JPS626849B2 - - Google Patents

Info

Publication number
JPS626849B2
JPS626849B2 JP6312280A JP6312280A JPS626849B2 JP S626849 B2 JPS626849 B2 JP S626849B2 JP 6312280 A JP6312280 A JP 6312280A JP 6312280 A JP6312280 A JP 6312280A JP S626849 B2 JPS626849 B2 JP S626849B2
Authority
JP
Japan
Prior art keywords
titanium dioxide
uranium
adsorbent
fibrous
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6312280A
Other languages
Japanese (ja)
Other versions
JPS56161835A (en
Inventor
Shunsaku Kato
Shusuke Myazaki
Yoshinori Fujiki
Masaru Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6312280A priority Critical patent/JPS56161835A/en
Publication of JPS56161835A publication Critical patent/JPS56161835A/en
Priority to JP7461986A priority patent/JPS62210052A/en
Publication of JPS626849B2 publication Critical patent/JPS626849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、新規なウラン吸着材、さらに詳しく
いえば、特殊な方法で製造された繊維状結晶性二
酸化チタンから成るウラン吸着材に関するもので
ある。 近年、石油資源の枯褐化とともに原子力エネル
ギーの利用が世界的に問題となつてきている。そ
のため海水中に多量に存在するウランがエネルギ
ー源として注目されるようになつた。 海水中には、安定な炭酸ウラニルとして約
3ppb程度の濃度でウランが含まれているが、こ
れを回収するには吸着能と選択性の優れた吸着材
が必要である。この吸着材は、長期間、多量の海
水と接触するため海水に対して抵抗性を有し、取
扱いや再生が容易で、かつ安価で大量に入手しう
るものでなければならない。 これまで、このような要件を備え、実用的に興
味ある吸着材として、二酸化チタン水和物系ある
いはこれと活性炭とを組み合わせた複合系のもの
が研究されているが、これらの二酸化チタン水和
物系の吸着材は粉末状であるため取扱いにくいと
いう欠点がある。 このような欠点を克服する目的で、二酸化チタ
ン水和物を酸化鉄と共沈させて、磁性を有する吸
着材とし、磁気分離により使用後の吸着材の回収
をはかることや、粒状化して取扱いやすくするこ
とが提案されている。 しかしながら、この吸着材は磁性が増大すると
ともに吸着能力を減じる傾向があり、また磁気分
離に際しては多量のエネルギーを必要とするし、
他方、粒状化した場合、粒径が大きくなるとウラ
ン吸着能力が著しく低下し、また成形圧力を高く
すると機械的強度は増すが、吸着性を減じるとい
う問題点を伴うため、まだ実用上満足しうるもの
は得られていない。 本発明者らは、このような従来の吸着剤の欠点
を克服し、ウランに対する吸着性や選択性が良好
であり、耐久性に富み、かつ取扱いの容易な吸着
材を開発すべく鋭意研究を重ねた結果、特殊な方
法で得られる繊維状結晶の二酸化チタンによりそ
の目的を達成しうることを見出いだし、この知見
に基づいて本発明をなすに至つた。 すなわち、本発明は、二酸化チタンの繊維状結
晶から成るウラン吸着剤を提供するものである。 この吸着材を構成する二酸化チタンの繊維状結
晶は、チタン酸アルカリ金属塩の繊維状結晶を酸
処理し、アルカリ金属酸化物を溶出したのち、
200℃未満の温度で乾燥することによつて得られ
る二酸化チタン水和物を、次いで200〜700℃の温
度で加熱処理することによつて製造することがで
きる。 この際、原料として用いるチタン酸アルカリ金
属塩は、一般式 M2O(TiO2o (式中Mはアルカリ金属であり、nは1〜5の数
を示す) で表わされる化合物であり、例えば二酸化チタン
の粉末と、アルカリ金属酸化物又は焼成によりア
ルカリ金属酸化物に変化するもの、例えばアルカ
リ金属炭酸塩の粉末とを加熱溶融し、これを急冷
して繊維状に結晶化させることにより、製造する
ことができる。このような溶融法のほか、フラツ
クス法、焼成法、水熱法などによつて製造するこ
ともできる。 このようにして得られた繊維状結晶は通常塊状
になつているがこれを水で洗浄し、不純分を除く
ことにより繊維状に分離させることができる。 このチタン酸アルカリ金属塩の例としては、チ
タン酸ナトリウム、チタン酸カリウム、チタン酸
ルビジウム、チタン酸セシウムなどを挙げること
ができるが、繊維化が容易で、酸による抽出処理
がしやすく、かつ安価である点を考慮すればチタ
ン酸カリウムが最も好ましい。また前記の一般式
中のnは1〜5の範囲であるが、長繊維化可能
で、酸によるアルカリ金属の溶出がよく、吸着能
力の高い吸着材を与えるという点で、特に2〜4
の範囲のものが好ましい。 特に好適なチタン酸アルカリ金属塩は、式K2O
(TiO24に相当するチタン酸カリウムである。 本発明方法における前記のチタン酸アルカリ金
属塩の酸処理は、その繊維状結晶を、無機酸例え
ば硫酸、塩酸、硝酸、リン酸など又は有機酸例え
ばトリクロロ酢酸、メタンスルホン酸などに浸せ
きし、その中のアルカリ金属成分を溶出させるこ
とによつて行われる。このようにして、一般式 TiO2・mH2O (式中のmは3以下の数) に相当する二酸化チタン水和物が、繊維状結晶と
して得られる。 このようにして得られた二酸化チタン水和物
を、反応液中から分離し、さらにこれを200〜700
℃の温度で加熱処理し、アナターゼ型の二酸化チ
タンに変える。この加熱処理は200〜700℃の範囲
の範度で行うことが必要であり、この温度よりも
低いと脱水が十分に行われないし、また700℃よ
りも高い温度ではアナターゼの結晶化が著しく進
行し、900℃以上ではルチルへ相転移して活性が
低下する。 このように加熱処理を施すことにより、ウラン
の吸着能力は著しく向上する。これは、分子内の
水成分が除かれる際に層状構造が破壊され活性が
発現するためであると考えられる。この際の加熱
温度は高くなるほどウラン吸着能力は増加する
が、700℃を超えると急激に活性が低下する。 このようにして得た本発明の吸着材を用いて海
水又は希薄溶液中のウランを吸着するには、この
吸着材と海水又は希薄溶液とを十分に接触させれ
ばよい。この接触は、固定床方式、流動床方式、
沈降分離方式などの任意の方式で行うことができ
る。 本発明のウラン吸着材は、従来のチタン系吸着
材に匹敵する若しくはそれよりも大きいウラン吸
着容量を有し、また繊維状で特に粒状に加工する
必要がないため造粒による吸着能力の低下がない
という利点を有している。さらに、本発明のウラ
ン吸着材は、結晶体から成るため、化学的に安定
で、耐久性を有し、脱着、再生を簡単に行うこと
ができ、循環再使用が可能である。そして、その
吸着能力はウランに対して特異的に作用し、マグ
ネシウムやカルシウムに対しては著しく低いとい
う特徴も有している。 したがつて、本発明のウラン吸着剤は、海水、
ウラン製錬排水のようなウラン含有希薄溶液から
ウランを回収するための吸着材として好適であ
る。 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 二酸化チタンと炭酸カリウムとの粉末をモル比
で2:1の割合に混合したもの約45gを100ml容
白金るつぼに入れ、1100℃で30分間、加熱溶融し
たのち、底部を水冷している金属製の別容器に注
いで急冷し、結晶性繊維状のチタン酸カリウムの
塊状物を調製した。次いでこれを水中に約1時間
浸せきし、未反応K2O成分を溶出させ、塊状物を
解繊して直径0.1〜0.5mm、長さ約5mm(平均値)
の繊維を得た。このものは偏光顕微鏡及びX線回
折の観察から結晶度の低い結晶体であることがわ
かつた。次いでこの繊維を1N−鉱酸水溶液100ml
中に10gの割合で約1〜2時間浸せきし、この溶
液をかきまぜながらK2O成分を抽出したのち、水
洗し、風乾して二酸化チタン水和物の繊維を得
た。このものは、偏光顕微鏡で観察すると干渉色
を示し、銅対陰極とするそのX線回折図は2θが
10゜、11゜、25.6゜、28゜及び48.5゜付近に比較
的ブロードであるがピークを示した。これらのこ
とから、得られた二酸化チタン水和物の繊維は結
晶体であることが分る。 次に、このようにして得た繊維状二酸化チタン
水和物を120℃(1)、250℃(2)又は300℃(3)の温度で
加熱脱水し、結晶性繊維状二酸化チタンを製造し
た。 この繊維状二酸化チタン約50mgを海水2を入
れたビーカに約5日入れウランを吸着させた。こ
の際、海水は一日に2回(朝と夜)取り替えた。
所定時間経過後、繊維状二酸化チタンを別し、
洗浄したのち乾燥し、1N−NaHCO3・Na2CO3
沸騰溶液中に1時間おいてウランを脱離させ、該
溶液中のウランをけい光法で測定した。この結果
を次表に示す。 なお比較のために、チタン−活性炭複合吸着材
をポリビニルアルコールをバインダーとして造粒
したもの(4)について同様の方法でウランの吸着、
測定を行つた結果も同様に次表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel uranium adsorbent, and more particularly to a uranium adsorbent comprising fibrous crystalline titanium dioxide produced by a special method. In recent years, with the decline of petroleum resources, the use of nuclear energy has become a worldwide issue. For this reason, uranium, which exists in large quantities in seawater, has attracted attention as an energy source. In seawater, there is approximately
It contains uranium at a concentration of about 3 ppb, but to recover it, an adsorbent with excellent adsorption capacity and selectivity is required. Since this adsorbent is in contact with a large amount of seawater for a long period of time, it must be resistant to seawater, easy to handle and regenerate, and inexpensive and available in large quantities. Until now, research has been conducted on hydrated titanium dioxide or a composite system combining this with activated carbon as adsorbents that meet these requirements and are of practical interest. Physical adsorbents have the disadvantage of being difficult to handle because they are in powder form. In order to overcome these drawbacks, titanium dioxide hydrate is co-precipitated with iron oxide to create a magnetic adsorbent, and the used adsorbent can be recovered by magnetic separation or granulated for handling. It is proposed to make it easier. However, this adsorbent tends to decrease its adsorption capacity as its magnetism increases, and it also requires a large amount of energy for magnetic separation.
On the other hand, in the case of granulation, as the particle size increases, the uranium adsorption capacity decreases significantly, and although increasing the molding pressure increases mechanical strength, it also comes with the problem of decreasing adsorption properties, so it is still not satisfactory in practical terms. I haven't gotten anything. The present inventors have conducted intensive research to overcome these drawbacks of conventional adsorbents and to develop an adsorbent that has good adsorption and selectivity for uranium, is highly durable, and is easy to handle. As a result of repeated efforts, the inventors discovered that the objective could be achieved using fibrous crystalline titanium dioxide obtained by a special method, and based on this knowledge, the present invention was completed. That is, the present invention provides a uranium adsorbent made of fibrous crystals of titanium dioxide. The fibrous crystals of titanium dioxide constituting this adsorbent are obtained by treating fibrous crystals of alkali metal titanate with acid to elute the alkali metal oxide.
Titanium dioxide hydrate obtained by drying at a temperature of less than 200°C can then be produced by heat-treating at a temperature of 200 to 700°C. At this time, the alkali metal titanate salt used as a raw material is a compound represented by the general formula M 2 O (TiO 2 ) o (wherein M is an alkali metal and n represents a number from 1 to 5), For example, by heating and melting titanium dioxide powder and an alkali metal oxide or something that changes to an alkali metal oxide by firing, for example, an alkali metal carbonate powder, and then rapidly cooling it to crystallize it into a fibrous form, can be manufactured. In addition to such a melting method, it can also be manufactured by a flux method, a calcination method, a hydrothermal method, and the like. The fibrous crystals thus obtained are usually in the form of a lump, but they can be separated into fibers by washing them with water to remove impurities. Examples of the alkali metal titanate include sodium titanate, potassium titanate, rubidium titanate, cesium titanate, etc., but they are easy to form into fibers, easy to extract with acid, and inexpensive. Considering these points, potassium titanate is most preferable. In addition, n in the above general formula is in the range of 1 to 5, but is particularly 2 to 4 in that it can be made into long fibers, has good elution of alkali metals with acids, and provides an adsorbent with high adsorption capacity.
Preferably, the range is . Particularly suitable alkali metal titanates have the formula K 2 O
(TiO 2 ) Potassium titanate corresponding to 4 . The acid treatment of the alkali metal titanate in the method of the present invention involves immersing the fibrous crystals in an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. or an organic acid such as trichloroacetic acid, methanesulfonic acid, etc. This is done by eluting the alkali metal components inside. In this way, titanium dioxide hydrate corresponding to the general formula TiO 2 ·mH 2 O (m in the formula is a number of 3 or less) is obtained in the form of fibrous crystals. The titanium dioxide hydrate thus obtained is separated from the reaction solution and further
It is heat-treated at a temperature of °C to convert it into anatase-type titanium dioxide. This heat treatment needs to be carried out within the range of 200 to 700°C; if the temperature is lower than this, dehydration will not be carried out sufficiently, and if the temperature is higher than 700°C, the crystallization of anatase will proceed significantly. However, at temperatures above 900°C, it undergoes a phase transition to rutile and its activity decreases. By performing heat treatment in this manner, the ability to adsorb uranium is significantly improved. This is thought to be because the layered structure is destroyed when the water component in the molecule is removed, and the activity is expressed. At this time, the higher the heating temperature, the more the uranium adsorption capacity increases, but when the temperature exceeds 700°C, the activity decreases rapidly. In order to adsorb uranium in seawater or a dilute solution using the adsorbent of the present invention thus obtained, it is sufficient to bring the adsorbent into sufficient contact with the seawater or dilute solution. This contact can be carried out by fixed bed method, fluidized bed method,
This can be carried out by any method such as a sedimentation separation method. The uranium adsorbent of the present invention has a uranium adsorption capacity comparable to or greater than that of conventional titanium-based adsorbents, and since it is fibrous and does not require special processing into granules, there is no reduction in adsorption capacity due to granulation. It has the advantage of not being Further, since the uranium adsorbent of the present invention is composed of crystals, it is chemically stable and durable, can be easily desorbed and regenerated, and can be recycled and reused. It also has the characteristic that its adsorption capacity acts specifically on uranium, but is significantly lower on magnesium and calcium. Therefore, the uranium adsorbent of the present invention can be used in seawater,
It is suitable as an adsorbent for recovering uranium from uranium-containing dilute solutions such as uranium smelting wastewater. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Approximately 45 g of a mixture of titanium dioxide and potassium carbonate powder at a molar ratio of 2:1 was placed in a 100 ml platinum crucible, heated and melted at 1100°C for 30 minutes, and then the bottom was cooled with water. The mixture was poured into a separate metal container and rapidly cooled to prepare a lump of crystalline fibrous potassium titanate. Next, this was soaked in water for about 1 hour to elute unreacted K 2 O components, and the agglomerates were defibrated to give a diameter of 0.1 to 0.5 mm and a length of about 5 mm (average value).
fibers were obtained. Observations using a polarizing microscope and X-ray diffraction revealed that this product was a crystalline substance with low crystallinity. Next, this fiber was soaked in 100ml of 1N mineral acid aqueous solution.
10 g of the fibers were immersed in the solution for about 1 to 2 hours, and the K 2 O component was extracted while stirring the solution, followed by washing with water and air drying to obtain fibers of hydrated titanium dioxide. When observed with a polarizing microscope, this material shows interference colors, and its X-ray diffraction pattern using a copper anticathode shows a 2θ
Relatively broad peaks were observed around 10°, 11°, 25.6°, 28°, and 48.5°. These results indicate that the obtained titanium dioxide hydrate fibers are crystalline. Next, the fibrous titanium dioxide hydrate thus obtained was heated and dehydrated at a temperature of 120°C (1), 250°C (2) or 300°C (3) to produce crystalline fibrous titanium dioxide. . Approximately 50 mg of this fibrous titanium dioxide was placed in a beaker containing 2 parts of seawater for approximately 5 days to adsorb uranium. At this time, the seawater was replaced twice a day (in the morning and at night).
After a predetermined period of time, separate the fibrous titanium dioxide,
After washing and drying, the sample was placed in a boiling solution of 1N-NaHCO 3 .Na 2 CO 3 for 1 hour to remove uranium, and the uranium in the solution was measured using a fluorescence method. The results are shown in the table below. For comparison, a titanium-activated carbon composite adsorbent granulated with polyvinyl alcohol as a binder (4) was used to adsorb uranium and
The results of the measurements are also shown in the table below. 【table】

Claims (1)

【特許請求の範囲】 1 二酸化チタンの繊維状結晶から成るウラン吸
着材。 2 チタン酸アルカリ金属の繊維状結晶を酸処理
して、二酸化チタン水和物の繊維状結晶を生成さ
せ、次いでこれを分離し200〜700℃の温度におい
て加熱処理して二酸化チタンとすることを特徴と
する二酸化チタンの繊維状結晶から成るウラン吸
着材の製造方法。
[Claims] 1. A uranium adsorbent comprising fibrous crystals of titanium dioxide. 2. Fibrous crystals of alkali metal titanate are treated with acid to produce fibrous crystals of hydrated titanium dioxide, which are then separated and heat-treated at a temperature of 200 to 700°C to produce titanium dioxide. A method for producing a uranium adsorbent consisting of fibrous crystals of titanium dioxide.
JP6312280A 1980-05-13 1980-05-13 Fibrous uranium adsorbent material and its manufacture Granted JPS56161835A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6312280A JPS56161835A (en) 1980-05-13 1980-05-13 Fibrous uranium adsorbent material and its manufacture
JP7461986A JPS62210052A (en) 1980-05-13 1986-03-31 Uranium adsorbent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312280A JPS56161835A (en) 1980-05-13 1980-05-13 Fibrous uranium adsorbent material and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7461986A Division JPS62210052A (en) 1980-05-13 1986-03-31 Uranium adsorbent and its production

Publications (2)

Publication Number Publication Date
JPS56161835A JPS56161835A (en) 1981-12-12
JPS626849B2 true JPS626849B2 (en) 1987-02-13

Family

ID=13220156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312280A Granted JPS56161835A (en) 1980-05-13 1980-05-13 Fibrous uranium adsorbent material and its manufacture

Country Status (1)

Country Link
JP (1) JPS56161835A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129041A (en) * 1984-11-29 1986-06-17 Natl Inst For Res In Inorg Mater Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal

Also Published As

Publication number Publication date
JPS56161835A (en) 1981-12-12

Similar Documents

Publication Publication Date Title
JPH0260606B2 (en)
JPS626849B2 (en)
JPS6125657B2 (en)
US4855059A (en) Purification of brines with hydrous metal oxide ion exchangers
JPS621293B2 (en)
JP2007098371A (en) Cobalt ion-exchanger and purification apparatus
JPH024442A (en) High performance lithium adsorbent and its preparation
JPS6227009B2 (en)
JPS62210052A (en) Uranium adsorbent and its production
JPS6259973B2 (en)
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
US5066404A (en) Method for separating sodium and potassium by ion exchange
JPS6132053B2 (en)
JPS6156017B2 (en)
JPH0450063B2 (en)
JPH05139747A (en) Production of acicular titanium oxide hydrate and acicular titanium oxide
JPS5940767B2 (en) Manufacturing method of amorphous titania
JPH0525542B2 (en)
JPH0218906B2 (en)
JPH01203039A (en) Adsorbent indicating new lithium selectivity and manufacture thereof
JPH0326334A (en) Recovery agent of lithium and its production
JP4572309B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JPH1043609A (en) Ion exchanger
KOMATSU* et al. Adsorption behavior of cobalt (II) ions on layered dihydrogen tetratitanate hydrate fibers in aqueous solutions in the range from 298 to 523 K
JPH0525540B2 (en)