、この後に行われる熱処理などによっ
て、配線材料間の界面からの一部分、もしくは、全体が
融合してシリサイドを形成するようになっている。Further, although molybdenum or molybdenum silicide was used as the wiring material in this example, silicide-forming metal wiring materials such as tungsten, tantalum, titanium, etc.
A silicide wiring material made of the silicon-forming metal wiring material and a silicon material may be used. In addition, the wiring materials of the lower layer part 4' and the upper layer part 6 are partially or entirely removed from the interface between the wiring materials by the sputtering technique for forming the upper layer part 6 and the heat treatment performed thereafter. They fuse together to form silicide.
この融合の度合は、各々の熱処理工程、各々の配線材料
の厚さによって制御することができる。また、下層部4
′と上層部6を必要に応じてシリサイド化しなくてもよ
い。さらに、スパッタ技術によって上層部6を形成した
とき、不完全なシリサイドであっても前記各々の熱処理
工程によってシリサイドに形成される。The degree of this fusion can be controlled by each heat treatment step and the thickness of each wiring material. In addition, the lower layer 4
' and the upper layer 6 may not be silicided if necessary. Further, when the upper layer portion 6 is formed by sputtering technology, even incomplete silicide is formed into silicide by each of the heat treatment steps described above.
第6図の工程の後に、上層部6上にホトレジスト(図示
せず)を形成し、半導体素子部のソース。After the process shown in FIG. 6, a photoresist (not shown) is formed on the upper layer portion 6 to form a source of the semiconductor element portion.
ドレイン領域の形成部のホトレジストを除去してマスク
を形成する。この形成されたマスクを用いて、第7図に
示すように、例えば、7ツ累系のドライエツチングによ
って抵抗領域部7とゲート領域部8を形成する。さらに
、前記マスクを用いて、ソース、ドレイン領域の形成部
にイオン注入法によりn″″型の不純物を打込み、熱処
理によってソース、ドレイン領域の拡散層9を形成し、
マスクを除去する。この拡散層9の形成のためのイオン
注入は、ヒ素(As)イオンの不純物を100 [Ke
V ]のエネルギで、2X10”C原子個/ cm 〕
の不純物を打込めばよい。A mask is formed by removing the photoresist in the region where the drain region is to be formed. Using this formed mask, as shown in FIG. 7, a resistance region section 7 and a gate region section 8 are formed by, for example, seven-layer dry etching. Furthermore, using the mask, n'' type impurities are implanted into the formation portions of the source and drain regions by ion implantation, and diffusion layers 9 of the source and drain regions are formed by heat treatment,
Remove mask. In the ion implantation for forming the diffusion layer 9, impurities of arsenic (As) ions were added to 100 [Ke
V], with an energy of 2X10”C atoms/cm]
All you have to do is add impurities.
第7図の工程の後に、ホトレジストを全面に形成し、抵
抗領域部7.拡散層9上のホトレジストを除去し、第8
図に示すように、マスク10を形成する。このマスク1
0を用いて、抵抗領域部7の絶縁膜5上の上層部6をフ
ッ素系ドライエツチングによって除去し、窓11を形成
する。これによって、モリブデン、または、モリブデン
シリサイドにより形成された上層部6が電気的に切断さ
れ、高抵抗の下層部4のみが電気的に接続され、高抵抗
の抵抗領域が形成される。この後に、前記マスク10を
除去する。After the process shown in FIG. 7, a photoresist is formed on the entire surface of the resistive region 7. The photoresist on the diffusion layer 9 is removed and the eighth
As shown in the figure, a mask 10 is formed. This mask 1
0, the upper layer 6 on the insulating film 5 in the resistance region 7 is removed by fluorine-based dry etching to form a window 11. As a result, the upper layer 6 formed of molybdenum or molybdenum silicide is electrically disconnected, and only the high-resistance lower layer 4 is electrically connected, forming a high-resistance resistance region. After this, the mask 10 is removed.
前記工程の後に、第9図に示すように、リンガラス13
を7000A程度にデポジションし、約1000℃で3
0分程度熱処理する。その後、ホトエツチングにより拡
散層9上の絶縁膜および上層部6上の絶縁膜を除去し、
コンタクトホール12を形成する。更にリンのデポジシ
ョン又はイオン打込みによりリンがコンタクトホール1
2を介して拡散層9よりも深く拡散され、点線で示すよ
うな層14が形成される。このリン拡散層14によって
、該拡散層14上に形成される電極とのコンタクトの信
頼度が向上する。この拡散層14の深さは、例えば、拡
散層9の深さを0.4μmとすれば、0.711mの深
さに形成することができる。After the above step, as shown in FIG.
was deposited at about 7000A and heated at about 1000℃.
Heat treat for about 0 minutes. After that, the insulating film on the diffusion layer 9 and the insulating film on the upper layer part 6 are removed by photoetching,
A contact hole 12 is formed. Furthermore, phosphorus is deposited in contact hole 1 by phosphorus deposition or ion implantation.
2 and is diffused deeper than the diffusion layer 9, forming a layer 14 as shown by the dotted line. This phosphorus diffusion layer 14 improves the reliability of contact with the electrode formed on the diffusion layer 14. For example, if the depth of the diffusion layer 9 is 0.4 μm, the depth of the diffusion layer 14 can be 0.711 m.
第9図の工程の後に、第10図に示すように、1μm程
度の厚さを有するアルミニウム配線15を形成し、本実
施例の半導体装置は完成する。第10図において、X部
にMISFETが、Y部に抵抗がそれぞれ形成される。After the step shown in FIG. 9, as shown in FIG. 10, an aluminum wiring 15 having a thickness of about 1 μm is formed, and the semiconductor device of this example is completed. In FIG. 10, a MISFET is formed in the X section and a resistor is formed in the Y section.
なお、上記実施例のうち、第8図以降の工程は第11図
から第13図に示すようにしてもよい。Incidentally, in the above embodiment, the steps after FIG. 8 may be as shown in FIGS. 11 to 13.
即ち、第7図の工程の後、第11図に示すようにリンガ
ラス13を全面に形成し、熱処理した後ホトエツチング
により抵抗領域部7の絶縁膜5上の上層部6およびリン
ガラス13、更には拡散層9上の絶縁膜2′およびリン
ガラス13、および上層部6上のリンガラス13を除去
する。これによって、モリブデンまたはモリブデンシリ
サイドにより形成された上層部6が電気的に切断され、
高抵抗の下層部4のみが電気的に接続され、高抵抗の抵
抗領域が形成されるとともにコンタクトホール12が形
成される。その後、第12図に示すようにリンのデポジ
ションまたはイオン打込みによりコンタクトホール12
を介してリンを拡散層9よりも深く拡散し、点線で示す
ような層14を形成する。以下、第13図に示すように
AJ配線15を形成して本実施例の半導体装置が完成さ
れる。That is, after the step shown in FIG. 7, as shown in FIG. 11, the phosphor glass 13 is formed on the entire surface, and after heat treatment, the upper layer 6 and the phosphor glass 13 on the insulating film 5 of the resistance region 7 are removed by photo-etching. The insulating film 2' and the phosphor glass 13 on the diffusion layer 9 and the phosphor glass 13 on the upper layer 6 are removed. As a result, the upper layer 6 formed of molybdenum or molybdenum silicide is electrically disconnected.
Only the lower layer portion 4 of high resistance is electrically connected to form a high resistance region and a contact hole 12. Thereafter, as shown in FIG. 12, the contact hole 12 is formed by phosphorus deposition or ion implantation.
Phosphorus is diffused deeper than the diffusion layer 9 through the phosphorus layer 9 to form a layer 14 as shown by the dotted line. Thereafter, as shown in FIG. 13, the AJ wiring 15 is formed to complete the semiconductor device of this embodiment.
この方法は、上記した第8図〜第10図を参照にして説
明した工程に比較すると、ホトレジスト工程を一回減ら
すことができる。This method can reduce the number of photoresist steps by one compared to the steps described above with reference to FIGS. 8 to 10.
第14図は、前記実施例に係るSRAMの1素子を構成
するための回路図である。30は電源線、31A、31
Bはデータ線、32はワード線、33A、33B、33
0および33DはMOSFET(Metal Qxi
de Sem1conductor FieldE
ffect Transistor)、34A、34B
は抵抗、35はアースである。前記実施例の高抵抗の抵
抗領域は、抵抗34A、34Bに形成する。FIG. 14 is a circuit diagram for configuring one element of the SRAM according to the embodiment. 30 is the power line, 31A, 31
B is a data line, 32 is a word line, 33A, 33B, 33
0 and 33D are MOSFETs (Metal Qxi
de Sem1conductor FieldE
effect Transistor), 34A, 34B
is a resistance, and 35 is a ground. The high-resistance resistance regions of the embodiment described above are formed in the resistors 34A and 34B.
第15図は、上記実施例に従って形成されたSRAMの
メモリ素子部を構成するためのレイアウト図の一例を示
し、その等価回路図を第14図に示す。第15図の記号
は、第14図と対応して示したものであり、図に示すよ
うに、斜線部分が抵抗34A、34Bである。FIG. 15 shows an example of a layout diagram for configuring the memory element section of the SRAM formed according to the above embodiment, and FIG. 14 shows an equivalent circuit diagram thereof. The symbols in FIG. 15 correspond to those in FIG. 14, and as shown in the figure, the shaded portions are the resistors 34A and 34B.
なお、本発明は、前記実施例に限定されることなく、そ
の要旨を変更しない範囲において種々変更し得ることは
勿論である。例えば、前記実施例は、一層の多結晶シリ
コンからなる半導体装置について述べたが、二層以上の
多結晶シリコンからなる半導体装置に適用してもよい。It goes without saying that the present invention is not limited to the embodiments described above, and can be modified in various ways without changing the gist thereof. For example, although the above embodiments have been described with respect to a semiconductor device made of one layer of polycrystalline silicon, the present invention may also be applied to a semiconductor device made of two or more layers of polycrystalline silicon.
また、前記実施例は、SRAMの形成について述べたが
、他の回路、あるいは、周辺の抵抗領域に適用してもよ
い。Furthermore, although the above embodiments have been described with respect to the formation of an SRAM, the present invention may be applied to other circuits or peripheral resistance regions.
以上説明したように、本発明によれば、導電性の極めて
よいシリサイド形成金属配線材料、または、該シリサイ
ド形成金属配線材料とシリコン材料とで形成したシリサ
イドによって半導体装置の配線を形成し、かつ、該配線
中に容易に抵抗領域を形成することができる。従って、
半導体集積回路装置の1素子内に導電性の良い配線層と
抵抗領域を形成することができるので、高速化および高
集積化の向上した半導体装置を提供することができる。As explained above, according to the present invention, wiring of a semiconductor device is formed using a silicide-forming metal wiring material with extremely high conductivity, or a silicide formed from the silicide-forming metal wiring material and a silicon material, and A resistance region can be easily formed in the wiring. Therefore,
Since a highly conductive wiring layer and a resistance region can be formed within one element of a semiconductor integrated circuit device, a semiconductor device with improved speed and higher integration can be provided.
第1図〜第13図は、本発明の一実施例を説明するため
の各製造工程における半導体装置の部分断面図、
第14図は、前記実施例に係るSRAMのメモリ累子部
を構成するための回路図、
第15図は、第14図に示したSRAMのメモリ累子部
を本発明に従って形成した半導体集積回路装置のレイア
ウト図なそれぞれ示す。
1・・・半導体基板、2. 2’、 3. 訃・・絶
縁膜、20・・・フィールド絶縁膜部、4.4′・・・
下層部、6・・・上層部、7・・・抵抗領域部、8・・
・ゲート領域部、9・・・拡散層、10・・・マスク、
11・・・窓、12・・・コンタクトホール、13・・
・リンガラス、14・・・リン拡散層、14′・・・ヒ
素とリンの2重層、15・・・アルミニウム配線、30
・・・電源線、31A、、31B・・・データ線、32
・・・ワード線、33A〜33D・・・MISFEIT
、34A、34B・・・抵抗、35・・・アース。
代理人 弁理士 高 橋 明 失
策 1 図
、?
第 2 図
第 3 図
第 4 図
第 5 図
第12図
第13図
/、f、f4 /、s
)I I/ /第14図
第15図
jil)U玉m]脂信コ、A1 to 13 are partial cross-sectional views of a semiconductor device in each manufacturing process for explaining one embodiment of the present invention, and FIG. 14 is a structure configuring a memory module of an SRAM according to the embodiment. FIG. 15 is a layout diagram of a semiconductor integrated circuit device in which the memory section of the SRAM shown in FIG. 14 is formed according to the present invention. 1... semiconductor substrate, 2. 2', 3. Death...Insulating film, 20...Field insulating film part, 4.4'...
Lower layer part, 6... Upper layer part, 7... Resistance area part, 8...
・Gate region portion, 9...diffusion layer, 10...mask,
11...Window, 12...Contact hole, 13...
- Phosphorus glass, 14... Phosphorus diffusion layer, 14'... Double layer of arsenic and phosphorus, 15... Aluminum wiring, 30
...Power line, 31A, 31B...Data line, 32
...Word line, 33A-33D...MISFEIT
, 34A, 34B...resistance, 35...earth. Agent Patent Attorney Akira Takahashi Mistake 1 Diagram? Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 12 Fig. 13 /, f, f4 /, s ) I I / / Fig. 14 Fig. 15 jil)
Claims (1)
ド形成金属またはそのシリサイド層を設けたことを特徴
とした半導体集積回路装置。 2、半導体基板上に絶縁膜を介してシリコン層を形成し
、抵抗領域となるべき以外の前記シリコン層上にシリサ
イド形成金属またはそのシリサイド層を形成する工程を
備えたことを特徴とした半導体集積回路装置の製造方法
。[Claims] 1. A semiconductor integrated circuit device characterized in that a silicide-forming metal or a silicide layer thereof is provided on a portion of a silicon layer other than a resistance region. 2. A semiconductor integrated circuit comprising the steps of forming a silicon layer on a semiconductor substrate via an insulating film, and forming a silicide-forming metal or its silicide layer on the silicon layer other than the portions that are to become resistance regions. A method of manufacturing a circuit device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58080875A JPS59207652A (en) | 1983-05-11 | 1983-05-11 | Semiconductor integrated circuit device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58080875A JPS59207652A (en) | 1983-05-11 | 1983-05-11 | Semiconductor integrated circuit device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59207652A true JPS59207652A (en) | 1984-11-24 |
Family
ID=13730515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58080875A Pending JPS59207652A (en) | 1983-05-11 | 1983-05-11 | Semiconductor integrated circuit device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59207652A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59210658A (en) * | 1983-05-16 | 1984-11-29 | Nec Corp | Semiconductor device and manufacture thereof |
JPS60263455A (en) * | 1984-06-04 | 1985-12-26 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Polysilicon structure |
JPS6281042A (en) * | 1985-10-04 | 1987-04-14 | Hitachi Ltd | Semiconductor integrated circuit device |
JPS63237458A (en) * | 1987-03-25 | 1988-10-03 | Nec Corp | Semiconductor resistance element |
JPH028054U (en) * | 1988-06-30 | 1990-01-18 | ||
JPH02170467A (en) * | 1988-12-22 | 1990-07-02 | Toshiba Corp | Semiconductor device and its manufacture |
WO2000055889A1 (en) * | 1999-03-18 | 2000-09-21 | Koninklijke Philips Electronics N.V. | Semiconductor device with transparent link area for silicide applications and fabrication thereof |
-
1983
- 1983-05-11 JP JP58080875A patent/JPS59207652A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59210658A (en) * | 1983-05-16 | 1984-11-29 | Nec Corp | Semiconductor device and manufacture thereof |
JPH0454979B2 (en) * | 1983-05-16 | 1992-09-01 | Nippon Electric Co | |
JPS60263455A (en) * | 1984-06-04 | 1985-12-26 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Polysilicon structure |
JPS6281042A (en) * | 1985-10-04 | 1987-04-14 | Hitachi Ltd | Semiconductor integrated circuit device |
JPH0682756B2 (en) * | 1985-10-04 | 1994-10-19 | 株式会社日立製作所 | Semiconductor integrated circuit device |
JPS63237458A (en) * | 1987-03-25 | 1988-10-03 | Nec Corp | Semiconductor resistance element |
JPH028054U (en) * | 1988-06-30 | 1990-01-18 | ||
JPH02170467A (en) * | 1988-12-22 | 1990-07-02 | Toshiba Corp | Semiconductor device and its manufacture |
WO2000055889A1 (en) * | 1999-03-18 | 2000-09-21 | Koninklijke Philips Electronics N.V. | Semiconductor device with transparent link area for silicide applications and fabrication thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4392150A (en) | MOS Integrated circuit having refractory metal or metal silicide interconnect layer | |
US5466638A (en) | Method of manufacturing a metal interconnect with high resistance to electromigration | |
US6391750B1 (en) | Method of selectively controlling contact resistance by controlling impurity concentration and silicide thickness | |
JPS6143464A (en) | Semiconductor device | |
US4673969A (en) | Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device | |
US4901134A (en) | Semiconductor device and manufacturing method thereof | |
US20070080404A1 (en) | Semiconductor device | |
KR0178551B1 (en) | Method of manufacturing semiconductor integrated circuit | |
JPS59207652A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPH0855852A (en) | Semiconductor device and its manufacture | |
JP2002050702A (en) | Semiconductor device | |
JPS60193333A (en) | Manufacture of semiconductor device | |
JPS59112641A (en) | Semiconductor device and manufacture thereof | |
JPH03114267A (en) | Semiconductor device and manufacture thereof | |
JPS6157709B2 (en) | ||
EP0166964A1 (en) | A double level polysilicon semiconductor structure | |
KR100245135B1 (en) | Manufacture of semiconductor device | |
JP2630616B2 (en) | Method for manufacturing semiconductor device | |
JP2604024B2 (en) | Method for manufacturing semiconductor device | |
KR100676198B1 (en) | Semiconductor device fabricating method for reducing recess of isolation field in salicide layer | |
JPS62147757A (en) | Resistor forming method | |
JPS6232639A (en) | Input protective circuit of semiconductor device and manufacture thereof | |
JPH0431193B2 (en) | ||
JPS62200747A (en) | Manufacture of semiconductor device | |
JPS6161548B2 (en) |