JPS5877245A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5877245A
JPS5877245A JP17461981A JP17461981A JPS5877245A JP S5877245 A JPS5877245 A JP S5877245A JP 17461981 A JP17461981 A JP 17461981A JP 17461981 A JP17461981 A JP 17461981A JP S5877245 A JPS5877245 A JP S5877245A
Authority
JP
Japan
Prior art keywords
insulating film
wirings
wiring
unused
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17461981A
Other languages
Japanese (ja)
Inventor
Yoji Nishio
洋二 西尾
Keisuke Nakajima
啓介 中島
Nagaharu Hamada
長晴 浜田
Shigeo Kuboki
茂雄 久保木
Takahide Ikeda
池田 隆英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17461981A priority Critical patent/JPS5877245A/en
Publication of JPS5877245A publication Critical patent/JPS5877245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To remove a limit on the connecting position of wirings, and moreover to reduce capacity of the wirings on an unused element of a semiconductor integrated circuit device by a method wherein unevenness of the surface of a first insulating film covering the main face of an Si substrate on the side provided with circuit elements of the plural number is compensated with a second insulating film provided thereon. CONSTITUTION:FET's 204, 205 are formed being separated by a field oxide film 206 on a substrate 200, and the places other than a source and a drain 203 and the connecting parts of a first layer metal wiring 207 are covered with PSG 208, and are covered with insulating polyimide films 209 in succession to flatten the upper part of an unused element 205. Therefore disconnection according to a step part is not generated, and a prohibition about the connecting position of the wirings 207, 211 is cancel on the unused element 205. When the connection prohibiting place is canceled by this way, the degree of integration can be enhanced, and moreover the distances between the metal wirings 207, 211 and the substrate 200 are enlarged by interposition of the insulating film 209 to reduce parasitic capacity. Accordingly the speed of a logic gate is increased.

Description

【発明の詳細な説明】 本発明は、半導体集積回路装置に係り、特に多品種少量
生産品のLSI化に適するセミカスタムLS 1.換言
すればマスタスライスLSIに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and in particular to a semi-custom LS that is suitable for LSI production of a wide variety of products in small quantities. In other words, it relates to the master slice LSI.

従来のマスタスライスLSIの構成を第1図に示す。L
SIチップ1はその外周にポンディングパッド及び入出
力回路領域5金持ち、内部にはトランジスタ等の素子か
ら成る基本セル2をX軸方向に配列した基本セル列3を
配線領域4を′挾んで繰返し配置した構成を採っている
。所望の電気回路動作を得るために、隣接した基本セル
2を1個あるいは数個結線してNANDゲートやフリッ
プフロップを形成する。そして複数個の基本セル2で形
成した各種論理ゲート間を論理図に従って結線すること
によって1つのLSIを構成する。
FIG. 1 shows the configuration of a conventional master slice LSI. L
The SI chip 1 has a bonding pad and an input/output circuit area 5 on its outer periphery, and inside it, basic cell rows 3 in which basic cells 2 consisting of elements such as transistors are arranged in the X-axis direction are repeated with a wiring area 4 in between. The configuration is as follows. In order to obtain a desired electrical circuit operation, one or several adjacent basic cells 2 are connected to form a NAND gate or flip-flop. One LSI is constructed by connecting various logic gates formed by a plurality of basic cells 2 according to a logic diagram.

ところが、配線関係のマスクのみを変更するマスタスラ
イスLSIでは、配線が多かろうが、少なかろうが配線
領域4の幅は固定である。そのため配線が少ない場合に
は多くのスペースが空き。
However, in a master slice LSI in which only wiring-related masks are changed, the width of the wiring area 4 is fixed regardless of whether there are many or few wirings. Therefore, if there are few wires, a lot of space is freed up.

実装効率が悪かった。そこで、発明者らは先に素子と配
線領域を無駄にすることなく、各種回路が構成できるよ
う、従来の配線領域4の下にもトランジスタ等の素子を
埋め込む方式を提案した。
The implementation efficiency was poor. Therefore, the inventors first proposed a method of embedding elements such as transistors under the conventional wiring area 4 so that various circuits can be constructed without wasting the elements and wiring area.

しかし、配線領域4の下に素子を埋込むと次のような3
つの欠点がある。
However, if an element is buried under the wiring area 4, the following 3
There are two drawbacks.

(1)埋込み素子の境界もしくはその周辺では段差が厳
しくなり、At配線の断線が生じゃすくなるため、A7
の1層目配線のA7.  とA7の2層目配線のAt2
との配線間コンタクトの位置に制限が生じる。これは未
使用埋込み素子上を計算機によって自動配線を行う際に
制限事項となり、実質的に配線チャネルが減ることに逐
るので未配線の原因となる。
(1) The level difference becomes severe at or around the boundary of the embedded element, making it more likely that the At wiring will be disconnected.
A7 of the first layer wiring. and At2 of the second layer wiring of A7
There are restrictions on the position of contacts between wiring lines. This becomes a limitation when automatic wiring is performed by a computer on an unused embedded element, and this results in a substantial reduction in the number of wiring channels, resulting in unwired wiring.

(11)未使用埋込み素子上は、従来の配線領域4のフ
ィールド酸化膜上に比べて、基板との距離が近い。その
ため未使用埋込み素子上を通る配線の寄生容量が大きく
なり、論理ゲートの速度が落ちる。
(11) The distance between the unused buried element and the substrate is shorter than that on the field oxide film in the conventional wiring region 4. Therefore, the parasitic capacitance of the wiring passing over the unused buried elements increases, and the speed of the logic gate decreases.

OlD  断差が厳しい所を通るAt、配線は信頼性の
点からも配線幅を細くすることができないので。
Old At wiring that passes through areas with severe differences cannot be made thinner from the reliability standpoint.

太くせざるを得ないが、太・ぐすると配線容量が増すの
で論理ゲートの速度が落ちる。
There is no choice but to make the wire thicker, but increasing the wire capacitance increases the speed of the logic gate.

本発明の目的は、上述の欠点を除去した半導体集積回路
装置を提供するにある。
An object of the present invention is to provide a semiconductor integrated circuit device that eliminates the above-mentioned drawbacks.

本発明の目的を具体的に言えば、配線領域に存在する未
使用の素子上及び未使用の基本セル上を配線領域として
使用する際にA4.とAt2のコンタクト位置の制限を
なくし、かつ未使用素子上の配線容量を軽減したマスタ
スライス方式の半導体集積回路装置を提供するにある。
Specifically speaking, the purpose of the present invention is to provide A4. It is an object of the present invention to provide a master slice type semiconductor integrated circuit device which eliminates restrictions on the contact positions of and At2 and reduces wiring capacitance on unused elements.

かかる目的を奏する本発明半導体集積回路装置の特徴と
するところは、半導体基板の多数個の回路素子を形成し
た側の主面を被覆する第1の絶縁膜表面に生じている凹
凸を、その上に形成した有機材料の第2の絶縁膜によっ
て補償した点にある。
A feature of the semiconductor integrated circuit device of the present invention that achieves the above object is that the unevenness occurring on the surface of the first insulating film covering the main surface of the semiconductor substrate on the side on which a large number of circuit elements are formed is removed. This is compensated for by the second insulating film made of an organic material formed in the above-mentioned manner.

以下、本発明の一実施例を第2図により説明する。第2
図は第1図のいわゆる配線領域4に素子を埋込んだとし
た新しいマスタスライスLSIにおいてx−x’面の断
面の1部を示すものである。
An embodiment of the present invention will be described below with reference to FIG. Second
The figure shows a part of the cross section of the xx' plane of a new master slice LSI in which elements are embedded in the so-called wiring area 4 of FIG.

基板200には、ゲート酸化膜201.ゲート電極20
2.ソース及びドレイン領域203を持つ埋込み素子2
04,205が構成されている。素子204,205の
間にはフィールド酸化膜206がある。素子204及び
205の上で、素子のソース、ドレイン領域203と1
層目の金属配線207との接続以外の場所は隣ガラス絶
縁膜208でおおわれている。ここまでの構造は一般的
なMOSトランジスタを用いたLSIの構造である。
A gate oxide film 201 . Gate electrode 20
2. Embedded element 2 with source and drain regions 203
04,205 are configured. There is a field oxide film 206 between elements 204 and 205. Above the devices 204 and 205, the device source and drain regions 203 and 1
Areas other than the connection with the metal wiring 207 of the layer are covered with an adjacent glass insulating film 208. The structure up to this point is an LSI structure using general MOS transistors.

隣ガラス絶縁膜(以下PSG膜と略す)208の上を、
埋込み素子のうちで未使用素子205の上部を平坦化す
るためにポリイミド系の有機絶縁膜209でおおう。未
使用素子205上の平坦化が達成されているために1層
目の金属配線207と2層目の金属配線211とのコン
タクト位置が未使用の埋込み素子205上で制限がない
。第2図では未使用の埋込み素子205のソース及びド
レイン領域203とフィールド酸化膜206との境界上
で絶縁膜210に穴を開けて1層目の金属配線207と
2層目の金属配線211を接続している。未使用素子2
05上の平坦化が達成されて、上記の制限がなくなるこ
とによって次の効果がある。
On the adjacent glass insulating film (hereinafter abbreviated as PSG film) 208,
Among the buried elements, an unused element 205 is covered with a polyimide-based organic insulating film 209 in order to flatten the upper part thereof. Since planarization on the unused element 205 has been achieved, there is no restriction on the contact position between the first layer metal wiring 207 and the second layer metal wiring 211 on the unused buried element 205. In FIG. 2, a hole is made in the insulating film 210 on the boundary between the source and drain region 203 of an unused buried element 205 and the field oxide film 206, and the first layer metal wiring 207 and the second layer metal wiring 211 are connected. Connected. Unused element 2
05 is achieved and the above-mentioned limitations are eliminated, the following effects are achieved.

(1)埋込み素子のうちの未使用素子上を配線領域と゛
して用いる時、1層目と2層目の金属配線間の接続禁止
場所がなくなるので、計算機による自動配線に制限事項
が加わらない。
(1) When using an unused element among embedded elements as a wiring area, there are no places where connection is prohibited between the first and second layer metal wiring, so there are no restrictions on automatic wiring using a computer. .

(1i)接続禁止場所があると接続できる場所まで金属
配線を延ばす必要があるため、配線チャネル数を増やさ
なければならず、集積度が低下していた。
(1i) If there is a place where connection is prohibited, it is necessary to extend the metal wiring to a place where connection is possible, so the number of wiring channels has to be increased, and the degree of integration has decreased.

本発明では接続禁止場所がなくなるため、集積度を向上
することができる。
In the present invention, since there are no prohibited places for connection, the degree of integration can be improved.

01D  また、第2図をみてわかるように、素子上?
204.205及びフィールド酸化膜206の上を通る
金属配線207,211と基板200との距離が、−面
を有機絶縁膜209でおおったために、大きくなってい
る。このため金属配線の基板に対する寄生容量が減少す
る。このことは容量の充放電によって信号を伝搬する論
理ゲートの速度を向上させる。
01D Also, as you can see from Figure 2, is it on the element?
The distance between the substrate 200 and the metal wirings 207 and 211 passing over the field oxide film 206 and 204, 205 is increased because the negative side is covered with the organic insulating film 209. Therefore, the parasitic capacitance of the metal wiring to the substrate is reduced. This increases the speed of logic gates that propagate signals by charging and discharging capacitances.

上記の説明は埋込み素子の未使用素子上の構造について
述べたが、第1図の基本セル列3のうちで未使用の基本
セルがある場合も全く同様のことが言える。
Although the above description has been made regarding the structure on the unused element of the embedded element, the same thing can be said when there is an unused basic cell in the basic cell row 3 of FIG.

次に第2図の構造を得る1つの製造法について説明する
Next, one manufacturing method for obtaining the structure shown in FIG. 2 will be explained.

第3図(a)のようにフィールド酸化膜206.ゲート
酸化膜201.ゲート電極202.ソース及びドレイン
領域203及びPSG膜208を形成するまでは従来の
LSIの製造法と同じである。
As shown in FIG. 3(a), the field oxide film 206. Gate oxide film 201. Gate electrode 202. The process up to forming the source and drain regions 203 and the PSG film 208 is the same as the conventional LSI manufacturing method.

次に第3図(b)に示すようにポリイミド系の有機絶縁
物例えば、ポリイミド・イソインドロ・キナゾリンジオ
ン(以下PIQと称す)膜209をスピンナー塗付する
。もちろん平坦化を達成するために他の絶縁物を用いる
ことも可能である。次に第3図(C)に示すようにホト
レジスト膜300を塗付した後、PIQ膜加工用ホトマ
スク301を用いてホトレジスト加工し、PIQ膜20
9に穴を開ける。ここで埋込み素子204.205のう
ち未使用の素子205上のPIQ膜209には穴を開け
ない。次にホトレジスト膜300を除去し、今[1dP
IQ膜209′f:ホトレジストの代わりにして第3図
(d)のようにPSG膜208に穴を開ける。
Next, as shown in FIG. 3(b), a film 209 of a polyimide-based organic insulating material, such as polyimide isoindolo quinazolinedione (hereinafter referred to as PIQ), is applied using a spinner. Of course, other insulators can also be used to achieve planarization. Next, as shown in FIG. 3(C), after applying a photoresist film 300, photoresist processing is performed using a photomask 301 for processing the PIQ film, and the PIQ film 200 is
Drill a hole at 9. Here, holes are not made in the PIQ film 209 on the unused elements 205 among the embedded elements 204 and 205. Next, the photoresist film 300 is removed and now [1dP
IQ film 209'f: Instead of photoresist, a hole is made in the PSG film 208 as shown in FIG. 3(d).

次に第3図(e)に示すように、1層目の金属207を
蒸着後、配線パターンにホトレジスト加工する。
Next, as shown in FIG. 3(e), a first layer of metal 207 is deposited, and then photoresist is processed into a wiring pattern.

ここで未使用の埋込み素子205の上はPIQ膜209
によって平坦化が達成されている。次に第3図(f)に
示すように1層目の金属配線207を絶縁する絶縁膜3
02とホトレジスト膜303−i塗付した後、絶縁膜加
工用ホトマスク304’e用いてホトレジスト加工し、
絶縁膜302に穴を開ける。図の例では未使用の埋込み
素子205のソース及びドレイン領域203とフィール
ド酸化膜206の境界上に1層目と2層目の金属の接続
用の穴305を開けたが、未使用の埋込み素子上では穴
を開ける位置の制限はない。この穴の位置の制限を除い
ては一般的な穴の開は方である。その後は一般的な製造
プロセスであり、ホトレジスト膜303を除去し、第2
図に示すように2層目の金属211を蒸着後、配線パタ
ーンにホトレジスト加工する。その後保護膜212をお
おう。この製造法の中でPSG膜208に穴を開ける際
にPSG膜208の上のPTQ膜209をホトレジスト
の代わりに用いるために、ホトマスクの枚数は従来の製
造法と変わらない。ホトマスクが増すと工程が複雑にな
り、製造費用及び製造期間が増大する。
Here, on the unused embedded element 205 is a PIQ film 209.
Flattening is achieved by Next, as shown in FIG. 3(f), an insulating film 3 insulating the first layer metal wiring 207 is
After applying 02 and photoresist film 303-i, photoresist processing is performed using a photomask 304'e for insulating film processing,
A hole is made in the insulating film 302. In the example shown in the figure, a hole 305 for connecting the first and second layer metals is formed on the boundary between the source and drain region 203 of the unused buried element 205 and the field oxide film 206. There are no restrictions on where to drill the hole. Except for this restriction on the position of the hole, the hole is opened in the usual way. After that, it is a general manufacturing process, and the photoresist film 303 is removed and the second
As shown in the figure, after a second layer of metal 211 is deposited, photoresist processing is performed to form a wiring pattern. After that, a protective film 212 is covered. In this manufacturing method, the PTQ film 209 on the PSG film 208 is used instead of photoresist when making holes in the PSG film 208, so the number of photomasks is the same as in the conventional manufacturing method. As the number of photomasks increases, the process becomes more complicated and the manufacturing cost and manufacturing period increase.

本発明によれば、未使用素子上を従来のマスタスライス
の配線領域と同じイメージで配線できるので実装密度の
高いマスタスライスLS i得ることができる。また、
金属配線の寄生容量を軽減できるので高速動作のマスタ
スライスLS I’に得ることができる。PSG膜20
8の厚さを0.5μm。
According to the present invention, since wiring can be performed on unused elements in the same image as the wiring area of a conventional master slice, a master slice LSi with high packaging density can be obtained. Also,
Since the parasitic capacitance of the metal wiring can be reduced, a high-speed operation master slice LSI' can be obtained. PSG film 20
The thickness of 8 is 0.5 μm.

PIQ膜209の厚さを1.5μmとすると未使用素子
上の1層目の金属配線207の寄生容量は4分の1とな
るので大幅なスピード向上が期待できる。
If the thickness of the PIQ film 209 is 1.5 μm, the parasitic capacitance of the first layer metal wiring 207 on unused elements will be reduced to one-fourth, so a significant speed improvement can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマスタスライスLSIのマスタチップ平
面図、第2図は本発明の一実施例のLSI断面図、第3
図は本発明の一実施例の製造法を説明するだめの断面図
である。 203・・・ソース、ドレイン領域、2o7・・・1層
目の金属配線、208・・・リンガラス絶縁膜、2o9
・・・PIQ膜、202・・・ゲート電極、2o6・・
・フィールド酸化膜、204.205・・・MOS)ラ
ンジを所 2θ0 2″5     〜200
FIG. 1 is a master chip plan view of a conventional master slice LSI, FIG. 2 is a sectional view of an LSI according to an embodiment of the present invention, and FIG.
The figure is a cross-sectional view for explaining a manufacturing method according to an embodiment of the present invention. 203... Source, drain region, 2o7... First layer metal wiring, 208... Phosphorous glass insulating film, 2o9
...PIQ film, 202...gate electrode, 2o6...
・Field oxide film, 204.205...MOS) range 2θ0 2″5 ~ 200

Claims (1)

【特許請求の範囲】 1、一方の主面側に多数個の回路素子を並設した半導体
基板と、半導体基板の一方の主面を被覆する半導体酸化
物を主成分とする第1の絶縁膜と。 第1の絶縁膜上に形成され略平坦な表面を有する有機材
料からなる第2の絶縁膜と、第2の絶縁膜上に形成され
た第1の配線層と、第1の配線層上に形成された第3の
絶縁層と、第3の絶縁層上に形成され第1の配線層と共
に回路素子を所望の回路構成に接続する第2の配線層と
を具備することを特徴とする半導体集積回路装置。 2、特許請求の範囲第1項において、第2の絶縁膜とし
てポリイミド系の有機絶縁膜を用いることを特徴とする
半導体集積回路装置。
[Claims] 1. A semiconductor substrate with a large number of circuit elements arranged side by side on one main surface, and a first insulating film mainly composed of a semiconductor oxide that covers one main surface of the semiconductor substrate. and. A second insulating film formed on the first insulating film and made of an organic material and having a substantially flat surface; a first wiring layer formed on the second insulating film; A semiconductor comprising: a third insulating layer; and a second wiring layer formed on the third insulating layer and connecting circuit elements together with the first wiring layer to a desired circuit configuration. Integrated circuit device. 2. A semiconductor integrated circuit device according to claim 1, characterized in that a polyimide-based organic insulating film is used as the second insulating film.
JP17461981A 1981-11-02 1981-11-02 Semiconductor integrated circuit device Pending JPS5877245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17461981A JPS5877245A (en) 1981-11-02 1981-11-02 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17461981A JPS5877245A (en) 1981-11-02 1981-11-02 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5877245A true JPS5877245A (en) 1983-05-10

Family

ID=15981751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17461981A Pending JPS5877245A (en) 1981-11-02 1981-11-02 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5877245A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268144A (en) * 1986-05-16 1987-11-20 Hitachi Ltd Multilayer interconnection structure
JPS63182837A (en) * 1987-01-26 1988-07-28 Hitachi Ltd Semiconductor integrated circuit device
JPH0228369A (en) * 1988-04-13 1990-01-30 Seiko Epson Corp Semiconductor device
FR2741192A1 (en) * 1995-11-10 1997-05-16 Samsung Electronics Co Ltd DESIGN AND MANUFACTURING PROCESS OF INTEGRATED CIRCUITS AND INTEGRATED CIRCUITS MADE ACCORDING TO THIS PROCEDURE
JPH1056065A (en) * 1997-06-02 1998-02-24 Seiko Epson Corp Semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268144A (en) * 1986-05-16 1987-11-20 Hitachi Ltd Multilayer interconnection structure
JPS63182837A (en) * 1987-01-26 1988-07-28 Hitachi Ltd Semiconductor integrated circuit device
JPH0228369A (en) * 1988-04-13 1990-01-30 Seiko Epson Corp Semiconductor device
FR2741192A1 (en) * 1995-11-10 1997-05-16 Samsung Electronics Co Ltd DESIGN AND MANUFACTURING PROCESS OF INTEGRATED CIRCUITS AND INTEGRATED CIRCUITS MADE ACCORDING TO THIS PROCEDURE
JPH1056065A (en) * 1997-06-02 1998-02-24 Seiko Epson Corp Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20050200017A1 (en) Integrated circuit bond pad structures and methods of making
JPS60177669A (en) Semiconductor memory device
US5903489A (en) Semiconductor memory device having a monitoring pattern
JP2001339047A (en) Semiconductor device
JP2998832B2 (en) Semiconductor device pattern forming method
EP0127100A2 (en) Semiconductor integrated circuit device
JPH0434309B2 (en)
JPS5877245A (en) Semiconductor integrated circuit device
US9070550B2 (en) Semiconductor device and manufacturing method thereof
JP2692099B2 (en) Master slice type integrated circuit
JPH1098108A (en) Semiconductor device
US5171701A (en) Method of manufacturing master-slice semiconductor integrated circuits
US5581097A (en) Method of fabricating semiconductor device using shared contact hole masks and semiconductor device using same
JPH02250349A (en) Manufacture of semiconductor device and semiconductor wafer used therefor
US5227324A (en) Gate array and manufacturing method of semiconductor memory device using the same
JPS6035537A (en) Semiconductor integrated circuit
JP2780896B2 (en) Method for manufacturing semiconductor integrated circuit
US6118169A (en) Method for increasing power supply bypassing while decreasing chip layer density variations
JPH02280353A (en) Semiconductor integrated circuit
JPH0541455A (en) Semiconductor integrated circuit and its interlayer connection method
JP2003060174A (en) Method for manufacturing semiconductor integrated circuit and reticle as well as semiconductor integrated circuit device
JPS6143471A (en) Wiring structure of semiconductor device
JP2810945B2 (en) Electrode pad for integrated circuit and method of manufacturing the same
JPH1187346A (en) Semiconductor integrated circuit device and its manufacture
JP2021072341A (en) Semiconductor device