JPS5864048A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5864048A
JPS5864048A JP16304781A JP16304781A JPS5864048A JP S5864048 A JPS5864048 A JP S5864048A JP 16304781 A JP16304781 A JP 16304781A JP 16304781 A JP16304781 A JP 16304781A JP S5864048 A JPS5864048 A JP S5864048A
Authority
JP
Japan
Prior art keywords
electrode
wiring
region
wiring electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16304781A
Other languages
Japanese (ja)
Other versions
JPS6249734B2 (en
Inventor
Katsuhiko Suyama
須山 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16304781A priority Critical patent/JPS5864048A/en
Publication of JPS5864048A publication Critical patent/JPS5864048A/en
Publication of JPS6249734B2 publication Critical patent/JPS6249734B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wiring structure having a low impedance by forming the first wiring electrode contacted directly with a low specific resistance region formed on a semi-insulating semiconductor substrate and an insulating layer, and employing as a bypass condenser of the second wiring electrode the capacity of the insulating film between the low specific resistance region and the second wiring electrode. CONSTITUTION:An N<+> type region 2 having a low specific resistance is formed on a semi-insulating semiconductor substrate 1 made of Gallium arsenide (GaAs) or the like is formed, the first wiring electrode 3 made of gold germanium/gold contacted directly with part of the upper surface of the region 2 is formed, an insulating film 4 made of silicon dioxide (SiO2) or the like which covers the electrode 3 and the region 2 are formed, and one or two second titanium/platinum/ gold wiring electrode 5 or 5a, 6b are formed adjacent to the electrode 3 on the film 4. When the electrode 3 is contacted with the ground G and desired drive sources B, Ba, Bb are connected to the second wirings 5, 5a, 5b, the dielectric constant of the insulating film and capacities C, Ca, Cb matched to the thicknesses are formed between the regions 2 and the wirings 5, 5a, 5b, which are grounded with the bypass capacitor, thereby decreasing the impedance.

Description

【発明の詳細な説明】 本発明は半導体集積回路fit (I C)0構造に係
n、*に半絶縁性半導体基板を用いる高速、高集積IC
k於ける配線の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit fit (IC)0 structure, and is a high-speed, highly integrated IC using a semi-insulating semiconductor substrate for n, *.
Regarding the wiring structure in k.

高集積度の半導体ICK於ては、一般にチップ・サイズ
が大きく表9電源配線の長さも長くな゛るiそ0ため配
線の自己インダクタンスや抵抗が大きくなり、受電端(
論理素子が接続されている部分)で[8インピーダンス
が高くなるので雑音等O誘導を受は易くなる0 そしてその結果(1)スイッチング速度が週くなる1(
2)正常なスイッチング動作管しない、(3)誤動作を
する、等の問題が生ずる。この点を改響するkはW#配
IIO要所にバイパス・コンデンサを入れて電瀞イーン
ビーダンスを下ければ良い・従9てシリコン(81)等
比較的低抵抗の半導体基板を用いる従来eMO8ICや
バイポーラICK於ては、基板、0上・面部に異種導′
#IW1.領域を設け、該異種導電型領域上に直かKw
m配結を施す方法が一般に用いられる。そして核力法に
於ては、異種導電型領域と基板間に形成されるPN接合
が逆方向にバイアスされるような電位を電か配線と基板
間に付与することにより、PN接合に於ける空乏層の拡
低下する・ しかし最近、高速用に開発されている半導体ICk社で
は、該ICが半絶縁性の半導体基板上に形成されるため
に、上記手段が有効に適用できない。
In highly integrated semiconductor ICKs, the chip size is generally large and the length of the power supply wiring is also long, so the self-inductance and resistance of the wiring become large, and the power receiving end (
(where logic elements are connected) [8 Impedance increases, so it becomes more susceptible to noise and other O-induction00 And as a result, (1) the switching speed increases1 (
Problems such as 2) failure of normal switching operation, and (3) malfunction may occur. To re-emphasize this point, it is sufficient to insert a bypass capacitor at the important point of the W# circuit to lower the voltage resistance. In eMO8IC and bipolar ICK, there are different types of conductors on the board and on the surface.
#IW1. A region is provided, and Kw is directly placed on the region of different conductivity type.
A method of applying m connections is generally used. In the nuclear force method, a potential is applied between the electrical wiring and the substrate so that the PN junction formed between the different conductivity type region and the substrate is biased in the opposite direction. The depletion layer expands and decreases. However, the above-mentioned method cannot be effectively applied to semiconductor ICs manufactured by ICk, which has recently been developed for high-speed applications, because the ICs are formed on semi-insulating semiconductor substrates.

従って半胞緑性基板を用いる高速ICE於ては、W#イ
ンピーダンスを下げるために、1枦配線の幅を広くした
り又そO長さ管短かくするという手段に頼らざるを得す
、従9て高集積yItC高密蜆・大面積)のrct集現
することは極めて困離であZという問題がありた・ 本発明は上記間IiAを除去する目的で、中絶縁性半導
体基板上に形成すゐことが可能な、低下インピーダンス
を有する配線構造を提供する・即ち本発明は、半絶縁性
半導体基板を用い石半導体IC1r於て、半絶縁性半導
体基板に低比抵抗2の配線電極を設け、低比抵抗領域と
諮20配線11i極間の絶縁膜の容量f館20配線電極
0バイパス・コンデンサとして用いゐことな特徴とする
・以下本発tat、gを用い実施例について詳細に説明
する・ 第1図(Ji)及び(b)は本発明0機能を説明するた
めの部分断面図、第2図(a)乃至(flは本発910
構造を形成する方法に於ける一実施例の工程断面図、第
3閣及び第411p異なる一実施例の透視平面模式図、
錆5図(鳳)は他の一実施例の透視平面模式図、115
11(b)はそOムーA′矢視断面図、第6図(a)&
;i更に他〇一実施例の透視平1iI模式図%籐6図(
b)及U(Cudソt)B−B’及びc−cl矢視断′
r#図である・ 零発−の構造に於てけ、例えばfa1図(a)成るいは
(b) K示すように、ガリウム砒1e(GaA畠)等
の半絶縁性半導体基板1の上面W&に例えば低比抵抗を
有するN”ll領域2が設けられておプ・該N+型領域
20上面の一部に該領域と直かに魯すゐ比較的広い面積
O金ゲルマニウム/会(AuG@/Au)等0@10配
線電lk3が形成されておシ、lj!第10配線電11
3及び前記N、領域2上にこれらを覆う二酸化シリボン
(gins)等OI?鍬膜4が形成されてシカ、#絶縁
膜4上IIc前記第1の配線電1Ik3に隣善して一本
成るいは二本のチタン/白金/金(T轟/Pt/Au)
等からなる第2の配線電極5成るいはS〜lbが形成さ
れてなうている。
Therefore, in high-speed ICE using semi-cell green substrates, in order to lower the W# impedance, it is necessary to resort to measures such as widening the width of the 1st line and shortening the length of the 1st line. It is extremely difficult to form a highly integrated yItC (high-density, large-area) RCT on a medium-insulating semiconductor substrate in order to eliminate the above-mentioned IiA. In other words, the present invention uses a semi-insulating semiconductor substrate and provides a wiring electrode with low specific resistance 2 on the semi-insulating semiconductor substrate in a stone semiconductor IC1r. , the capacitance f of the insulating film between the low resistivity region and the electrode 20 wiring 11i is characterized by being used as a bypass capacitor.Hereinafter, examples will be explained in detail using the present invention tat and g. - Figures 1 (Ji) and (b) are partial sectional views for explaining the functions of the present invention, and Figures 2 (a) to (fl are the 910 parts of the present invention).
A process sectional view of an embodiment of a method for forming a structure, a perspective plan view schematic diagram of a different embodiment of the 3rd cabinet and 411p,
Fig. 5 (Otori) is a perspective plan schematic diagram of another embodiment, 115
11(b) is a cross-sectional view taken from the direction of the arrow A', and FIG. 6(a) &
; iFurthermore, see-through plane 1iI schematic diagram of 〇1 Example% rattan 6 figure (
b) and U (Cud sot) B-B' and c-cl arrow section'
For example, in the structure shown in Figure 1 (a) or (b) K, the upper surface W & For example, an N''ll region 2 having a low specific resistance is provided, and a portion of the upper surface of the N+ type region 20 is directly connected to the region with a relatively large area of gold germanium (AuG). /Au) etc. 0@10 wiring voltage lk3 is formed, lj! 10th wiring voltage 11
3 and the above N, OI such as silicon dioxide (gins) covering these on region 2? After the hoe film 4 is formed, one or two titanium/platinum/gold (Tdoro/Pt/Au) wires are placed adjacent to the first wiring conductor 1Ik3 on the insulation film 4 IIc.
A second wiring electrode 5 or S to lb is formed.

そして上記構造に於て、例えばIIEIO配―電極配管
電極3し、第2の配418.5m、sb#c所m。
In the above structure, for example, the IIEIO arrangement-electrode piping electrode 3, the second arrangement 418.5m, and the sb#c location m.

駆動電11B、Ha、Bb 841続した際にけ、替地
Gされた#B1の配線電極3にオーシックに接続するN
+#IIJl域2と8g2の配−5# 5m、5bの関
には絶縁膜の誘電率、厚さに見合うた容量C−Catc
bが形成される・従うてこれら第20配線5゜5ae5
bは前と容量からなるバイパス・コンデンサで替地され
た形になり1配−〇インピーダンスは低下する。
When the drive voltage 11B, Ha, Bb 841 is connected, the N which is orthically connected to the wiring electrode 3 of #B1 which has been replaced with G
+#IIJl area 2 and 8g2 wiring -5# At the junction of 5m and 5b, capacitance C-Catc commensurate with the dielectric constant and thickness of the insulating film.
b is formed.Therefore, these 20th wiring 5゜5ae5
b is replaced by a bypass capacitor consisting of a capacitance, and the impedance of the circuit decreases.

本発明の構造は上記のような械璽ヒtVするが、V!構
造を形成する際に、従来に比べて特に複雑な工程を追加
する必要はない・次にその方法の一例ejK211(a
)乃至(f)#c沿9て工程Ill K iiQ 明ス
h *絽2&1(a)は半絶縁性GiムS基糎11面に
81缶農等管マスクとして選択的#!c例えばシリコン
・イオン(Sl”)を注入エネルギー54(Key)、
注入量1.08X10”Catm/d〕f1MPtt)
条件で注入した後、該基[面を810@膜勢で覆り゛て
800(ロ)程度のアニール処mt−施して、素子を設
けようとするN型活性領域12を形成した状mt示して
いる・次いで第2図(b)は通常のスパッタリング法及
びプラズマ・エツチング法を用い、前記NWA活性領域
12上にチタン/タングステン(TOW)シリサイド等
からなるシ璽ットキ・ゲート電@13f形成した状態を
示している・次いで@2図(C)は鋏基鈑上に本発明の
配線構造に用いられるN 領域形成−及び前記活性領域
面を表出する窓を有する810、膜等を形成し、該Si
0g膜等及び前記シ盲ット中・ゲート電極をマスクとし
て、例えば注入エネルギー175 (Key)、注入量
1.7X10”(atm7’crd )程度の条件で8
1 を選択的に注入した後、前P同様のアニール処理を
施して、活性領域12内KNWソース領域14及びN!
Itドレイン領域15を、又GIAI基板11の上面i
ll: I XIO’(atm/Cm” )程qof3
1ビーク濃Itを有するN+型領領域1et形成した状
mt−示している・なi?この状態で活性領域kFiF
ETが形成される。次いで第211(b)は通常のフォ
シ・プロセス、蒸着、す7トオ7法を朧次用いて、前記
ソース、ドレイン領域上に例えば金ゲニマニウム/金か
らなるソース電極1フ、・ドレイン電極18を一又前記
N+濡領域16上に第10配曽電1t19を形成した状
態を示している・なおこれら電極は下部の牛導体層とオ
ー1ツク接続させるために450(ロ)程度のア四イン
グ処理がなされる◎次いで第2図(e)は化学気相成長
(CVD)法等tm%/%て、上記電極上を覆う例えば
SIO−膜209形成し★状態を示している。
Although the structure of the present invention has the above-mentioned mechanical strength, V! When forming the structure, there is no need to add any particularly complicated process compared to the conventional method.
) to (f) #c along 9th process Ill K iiQ Mingsu h *Glue 2 & 1 (a) is selective # as an 81 can agricultural pipe mask on the 11th surface of the semi-insulating Gim S base glue! c For example, silicon ions (Sl'') are implanted with energy 54 (Key),
Injection amount 1.08X10”Catm/d]f1MPtt)
After implantation under the following conditions, the surface of the substrate is covered with an 810@ film layer and annealing treatment of approximately 800 (b) is performed to form an N-type active region 12 in which an element is to be provided. Then, as shown in FIG. 2(b), a silicon gate electrode made of titanium/tungsten (TOW) silicide or the like was formed on the NWA active region 12 using conventional sputtering and plasma etching methods. Figure 2 (C) shows the formation of an N region used in the wiring structure of the present invention on the scissors base plate, and the formation of a film 810 having a window exposing the active region surface. , the Si
Using the 0g film etc. and the gate electrode in the blind dot as a mask, the implantation energy is 175 (Key) and the implantation amount is about 1.7×10"(atm7'crd).
After selectively implanting N!, the same annealing treatment as for the previous P is applied to the KNW source region 14 within the active region 12 and the N!
The It drain region 15 and the upper surface i of the GIAI substrate 11
ll: I XIO'(atm/Cm") qof3
It shows that an N+ type region 1et having a peak density It is formed. In this state, the active area kFiF
ET is formed. Next, in step 211(b), a source electrode 1 and a drain electrode 18 made of, for example, gold/genimanium/gold are formed on the source and drain regions using a conventional Fosci process, evaporation, and method. It also shows a state in which a tenth power distribution circuit 1t19 is formed on the N+ wetted area 16. These electrodes are connected to the lower conductor layer with an A4 angle of about 450 (B). ◎ Then, FIG. 2(e) shows a state in which, for example, an SIO-film 209 is formed to cover the electrode by chemical vapor deposition (CVD) or the like.

次いで嬉2wげ)は、グッズマ・エツチング法等により
前記810@膜20に所望のスルーホールを形成した後
、スパッタリ/ダ、イオン・電−リング等の工11を妊
て、Si缶腹膜20上KST轟Pt/Au等の三層構造
を有し、前記ンース電極17に接すゐソ゛−ス配[21
,前記ドレイン電極18に優するドレイy配線22.及
び電極配線23を形成した状態を示している01にお上
記ドレイン配線2211C*続する電極配線23a、前
記碇−領域16の上部領域に形成する・従つて該電―配
置!12B即ち第2の配線電極は接地電極即ち第1の配
線電極19にオーZツクiII絖するN”lll領域と
、810.膜20を誘電体層とするコンデンサによりバ
イパスされた構造keる・ 次に本発11O構造を高速ICK適用した実施例につい
て、透視平面模式図及び要部断面Illを用いて説−す
る。
Next, after forming a desired through hole in the 810@membrane 20 using a good mask etching method or the like, a process 11 such as sputtering/damping, ion/electro-ring, etc. is applied to the peritoneum 20 of the Si can. The source electrode [21
, a drain y wiring 22. which is superior to the drain electrode 18. The electrode wiring 23a, which is connected to the drain wiring 2211C* and 01 showing the state in which the electrode wiring 23 is formed, is formed in the upper region of the anchor region 16, and therefore the electrode wiring 2211C* is formed in the upper region of the anchor region 16. 12B, that is, the second wiring electrode is connected to the ground electrode, that is, the first wiring electrode 19, and has a structure in which it is bypassed by a capacitor having the dielectric layer 810 and the membrane 20. An example in which the 11O structure of the present invention is applied to a high-speed ICK will be described using a schematic perspective plan view and a cross section of the main part Ill.

第311#1ll1101111に配置/a(例Lハm
l/1411極)31を暢広く(低インビニダンス形状
)形成し、これr#IILN”W領域33上部に一本の
第2の電極鹸纏C例えば電−配線)32を設けた単−電
−ICの一実II/IAf1である。そして図中31’
、32’は枝配線%34町へ34Xは単位回路、Bは駆
動電源、Gは接地を示す・ 菖4■は第1の電極配線31を幅広く形成し、これに近
接しXs領域33の上部に二本の第2の電極配線328
.32bを設けた二重−IC〇一実施例’T:h2h@
ソシテTIJ中31’e 32m’# 32b’社枝配
線、341〜34Xは単位回路、B及び−Bは駆動電−
1Gは接地を示す。
Placed in No. 311 #1ll1101111/a (Example L Ham
1/1411 pole) 31 is formed smoothly and widely (low invinidance shape), and a single second electrode (for example, electrical wiring) 32 is provided on the upper part of the r#IILN''W region 33. It is a part of electric IC II/IAf1.And 31' in the figure
, 32' indicates the branch wiring %34, 34X indicates the unit circuit, B indicates the drive power supply, and G indicates the ground.The irises 4■ form the first electrode wiring 31 broadly, and are close to this and are located above the Xs region 33. Two second electrode wirings 328
.. Dual-IC〇1 embodiment with 32b T:h2h@
Soshite TIJ middle 31'e 32m'# 32b' company branch wiring, 341 to 34X are unit circuits, B and -B are drive power -
1G indicates grounding.

第5図(畦は雛lの配線電極を二箇所に設け1それぞれ
O配線電極を接地電也成るいは駆動電極電極として用い
二畳Sにバイパス・コンテyすを介在せしめた単一電源
IC〇一実施例に於ける透視平面模式図で、第5*φ)
FiそのA−A’矢視断面図である。そして図中31”
s’311)IIi第1の配線電極、31”*31”は
枝配線、32暑、32bは第2の配線電極、33〜33
haN“1領域134a 〜34Xは単位回路%35は
5iOt展q 36はスルーホール、Bは駆動電源、G
ii接地を示す・なお該構造に於ては第1の配線電極3
11と31bは下層に形成され、これら第10配線電極
はスルーホール36t−介して上層に導出された枝配線
31”* 31b’により、他ON十型領域上の第20
配線電極32m成るいは$2bと接続される。
Figure 5 (The ridge is a single power supply IC with wiring electrodes in two places, each O wiring electrode being used as a grounding electrode or a driving electrode, and a bypass container interposed in the two-tatami S. 〇This is a perspective plan schematic diagram in one embodiment, No. 5 *φ)
FIG. 2 is a cross-sectional view taken along line AA' of FIG. And 31" in the figure
s'311) IIi first wiring electrode, 31"*31" is branch wiring, 32 heat, 32b is second wiring electrode, 33-33
haN"1 area 134a to 34X are unit circuits % 35 is 5iOt expansion q 36 is a through hole, B is a drive power supply, G
ii Indicates grounding.In this structure, the first wiring electrode 3
11 and 31b are formed in the lower layer, and these 10th wiring electrodes are connected to the 20th wiring electrodes on other ON ten-shaped regions by branch wirings 31''*31b' led out to the upper layer through the through holes 36t.
It is connected to the wiring electrode 32m or $2b.

第6図(11はN“層領域を二箇所に設け、相互に接続
された第10配線電極を両N〜領域上O下層部に設け、
相互に接続された第2の配線電極を・両N+波領域上の
上層sK設けることによシ、二要部にバイパス・コンデ
ンサを介在せしめた単−電−ICの一実施例に於ける透
視平面模式図で一第6@Φ)及び(C)はそのB−B’
及びc−c’矢視断面図である0そして図中31m、3
1bは第1の配線電極−31′  はその枝配線% 3
2m、 32bijlli2の配線電極・32/はその
枝配線・331,33bはN+IM領域34m−34X
Fi単位回路、35はSIO,膜、Bは躯動電源、GI
/i接地を示す・ 以上説明したように本発明の構造を適用すればlGmA
s等の半絶縁性半導体基板を用いて形成する高速ICK
於けるI#7iυ配線にバイパス・コンデンサを付加す
ることが極めて容易である◎従らて本発明によりば1ス
イッチング速度が連<、シかも誤動作の々い高集積度の
高速半導体ICを形成することか出来る・
FIG. 6 (11 shows N'' layer regions are provided in two places, and mutually connected 10th wiring electrodes are provided in both N~ regions upper and O lower layer parts,
By providing the second wiring electrodes connected to each other in the upper layer sK above both N+ wave regions, a transparent view of an embodiment of a single-voltage IC with bypass capacitors interposed in the two main parts. In the schematic plan view, 1st 6 @ Φ) and (C) are its B-B'
and c-c' arrow sectional view 0 and 31m, 3 in the figure.
1b is the first wiring electrode - 31' is its branch wiring% 3
2m, 32bijlli2 wiring electrode・32/ is its branch wiring・331, 33b is N+IM area 34m-34X
Fi unit circuit, 35 is SIO, membrane, B is vertical power supply, GI
/i indicates grounding. As explained above, if the structure of the present invention is applied, lGmA
High-speed ICK formed using semi-insulating semiconductor substrate such as s
It is extremely easy to add a bypass capacitor to the I#7iυ wiring in the I#7iυ wiring. Therefore, according to the present invention, a highly integrated high-speed semiconductor IC with a high switching speed and a high probability of malfunction can be formed. I can do it...

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)及び(b)は本発明の詳細な説明するため
の部分断面図、第2図(鳳)乃至げ)は本発明の構造を
形成する方法に於ける一実施例の工程断面図、第J 3図及び第4図に異なる一実施例の透視平面模式図、第
5図(1)は他〇一実施例の透視平面模式図、第5図(
b)社そのA−A’矢視断面図、第6図(filは更に
他の一実施例の透視平面模式図%36図(b)及び(C
)はそ0B−B’及びc−c’矢視断面図であるO 図に於て、1?を半絶縁性半導体基板、L3L33Jl
、33bはN〜領領域3,33,3111.31bは第
一〇配線電極、4は絶縁膜、5 e 32132 mm
32bは第二の配線電極、31/、31m’e 31b
’32’# 321’# 32b’は枝配線、34M4
34には単位回路、35は二酸化シリコン膜、36はス
ルーホール、CI (a、Cbは容量、G#i譬地、B
1 (1) and (b) are partial sectional views for explaining the present invention in detail, and FIG. 3 and 4 are schematic perspective views of one embodiment, and FIG. 5 (1) is a schematic perspective view of another embodiment.
b) A sectional view taken along the line A-A' of the company, FIG.
) is a sectional view taken along arrows 0B-B' and c-c'. A semi-insulating semiconductor substrate, L3L33Jl
, 33b is the N~ region 3, 33, 3111.31b is the 10th wiring electrode, 4 is the insulating film, 5e 32132 mm
32b is the second wiring electrode, 31/, 31m'e 31b
'32'#321'#32b' is branch wiring, 34M4
34 is a unit circuit, 35 is a silicon dioxide film, 36 is a through hole, CI (a, Cb are capacitances, G#i is the base, B
.

Claims (1)

【特許請求の範囲】[Claims] ・ 半絶縁性の半導体基板を用いる半導体集積回路装f
llK於て、低比抵抗領域上に直かに形成された第1の
配線電極と絶縁膜−及び前記絶縁膜上に形成され且つ前
記第1の配線電arsnする第20配線電極管有してな
ることを特徴とする半導体集積回路装置・
・Semiconductor integrated circuit device f using a semi-insulating semiconductor substrate
llK, a first wiring electrode and an insulating film formed directly on the low resistivity region, and a 20th wiring electrode tube formed on the insulating film and connected to the first wiring electrode. A semiconductor integrated circuit device characterized by:
JP16304781A 1981-10-13 1981-10-13 Semiconductor integrated circuit device Granted JPS5864048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16304781A JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16304781A JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5864048A true JPS5864048A (en) 1983-04-16
JPS6249734B2 JPS6249734B2 (en) 1987-10-21

Family

ID=15766164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16304781A Granted JPS5864048A (en) 1981-10-13 1981-10-13 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5864048A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228732A (en) * 1983-06-10 1984-12-22 Toshiba Corp Master slice type semiconductor device
JPS62243345A (en) * 1986-04-15 1987-10-23 Toshiba Corp Semiconductor integrated circuit device
US5687109A (en) * 1988-05-31 1997-11-11 Micron Technology, Inc. Integrated circuit module having on-chip surge capacitors
US6114756A (en) * 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
US6124625A (en) * 1988-05-31 2000-09-26 Micron Technology, Inc. Chip decoupling capacitor
US6414391B1 (en) 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6420739B1 (en) 1998-05-19 2002-07-16 Murata Manufacturing Co., Ltd. GaAs semiconductor device having a capacitor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228732A (en) * 1983-06-10 1984-12-22 Toshiba Corp Master slice type semiconductor device
JPS62243345A (en) * 1986-04-15 1987-10-23 Toshiba Corp Semiconductor integrated circuit device
US5687109A (en) * 1988-05-31 1997-11-11 Micron Technology, Inc. Integrated circuit module having on-chip surge capacitors
US6124625A (en) * 1988-05-31 2000-09-26 Micron Technology, Inc. Chip decoupling capacitor
US6184568B1 (en) 1988-05-31 2001-02-06 Micron Technology, Inc. Integrated circuit module having on-chip surge capacitors
US6448628B2 (en) 1988-05-31 2002-09-10 Micron Technology, Inc. Chip decoupling capacitor
US6730994B2 (en) 1998-04-01 2004-05-04 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames and methods
US6114756A (en) * 1998-04-01 2000-09-05 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit leadframes
US6265764B1 (en) 1998-04-01 2001-07-24 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames
US6396134B2 (en) 1998-04-01 2002-05-28 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames
US6531765B2 (en) 1998-04-01 2003-03-11 Micron Technology, Inc. Interdigitated capacitor design for integrated circuit lead frames and method
US6420739B1 (en) 1998-05-19 2002-07-16 Murata Manufacturing Co., Ltd. GaAs semiconductor device having a capacitor
US6414391B1 (en) 1998-06-30 2002-07-02 Micron Technology, Inc. Module assembly for stacked BGA packages with a common bus bar in the assembly
US6563217B2 (en) 1998-06-30 2003-05-13 Micron Technology, Inc. Module assembly for stacked BGA packages
US6838768B2 (en) 1998-06-30 2005-01-04 Micron Technology Inc Module assembly for stacked BGA packages
US7279797B2 (en) 1998-06-30 2007-10-09 Micron Technology, Inc. Module assembly and method for stacked BGA packages
US7396702B2 (en) 1998-06-30 2008-07-08 Micron Technology, Inc. Module assembly and method for stacked BGA packages
US7400032B2 (en) 1998-06-30 2008-07-15 Micron Technology, Inc. Module assembly for stacked BGA packages
US7408255B2 (en) 1998-06-30 2008-08-05 Micron Technology, Inc. Assembly for stacked BGA packages

Also Published As

Publication number Publication date
JPS6249734B2 (en) 1987-10-21

Similar Documents

Publication Publication Date Title
KR0139878B1 (en) Semiconductor device equipped with antifuse elements and a method for manufacturing an fpga
US6121659A (en) Buried patterned conductor planes for semiconductor-on-insulator integrated circuit
US4128670A (en) Fabrication method for integrated circuits with polysilicon lines having low sheet resistance
CN105340071B (en) There is the semiconductor on insulator integrated circuit of interconnection below insulator
US4329706A (en) Doped polysilicon silicide semiconductor integrated circuit interconnections
US5889306A (en) Bulk silicon voltage plane for SOI applications
US4890142A (en) Power MOS transistor structure
US4853894A (en) Static random-access memory having multilevel conductive layer
CN103443924B (en) Silicon carbide semiconductor device with a gate electrode
KR100721632B1 (en) Electrostatically controlled tunneling transistor
JP2001028443A (en) Semiconductor device and manufacture thereof
CN101427373B (en) Method for fabricating a semiconductor component including a high capacitance per unit area capacitor
JP2001230423A (en) Soi mosfet device and manufacturing method thereof
TW548852B (en) Semiconductor device
US6531753B1 (en) Embedded conductor for SOI devices using a buried conductive layer/conductive plug combination
US20040026762A1 (en) Semiconductor device
JPH027471A (en) Polycrystalline silicon schottky diode
JPH08509841A (en) Semiconductor device with current connection for high integration density
JPS5864048A (en) Semiconductor integrated circuit device
US7238591B1 (en) Heat removal in SOI devices using a buried oxide layer/conductive layer combination
TWI459538B (en) Shunt capacitor and rf power transistor having the same
JPH11135799A (en) Semiconductor integrated circuit and its manufacture
TWI786872B (en) Integrated circuit and manufacturing method thereof
US6603142B1 (en) Antifuse incorporating tantalum nitride barrier layer
US20230299184A1 (en) Terahertz capable integrated circuit